
1
18-500 Design Project Report: Team E6, 3/4/2022

waitr
Sophie Sacks, Samantha Lavelle, Dina Razek

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of utilizing sensors to measure how
many people are in a certain space gives users the opportunity to
check an application to see the estimated wait time. Our desired
end-product includes two RFID scanners with one at the beginning of
the line and one at the end of the line. The user will scan their CMU
ID when they enter the line and when they exit the line, which will
send timing information to our web application. The web application
will use machine learning to predict wait times throughout the day
using real-time information from the scanners.

Index Terms— Django, inductor coil circuit, machine learning,
RFID, web application.

I. INTRODUCTION

STUDENTS on campus have a very difficult time knowing

how crowded and busy restaurants are in real time. Without a
way to know how long the line is at the on-campus eateries,
students may miss an opportunity to grab food in between
classes. Especially during COVID, students may be concerned
about how crowded an indoor area is. If there was an option to
check the wait time at a certain restaurant before walking
across campus and physically seeing the line, students would
be able to budget their time spent getting food or a drink more
appropriately. This increased accessibility to food makes it
much easier for students to stop skipping meals because they
do not have the time. Additionally, a solution to this use case
would lead to decreased stress on eateries and staff as well as
increased business during slower times.

Although our focus is placed towards one on-campus dining
location, this project can be applied to any physical space with
a line and is scalable to many other businesses. Other
applications include, but are not limited to, package pickup in
the University Center, other on-campus eateries, and
restaurants located elsewhere off campus.

A combined hardware-software solution would help
mitigate this issue for students. By having physical sensors to
measure how many people are in line in a certain eatery, users
can then check an online web application to see the estimated
wait time. Our desired end-product consists of two
radio-frequency identification (RFID) scanners to track how
long each patron is in line. Every user will scan in at the
beginning of the line and scan out at the end of the line. This
data will be sent to our web application, which will use
machine learning (ML) to predict wait times as well as display

the current approximate wait time.
While the main goal of this project is to be able to predict

an accurate wait time, we also have the goal of gaining user
buy-in in order to have enough data for training the ML
model. Moreover, the principal advantage of this approach is
that the data collected is completely anonymous, especially in
comparison to a camera-focused solution using computer
vision.

II. USE-CASE REQUIREMENTS

In order to support our predetermined use case, we must
define certain use-case requirements that will ensure our users
are happy with the product. First, each user wants to have a
simple-to-use web application that makes it very easy to figure
out an accurate wait time once opened. This qualitative
requirement results in the quantitative requirement of needing
a margin of error for the wait time within 2 minutes or within
10% (whichever is larger) of the actual wait time. Users also
want as little interaction as possible with our product, resulting
in a total of 2 or less points of interaction (i.e. the scanners)
while physically in line at the eatery.

To continue maintaining accurate wait times, our system
must be able to keep track of up to 50 patrons who are in line.
In addition, it must be able to properly handle the case of a
user leaving the line after being tracked as entering the line or
scanning out of line without scanning into line. Thus, if 3 or
more users are tracked as exiting the line who originally came
before the patron in question, then that user’s data point will
be discarded. Similarly, if the user is tracked as exciting the
line without entering the line, their data point will also be
discarded so that our ML model can still accurately predict
wait times.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The diagram in Fig. 1 shows our entire system architecture.
On the left side is the hardware subsystem and on the right
side is the software subsystem.

Our solution to the previously described problem utilizes
RFID scanners to track wait times in line. This data will be fed
through a machine learning model to then predict wait times in
the future. All of this data will be stored in a Django SQL
database, which then propagates through to the frontend web
application where users can view the current and future wait
times.

The hardware subsystem consists of three major
components: the inductor coil circuit, the Arduino, and the
Raspberry Pi. We will create two total hardware components
to connect to our software since there will be two RFID
readers in the line. The main connection between the hardware
and software systems are the RPis. The data will flow from
these hardware pieces to the software backend.

2
18-500 Design Project Report: Team E6, 3/4/2022

Fig. 1 Block diagram of entire system architecture
The software subsystem consists mainly of the Django web

application server and the machine learning component. These
will be connected in the backend for communicating
information to the user. The data will flow from the backend
of the server to the frontend where the user can see the
predicted wait time.

IV. DESIGN REQUIREMENTS

Our solution space has many critical constraints that we will
use to define success. On the hardware end, we must have a
power source that lasts three hours or more. This source may
be AC-powered or battery powered, but the design
requirement entails a life of at least three hours, as we do not
want to add a large burden to the staff who must keep the
devices in operating conditions. Three hours gives the staff
ample time and opportunity to update the power source in
times of low customer count.

