
e6 - waitr
Sophie Sacks, Sam Lavelle, Dina Razek



Use Case and Use-Case Requirements

Scenario and Solution

● Hard to know how busy eateries are
● Combined hardware and software 

solution: two radio frequency 
identification (RFID) scanners + web 
application

● Scan in at beginning and end of line
● Web application for users to view 

with machine learning in backend 

Quantitative Requirements

● AC-powered, OR battery powered 
scanner lasting 3 hours or more

● Transmission from scanner to server 
within 2 seconds

● Web application response time in 
under 2 seconds

● Margin of error for wait time: 2 
minutes, or within 10%

● Error validation on form and scan 
inputs

● Ability to keep track of up to 50 
patrons



Solution Approach

The Solution

● 2 RFID readers
● A board to send the data 

from the readers to the 
server 

● A web application to 
publish the wait time

● Justified by accuracy, 
anonymity, and prior 
experience 



Complete Solution

● RFID reader detects presence of ID card and 
its bit code

● Arduino converts bit code signal to digital & 
sends to RPi

●
● RPi sends ID and entry time to web 

application through a post request
●
● Entry table in SQL database is updated with ID 

number and entry time 

Step 1: An ID card will be scanned on our entry RFID reader

https://docs.google.com/file/d/1sq0DWNgO2j2SJrQAbymL24rMwgRtGW7b/preview


Complete Solution

● RFID reader detects presence of ID card and 
its bit code

●
● RPi sends ID and exit time to web application 

through a post request
●
● WaitTime table in SQL database is updated 

with entry and exit time, Entry table value will 
be removed 

●
● Web application updates the displayed wait 

time from predicted value to live value given

Step 2: The same ID card will be scanned on our exit RFID reader 

https://docs.google.com/file/d/1iZrvBMohRyK5DiIgxpf3QfxHzNqilDzi/preview


Complete Solution

● View the predicted wait times for today, whose 
values are populated from the ML model 

●
● Submit a error wait time through the form to 

display the error catch 
●
● Submit a successful wait time through the 

form to display the success status and 
updated live wait time

Step 3: Preview the web application

https://waitr.link/
https://docs.google.com/file/d/1V3otWajihEbhJzLeSvDXFJSk-SUyz0mA/preview
https://docs.google.com/file/d/1V3otWajihEbhJzLeSvDXFJSk-SUyz0mA/preview


Original Testing, Verification, and Validation

● Passing Test Outputs
●
● RFID reader detects presence of ID card 

and its bit code
●
● Received properly by the RPis within 2 sec
●
● Correct storage in the Django SQL 

database (entry vs. exit)
●
● ML model predicting wait times
●
● Accurate wait time prediction from the ML 

model (margin of error within 2 minutes or 
10% of actual wait time)

● Test Inputs
●
● ID card to be read on RFID scanner

● RFID scanner output (current date 
and time)

●
● Date and time data from the RPis
●
●
● SQL database data
●
● Web application frontend page 

reload



Final Testing, Verification, and Validation

Use-Case 
Requirement

Design 
Requirement

Test Passing Metric Performance

Battery lasting 3 
hours or more

125kHz power 
source + power for 
op amp, Rpi, and 

Arduino

Test time from 
100% to 0% 

during moderate 
use

Time to 0% > 3 
hours

N/A - currently 
using AC sources, 

as req’d by 
ADALM

ID can be tracked Circuit can 
accurately extract 

RFID bit code

Print from circuit 
to serial monitor; 

compare to 
commercial reader

Bit code is 
consistent across 

our circuit and 
commercial reader

The bit code is 
consistent

Web app receives 
live data within 2 

seconds

Transmission from 
scanner to server 
within 2 seconds

Print time to make 
request to console

RFID scanner 
sends request in 
under 2 seconds

Average request 
time is 0.96 

seconds



Final Testing, Verification, and Validation

Use-Case 
Requirement

Design 
Requirement

Test Passing Metric Performance

Web application is 
not noticeably slow 

for users

Web application 
response time in 
under 2 seconds

Print time from 
scan to page 

reload in console

From scan to page 
reload in under 2 

seconds

Average request 
time is 1.84 

seconds

Input data within 
business hours

Error validation on 
form and scan 

inputs

Try adding wait 
time with exit time 
before entry time

Successfully show 
error to the user 

Catches all 
logical/business 

errors

Ability to keep 
track of up to 50 

patrons

Utilize a large 
enough database

Populate database 
with 50 separate 

points

No errors with 
handling 50 data 

points

Able to hold all 
necessary data at 

once



Design Trade-Offs

● Hardware: Power Source
○ AC source (laptop) to allow for 

precise signal control
○ Cannot have independent system 

until independent +/-5V & 125kHz 
sources

● Software: ML Learning Rate
○ Upped learning rate to .01
○ Dropped loss function down by 

over 150 on average

● Software: ML Mock Data
○ Updating training data to be only 

on 15 minute intervals 
● Web App: Usability

○ Amount of data given in graph is 15 
min intervals (user testing)

● Web App: Frontend and Backend 
Frameworks

○ Frontend: Bootstrap
○ Backend: Django



Project Management Gantt Chart


