

e6 - waitr

Sophie Sacks, Sam Lavelle, Dina Razek

Use Case and Use-Case Requirements

Scenario and Solution

- Hard to know how busy eateries are
- Combined hardware and software solution: two radio frequency identification (RFID) scanners + web application
- Scan in at beginning and end of line
- Web application for users to view with machine learning in backend

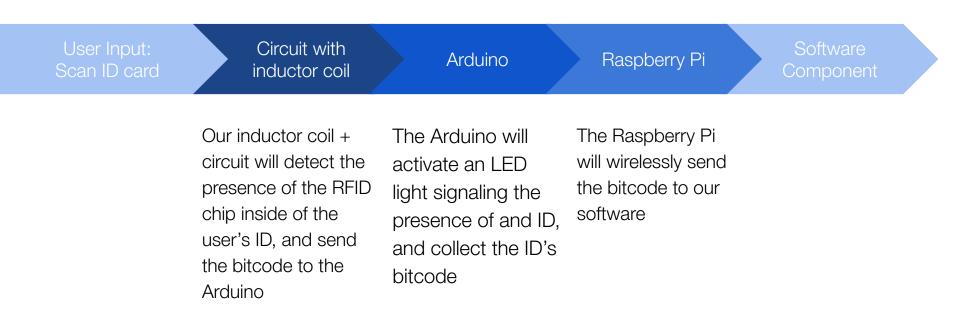
Quantitative Requirements

- AC-powered, OR battery powered scanner lasting **3 hours** or more
- Transmission from scanner to server within 200 milliseconds
- Web application response time in under 2 seconds
- Margin of error for wait time: 2 minutes, or within 10%
- Disregard ID numbers if 3 more ID numbers scan out before it
- Ability to keep track of up to 50 patrons

Solution Approach

The Solution

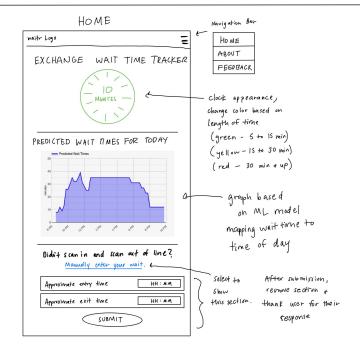
- 2 RFID readers
- A board to send the data from the readers to the server
- A web application to publish the wait time
- Justified by accuracy, anonymity, and experienced



The Materials

- RFID Readers
 - o 2 Arduinos
 - Mag wire for inductor coils, possible 3D printed mount
 - Power source battery or cable
- Board
 - Raspberry Pi Zeros
- Web application
 - AWS server
 - SQL database through Django
 - Python backend (ML library)
 - HTML/CSS/Javascript frontend

System Specification - Hardware



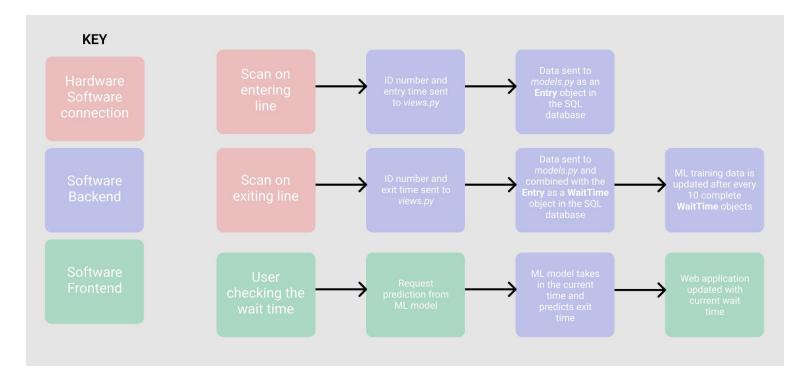
System Specification - Software Frontend

Specification

- **Tools**: HTML, CSS, and Javascript
- **On open and reload:** send request to backend to retrieve and display wait time
- **Security**: input validation through an allow list in *forms.py*
- **AWS**: EC2 instance to run entire web application

Low-Fidelity Design Plan

System Specification - Software Backend


Specification

- Tools: Django MVC architecture
- **Python packages:** numpy, pandas, joblib, sklearn
- Stored in Django SQL Database: data from RFID scanner, user input, ML model predictions
- **Security:** input validation through Django validators