We also require transmission from the RFID reader to the
server within 200 milliseconds. This requirement is based on
the size of the data, the channel bandwidth, and general
expectation of transmission delay. On the software end, we
require the web application response to be under 2 seconds, as
users are not likely to notice the delay. Anything over 2
seconds will be problematic, potentially causing users to leave
the application entirely. We also require a reasonable level of
security, ensuring corrupt user input does not crash our
website and that our data is securely stored and inaccessible to
the public. Our web application frontend should be intuitive,
responsive, and easy to use.

In terms of solution accuracy, we require a margin of error
for wait time to be within 2 minutes or 10% - whichever
quantity is larger. This ensures that the predicted wait time
closely reflects the actual wait time for the entire range of
possible times. We also require the ability to keep track of at
least 50 patrons at a time, meaning that data is stored live for
at least 50 patrons in one time window. This number ensures
that we will be able to collect and analyze enough data to
make an accurate prediction in the time window.

In terms of error mitigation, we want to ensure we disregard
incomplete data if at least three other complete data points
(entry and exit time) are logged. In other words, we should
delete data from our database if we do not receive both an
entry and exit time from our user.

V. DESIGN TRADE STUDIES

A. Hardware Subsystem
As shown in Fig. 1, our hardware subsystem will involve an

inductor coil that detects the presence of an RFID card.
(1)𝐿 = 𝑁2µ

0
𝑎 [𝑙𝑛 8𝑎

𝑟 − 2]

The inductance of our coil is found via equation (1) [1], where
is the inductance (in Henries), is the number of turns, is𝐿 𝑁 µ

0
the permeability of free space (), is the radius of4π𝑒 − 7 𝑎
the loop (in meters), and is the radius of the wire (in meters).𝑟
Because our inductor coil detects and reads the RFID card, it
must be larger than the ID card in diameter. This will cause 𝑎
to increase, resulting in a higher inductance.

3
18-500 Design Project Report: Team E6, 3/4/2022

(2)ω
0
 = 1

𝐿𝐶
(3)ω = 2π𝑓

This inductance is then used to calculate the capacitance
required to achieve our resonant frequency. The calculation for
this is shown in equation (2), where is the resonantω

0
frequency and is the capacitance needed. Since we are𝐶
operating at 125 kHz, we will use equation (3) to convert this
to angular frequency. 125 kHz is used to power the system
because that is the RFID frequency used in ID cards [2].

Other design choices include which devices will connect to
our circuit and transmit our data. The use of the Arduino
allows the system to be easily adaptable, as we can modify
how the circuit behaves via the Arduino code. This allows us
to customize the LED lights, sound, and more. The use of the
Raspberry Pi as our microcontroller unit allows us to send data
wirelessly to our web server thanks to facile connection to the
Arduino.

B. Web Application Frontend Subsystem
For our web application frontend, the main design

requirement is being intuitive, responsive, and easy to use. We
will use HTML, CSS, and Javascript to build our frontend
design. While we considered writing our own CSS for the
design, we looked into possible frontend frameworks that have
built-in components we could utilize. Bootstrap is a responsive
open-source frontend framework that contains CSS and
Javascript-based design templates for many types of interface
components, such as navigation, forms, and typography, thus
satisfying our design needs. There are many existing themes
that we could utilize and easily add to our project. Our team
also has experience using Bootstrap in web applications. As a
result, implementing a Bootstrap framework can fit in our
project timeline while also meeting our design requirements.

C. Web Application Backend Subsystem
For our web application backend, we performed a design

review of a few different backend frameworks. The two
frameworks that stood out for our application were Express
and Django. Express is a minimal and fast framework that
provides some core framework functionalities while remaining
very flexible, thus suiting some of our design needs. However,
there is a lack of definition of a lot of functionality that would
make it difficult to ramp up quickly and complete our project
within the semester time limit. On the other hand, Django is a
Model-View-Template framework that contains many features
we need for our solution, namely security and authentication
tools. The models make it simple to deal with the database, the
templates set us up to reuse many components, and the views
contain all business logic required for our application. The
built-in structure is robust and simple, making it easy for
developers to write efficient and clean code. Our team also has
extensive experience using Django, so we would be able to
quickly jump into the code. Through performing this design

review, we were able to make the decision to use Django.

D. Machine Learning Backend Component
One of our most important design requirements is accuracy

in predicting wait times, which relies completely on our neural
network. The main design choices affecting accuracy are the
optimizer and loss functions used by the network.

