
e6 - waitr
Sophie Sacks, Sam Lavelle, Dina Razek



Use Case and Use-Case Requirements

Scenario and Solution

● Hard to know how busy eateries are
● Combined hardware and software 

solution: two radio frequency 
identification (RFID) scanners + web 
application

● Scan in at beginning and end of line
● Web application for users to view 

with machine learning in backend 

Quantitative Requirements

● AC-powered, OR battery powered 
scanner lasting 3 hours or more

● Transmission from scanner to server 
within 200 milliseconds

● Web application response time in 
under 2 seconds

● Margin of error for wait time: 2 
minutes, or within 10%

● Disregard ID numbers if 3 more ID 
numbers scan out before it

● Ability to keep track of up to 50 
patrons



Solution Approach

The Solution

● 2 RFID readers
● A board to send the data from the 

readers to the server 
● A web application to publish the wait 

time
● Justified by accuracy, anonymity, and 

experienced 

The Materials

● RFID Readers
○ 2 Arduinos
○ Mag wire for inductor coils, 

possible 3D printed mount
○ Power source - battery or cable 

● Board
○ Raspberry Pi Zeros

● Web application 
○ AWS server
○ SQL database through Django
○ Python backend (ML library)
○ HTML/CSS/Javascript frontend



System Specification - Hardware

● A block diagram with missions of 
ea component

User Input: 
Scan ID card

Circuit with 
inductor coil

Our inductor coil + 
circuit will detect the 
presence of the RFID 
chip inside of the 
user’s ID, and send 
the bitcode to the 
Arduino

Arduino

The Arduino will 
activate an LED 
light signaling the 
presence of and ID, 
and collect the ID’s 
bitcode

Software 
ComponentRaspberry Pi

The Raspberry Pi 
will wirelessly send 
the bitcode to our 
software



System Specification - Software Frontend

Specification

● Tools: HTML, CSS, and Javascript
● On open and reload: send request to 

backend to retrieve and display wait time
● Security: input validation through an 

allow list in forms.py
● AWS: EC2 instance to run entire web 

application

Low-Fidelity Design Plan



System Specification - Software Backend

Specification

● Tools: Django MVC architecture
● Python packages: numpy, pandas, 

joblib, sklearn
● Stored in Django SQL Database: data 

from RFID scanner, user input, ML model 
predictions

● Security: input validation through 
Django validators

Backend Design Plan



System Specification - Software Data Flow



Implementation Plan - Hardware

Design + Implementation

Copying
● RFID circuit design from 220

Modifying
● Arduino code from 220

Designing
● Custom inductor coil to read RFID signal

Buying
● Raspberry Pi Zero

Building
● Circuit (on breadboard + soldering)
● Inductor coil
● System housing (3D print)



Implementation Plan - Software

Design + Implementation

Modifying

● Typical Django backend structure to fit 
our specifications

Downloading

● Python packages for ML model

Designing 

● ML model to predict wait times 
● Web application frontend 
● Hardware software connection



Testing, Verification, and Validation

● Passing Test Outputs
●
● RFID reader detects presence of ID card 

and its bit code
●
● Received properly by the RPis within 200 

ms
●
● Correct storage in the Django SQL 

database (entry vs. exit)
●
● ML model predicting wait times
●
● Accurate wait time prediction from the ML 

model (margin of error within 2 minutes or 
10% of actual wait time)

● Test Inputs
●
● ID card to be read on RFID scanner

● RFID scanner output (current date 
and time)

●
● Date and time data from the RPis
●
●
● SQL database data
●
● Web application frontend page 

reload



Project Management Gantt Chart



Next Steps

Hardware 

● Build inductor coil
● Build circuit on breadboard
● Test with Arduino + RPi
● Solder final circuit

Software 

● Finalize high-fidelity frontend design 
and begin implementation (HTML, 
CSS, JS)

● Set up backend views, forms, and 
SQL database

● Begin training ML model