Backend Design Plan

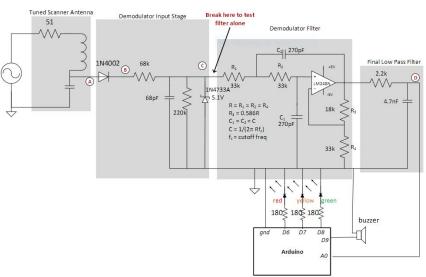
📌 models.p	py ×
waitr > wai	tr > 🍦 models.py >
1 fr(om django.db import models
2	
3 🗸 cla	ass Entry(models.Model):
4	<pre>id_number = models.CharField(max_length=200)</pre>
5	<pre>entry_time = models.DateTimeField(blank=True, null=True)</pre>
6	
7 🗸	<pre>defstr(self):</pre>
8	<pre>return str(self.id_number) + ',entry_time=' + self.entry_time</pre>
9	
$10 \sim cla$	ass WaitTime(models.Model):
11	<pre>entry = models.DateTimeField(blank=True, null=True)</pre>
12	<pre>exit = models.DateTimeField(blank=True, null=True)</pre>
13	
14 🗸	<pre>defstr(self):</pre>
15	<pre>return str('entry=' + self.entry) + ',exit=' + self.exit</pre>
16	
17 🗸	<pre>def save(self, entry_time, exit_time):</pre>
18	<pre>self.entry = entry_time</pre>
19	<pre>self.exit = exit_time</pre>
20	<pre>super().save()</pre>

System Specification - Software Data Flow

Implementation Plan - Hardware

Design + Implementation

Copying


- RFID circuit design from 220 Modifying
- Arduino code from 220

Designing

- Custom inductor coil to read RFID signal Buying
- Raspberry Pi Zero

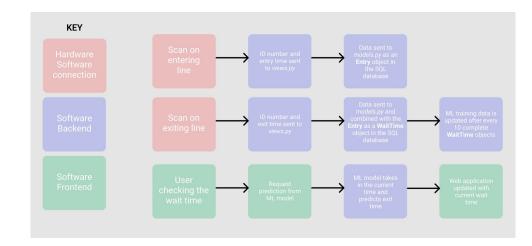
Building

- Circuit (on breadboard + soldering)
- Inductor coil
- System housing (3D print)

Implementation Plan - Software

Design + Implementation

Modifying


• Typical Django backend structure to fit our specifications

Downloading

• Python packages for ML model

Designing

- ML model to predict wait times
- Web application frontend
- Hardware software connection

Testing, Verification, and Validation

Test Inputs


ID card to be read on RFID scanner

RFID scanner output (current date and time)

Date and time data from the RPis

SQL database data

Web application frontend page reload

Received properly by the RPis within 200 ms

RFID reader detects presence of ID card

Correct storage in the Django SQL database (entry vs. exit)

Passing Test Outputs

and its bit code

ML model predicting wait times

Accurate wait time prediction from the ML model (margin of error within 2 minutes or 10% of actual wait time)

Project Management Gantt Chart

Sam Lavelle, Dina Razek, S	Sophie Sacks				https://	www.ve	ertex42	.com/l	ExcelTem	plates/si	mple-ga	antt-cha	rt.html																			
18-500		Project Start:	Sun, 2/	13/2022																												
		Display Week:	1		Feb 14	4, 2022		Fe	eb 21, 202	2	Feb	o 28, 202	2	N	1ar 7, 20	022		Ma	r 14, 20	22		Mar 2	1, 2022		м	ar 28,	2022		Ap	r 4, 202	22	
	ASSIGNED				14 15	16 17 :	18 19 2	20 21	22 23 24	25 26 2	7 28	123	4 5	6 7	89	10 11	12 13	14 1	5 16 1	7 18 1	9 20 2	21 22	23 24	25 26 3	27 28	29 30	31	1 2	3 4	56	789	10
TASK	TO	PROGRESS	START	END	мт	w T	FS	sм	т w т	FS	5 M	т w т	FS	S M	тw	TF	s s	мт	• w 1	F	s s	мт	w T	FS	s M	тw	т	F S S	S M	TW	TFS	s
Setup																																
Set Up Website	Sam, Sophie	100%	1/31/22	2/5/22																												
Design Solution Implementation	All	100%	1/31/22	2/14/22																												
Order Parts	Sam	100%	2/14/22	2/21/22																												
Build Solution																																
HW: Circuit on breadboard	Sam	20%	2/16/22	2/26/22																												
HW: Arduino + Rpi	Sam	0%	2/27/22	3/5/22																												
HW: Solder	Sam	0%	3/6/22	3/13/22																												
SW: Frontend	Dina	30%	2/14/22	2/27/22																												
SW: Backend	Sophie	0%	2/28/22	3/13/22																												
SW: ML	Sophie, DIna	0%	3/14/22	3/20/22																												
Testing					_	_						_		_	_	_						_	_			_						_
HW ability to read CMU ID	Sam	0%	3/14/22	3/20/22																												
Ability to transmit from HW to SW	All	0%	3/21/22	3/27/22																												
Ability to calculate wait times from data	Sophie, DIna	0%	3/28/22	4/4/22																												
Integration																																
Integrate wait times into web app	Sophie, Dina	0%	4/5/22	4/19/22																												
Explore execution in eatery	All	0%	4/20/22	4/27/22																												

Next Steps

Hardware

- Build inductor coil
- Build circuit on breadboard
- Test with Arduino + RPi
- Solder final circuit

Software

- Finalize high-fidelity frontend design and begin implementation (HTML, CSS, JS)
- Set up backend views, forms, and SQL database
- Begin training ML model