The optimizer function called Adam, or adaptive moment
estimation, has been shown to require little memory as well as
converge on a model much faster than other types of optimizer
functions [5]. Although most of the optimizer functions are
similarly simple to implement using tensorflow, we decided
to utilize Adam in order to make our neural network as robust
as possible.

The loss function is used to minimize the error while
training the neural network model. We chose to use mean
squared error (MSE) since that makes the most sense with
regression.

VI. SYSTEM IMPLEMENTATION

Our overall system solution is a combination of hardware
and software. On the hardware end, we will be building two
RFID readers, placed at the entrance and exit of the line, for
users to scan in and scan out. A Raspberry Pi will send the
time data and ID number to our backend server (views.py),
which will be analyzed and parsed by our ML model and
displayed by our web application frontend.

A. Hardware Subsystem
Our hardware subsystem will consist of four components:

(1) the inductor coil, which detects and reads the RFID card;
(2) a circuit which filters, demodulates, and delivers the
signal; (3) an Arduino, which captures the data from the
circuit and controls various circuit features; and (4) a
Raspberry Pi microcontroller unit (RPi MCU) which connects
to the Arduino and transmits the data to our web server.

Fig. 2. Schematic of circuit and connected Arduino. Image shown larger
in Appendix. This image is taken from the 18-220 Lab 4C handout.

4
18-500 Design Project Report: Team E6, 3/4/2022

Figure 2 shows our circuit design. The circuit has four
stages: (1) The scanner antenna and tuning components, (2)
The input demodulator, (3) The demodulator filter, and (4) a
final low pass filter. The circuit is connected to an Arduino,
which: powers the op-amp; powers and controls the LED
lights and speaker; captures the output information, which
contains the bit code of the RFID chip; and transmits this
information to our Raspberry Pi.

Fig. 3. Connection of Arduino to RPi MCU.
Figure 3 [3] shows how the Arduino is connected to the

Raspberry Pi. A USB connection allows for transmission of
data from the Arduino to the Raspberry Pi, which can then
send the data to our web server via an internet connection.

B. Web Application Frontend Subsystem
The web application frontend consists of HTML to display

each page, CSS to design each page, and Javascript to handle
the user interactions. Our HTML will have the following
structure: a base page that all pages will extend (reusable
component), a navigation bar that will be included in the base
page, and the three pages that represent the home page, about
page, and feedback page. Our CSS will be a combination of
our own implementation and a Bootstrap template.

Fig. 4 Depicts the HTML and CSS file structure in our Django
framework

When the web application is opened or reloaded, a request
is sent to the backend to retrieve the wait time, which is then
displayed on the home page. The views.py is responsible for
rendering each page and retrieving the wait time.

Fig. 5 views.py, which depicts the rendering of HTML pages

For the home page design, we will display the predicted
wait time, a graph of the wait times for the current day, as
collected by our ML model, and a form to allow the user to
input their entry and exit time in the case that they forget to
scan in and out on the RFID readers.

Fig. 6 Depicts the low fidelity design for our web application home page

C. Web Application Backend Subsystem
Our web application software backend consists almost

entirely of Django, a Python-based open-source framework
that follows the model/template/views architectural
framework. As shown in Fig. 7, the system receives
information from the RFID scanners, including the ID number
that was scanned. This data is stored in the Django SQL
database as either an Entry model object for the first scan or
as a WaitTime model object for the second scan (Fig. 8). When
data from a second scan comes in, views.py searches for the
Entry model object with the matching ID number, combines it
with the current time to create a new WaitTime model object,
and deletes the used Entry model object.

5
18-500 Design Project Report: Team E6, 3/4/2022

Fig. 7 Software data flow diagram

Fig. 8 models.py, which depicts the Django SQL database structure
In addition to the data from the RFID scanners, data

collected from the user input form on the web application

frontend is also stored in the SQL database. The form inputs
are validated using several Django validators in order to
implement an allow list. By utilizing both syntactic validation
to ensure the user input has the correct syntax as well as
semantic validation to enforce correctness of the input values
in the specific business context (i.e. time is within operating
hours, wait time is under an hour), the allow list protects
against both cross-site scripting (XSS) and SQL injection
attacks.

When a wait time is requested by the frontend subsystem of
the web application, the backend will call upon the neural
network (described in the section below) to predict the wait
time for the appropriate input time using the most recently
trained and saved neural network model.

We will retrain our neural network once each week outside
of business operating hours with all of the available data in the
SQL database since it will most likely take a few hours to
train. The backend code reformats each WaitTime model
object into the right inputs and output to the neural network as
necessary. Any data more than one month old is discarded by
the backend system by simply deleting it from the SQL
database in order to avoid overfitting our ML model.

D. Machine Learning Backend Component
To design our neural network, we are using the tensorflow

Python library. This allows us to choose every piece of the
network, including the dense layers, optimization function,
learning rate, loss function, and evaluation metrics.

Our neural network model design will look like Fig. 9. We
chose to utilize two hidden layers because our mapping is not
linear and therefore needs at least one, but it is also not
complex enough to require very deep learning. In addition,
two or fewer layers is often enough for more simple datasets
[4].

Fig. 9 Neural network initial design
Our data will flow through the neural network using three

inputs: the day of the week (mapped from 1-7), the hour of the
day (mapped from 0-24), and the minute of the hour (mapped
from 0-60). After passing through the hidden layers, the
network will have one output representing the wait time.

6
18-500 Design Project Report: Team E6, 3/4/2022

There are many rule-of-thumb methods to determine the
number of hidden neurons [4], so we decided to start with
three neurons on the first hidden layer and two neurons on the
second hidden layer. Depending on the accuracy of the model
later on, this design could change slightly, but we believe this
is a good starting point.

Since we want our neural network to predict a single
numerical value, it represents a regression with no activation
function. Thus, we chose mean squared error (MSE) as the
loss function since it fits best with regression models in terms
of guiding the optimizer function based on the loss output. For
the optimizer, we chose a gradient descent algorithm
derivative algorithm called Adam that adds fractions of
previous gradients to the current gradient [5]. We decided to
use this optimizer because it is computationally efficient and
requires little memory usage. We chose a slightly higher
learning rate for a quicker initial pass of the data.

When fitting our neural network model, we need to
determine the right number of epochs to avoid overfitting. We
will start with 100 and check the loss function output as
discussed in testing. We chose 32 for our batch size because it
typically leads to the best results [6].

VII. TEST, VERIFICATION AND VALIDATION

We plan to have several testing methods to evaluate the
design implementation and make comparisons to theoretical
design trade-offs.

A. Tests for Capability of Extracting Bit Code from ID
Our hardware will undergo testing to ensure it is capable of

reading an RFID card and extracting its data. We will first test
under lab conditions (i.e., with the circuit powered by a
waveform generator and using a plain card with a known bit
code). Then, one by one, we will introduce real world
components: first, powering the circuit with our AC power
converter, then testing with a CMU ID card, and finally
connecting a Raspberry Pi to the circuit to prepare for wireless
data transmission.

B. Tests for Hardware-Software Connection
We need to ensure that the date, time, and ID data from the

RPis are properly being transmitted to the Django SQL
database. We will need to ensure that we can hold at least 50
patrons at a time. We will perform functional tests to
determine if the criteria has been met. We will conduct tests in
both laboratory conditions and also in real-life conditions,
such as testing within the Exchange, to ensure our data is
being submitted. We will perform load tests to ensure our
database can hold all patrons.

C. Qualitative Usability Testing of the Web Application
We will perform qualitative usability testing of our web

application with a pool of users to ensure the product is

beneficial, efficient, and easy to use. We will perform a Think
Aloud Protocol where we will ask users to state their thoughts
as they use our application. This will give us insights as to
which features could be improved.

D. Quantitative Neural Network Testing
We want our machine learning model to be able to predict

wait times within 2 minutes of the actual wait time or with a
10% margin of error. To ensure our neural network is within
our accuracy bound, we will utilize the loss function to see at
what point the MSE is at its lowest. We will also check to see
if we can get to our desired accuracy with the current design
or if a different design yields better results. Using the
tensorflow package, we are able to see a variety of metrics by
evaluating the model, which will give us more information.

VIII. PROJECT MANAGEMENT

This section describes our project schedule, team member
responsibilities, bill of materials with budget, and risk
mitigation plans.

A. Schedule
A detailed Gantt chart is labeled as Figure 10 in the Figures

section, located at the end of this document. We use this Gantt
chart to track milestones and assign them timelines and team
members.

Major milestones for our project include: construction and
validation of hardware (ability to read RFID bit code),
construction and validation of software (ability to calculate
wait times from a timed set of ID codes), and construction of
the entire system with use-case testing.

B. Team Member Responsibilities
We essentially have one team member working on each

subsystem individually until it is time to connect them
together. The hardware subsystem will be completed by Sam.
The software component will be split between Dina and
Sophie. Dina will be completing the software web application
frontend, while Sophie will be working on the software web
application backend, including the ML component. As each
subsystem is developed, we will work together to ensure that
the connection between them functions properly.

See Figure 10 at the end of this document for our Gantt
chart, which dictates timelines and tasks for each member.

C. Bill of Materials and Budget
See Figure 9 at the end of this document for a table of

components and their prices.
All other parts and components are from the team members’

personal inventories.

D. Risk Mitigation Plans
For our hardware component, a critical risk is adapting the

design of the 18-220 RFID lab to reading a real CMU ID. In

7
18-500 Design Project Report: Team E6, 3/4/2022

the lab, cards encoded with bit tags and power from waveform
generators were used. However, for a real-life application, we
will not have these - we instead have to contend with ID cards
that we do not know the encoding of, and AC or DC power.
We will mitigate this risk by conducting primary testing under
lab conditions, and then introducing the real-world
components one by one. This will allow us to isolate any
sources of error, and find suitable fixes or alternatives. For
example, we have acquired an out-of-the-box RFID reader so
that we can ascertain what information is encoded on our ID
cards before using the cards to test our own custom scanner.

For our software component, we do not foresee any critical
risks. We must perform considerable debugging to ensure our
web application is performing as expected. We will also need
to continuously monitor and recalibrate our ML model to
ensure accuracy.

IX. RELATED WORK

Work related to our project includes the 18-220 lab that our
circuit design was adapted from. While only experimental in
nature, the goal of this lab is to construct a working RFID
reader, which is a key feature of our own project’s design.

Other related work includes other forms of occupancy
sensors; while our project uses RFIDs to count the number of
people in line, this can also be achieved through imaging
programs like ComputerVision. While other methods may be
trickier to implement, they can eliminate the need for
crowdsourced data, thus potentially improving accuracy and
user experience.

In addition, this project could also be achieved through a
purely software implementation where users input their wait
time manually or their entry/exit time manually. Although this
application could yield somewhat accurate results, having
real-time data through the RFID scanners improves the
accuracy immensely.

X. SUMMARY

Waitr is a system that uses a combination of real-time data
from RFID readers and knowledge of peak times from a
machine learning model to give accurate wait time estimates
for on-campus eateries. Thus, it allows the user to make an
educated choice when choosing where to get a meal. This is
especially useful when the user has only a limited amount of
time, as is often the case for busy students.

Upcoming challenges for the system include building the
custom circuit needed to read CMU ID cards while being
powered by a standard AC outlet. We also must connect all
system components - hardware, software frontend, and
software backend - and ensure that the data is transmitted
quickly and accurately. Our risk mitigation plan will help us
reach our goal as we navigate these challenges.

Waitr has great potential to improve the on-campus dining

experience for students, faculty, and visitors. The system can
be adapted to other locations on campus, such as the UC
package pickup window, to create a seamless experience while
using campus services.

GLOSSARY OF ACRONYMS

RFID – Radio-frequency identification
ML – Machine learning
RPi – Raspberry Pi
MCU – Microcontroller Unit
Adam – Adaptive moment estimation
SQL – Structured query language
XSS – Cross-site scripting
MSE – Mean squared error

REFERENCES

[1] EMI Analyst Software, Circular Loop Inductance, Accessed on Mar. 2,
2022, [Online]. Available:
https://www.emisoftware.com/calculator/circular-loop/

[2] Microchip Technology, Inc., microID® 125 kHz RFID
System Design Guide, Accessed on Feb. 28, 2022, [Online]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/51115f.pdf

[3] Image from The Robotics Back-End: Raspberry Pi Arduino Serial
Communication – Everything You Need To Know, Accessed on Mar. 2,
2022, [Online].
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/

[4] Heaton, Jeff. Heaton Research. The Number of Hidden Layers. Accessed
on Feb. 23, 2022. [Online] Available:
https://www.heatonresearch.com/2017/06/01/hidden-layers.html

[5] Kingma, Diederik P. and Jimmy Ba, arXiv, Adam: A Method for
Stochastic Optimization, Accessed on Feb. 23, 2022, [Online].
Available: https://arxiv.org/abs/1412.6980

[6] Masters, Dominic and Carlo Luschi, arXiv, Revisiting Small Batch
Training for Deep Neural Networks, Accessed on Feb. 23, 2022,
[Online]. Available: https://arxiv.org/abs/1804.07612

8
18-500 Design Project Report: Team E6, 3/4/2022

FIGURES

Fig. 2. Schematic of circuit and connected Arduino. This
image is taken from the 18-220 Lab 4C handout.

Fig. 9. Bill of Materials. Items with a cost of $0 are on loan
from 18-500 inventory.

9
18-500 Design Project Report: Team E6, 3/4/2022

Fig. 10 Gantt chart, showing tasks, timelines, and assignments.

