
1
18-500 Final Project Report: Team E5, 05/07/2022

ASLearn
Authors: Hinna Hafiz, Aishwarya Joshi, and Valeria Salinas

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—ASLearn is a platform that serves as a convenient
tool for users to learn and practice 51 American Sign Language
terms through a web application interface. Our system will
utilize computer vision and machine learning to process user
inputs and detect what sign the user is making, ultimately
providing feedback on the correctness of their sign. This will
provide users with an experience to effectively learn ASL with
correct and immediate evaluation results, keeping track of their
progress as they work through different sign language modules.

Index Terms—ASL, computer vision, LSTM, MediaPipe,
neural network, web application

I. INTRODUCTION

Hundreds of thousands of people within the U.S. alone rely
primarily on American Sign Language (ASL) to communicate
as a result of hearing loss, where millions more make up the
American hard-of-hearing community. Encouraging people to
learn sign language can help bridge the communication gap
between hearing people and members of the hard-of-hearing
community. However, learning sign language correctly can be
difficult to do without an instructor, and many people may not
have the opportunity to take ASL classes on a regular basis.
ASLearn, our learning platform for American Sign Language,
aims to combine the flexibility of remote learning with the
interactivity of live feedback to give users an effective,
engaging experience in learning ASL.

While there are currently many websites, mobile apps, and
formal courses with live instructors for learning ASL, they
have different tradeoffs that influence how feasible they are
for people to use. With websites and mobile apps, users watch
or read instructions on how to do signs and then have to
practice them on their own, leaving students to figure out if
they are signing correctly without any expert feedback. With
formal courses, live instructors can provide the feedback
lacking in online learning platforms, but such courses might
present cost or scheduling barriers for many people. Thus,
with ASLearn, we hope to reach people who have wanted to
learn ASL but either found watching online tutorials to be too
passive or could not commit to a formal course given their
busy schedules.

Some key features of ASLearn include embedding the user’s
live webcam video feed into the online platform where users
can see themselves attempting signs. In the ‘learning mode’ of

our platform, the user will be presented with this video feed
side-by-side with an instructional video and prompt. Using a
combination of computer vision and machine learning, our
platform will analyze the user’s attempt at a given sign and
provide feedback on whether or not they did it correctly,
which will be displayed on an ASLearn web application
interface. Another feature, the ‘testing mode’, will still contain
the user’s embedded video feed but no instructional video.
Instead, ‘testing mode’ will only prompt the user to attempt
signs that they have previously learned on the platform.
Finally, there is a ‘testing module’ that quizzes users on a
random subset of signs from our selected learning categories
and records this performance to the user’s profile, so they can
see which signs they frequently get incorrect.

II. USE-CASE REQUIREMENTS

We defined use-case specifications around the computer vision
of chosen signs, the accuracy of sign labeling, user distance
from the camera, solution latency, and web application
usability. These criteria combined, when met, will yield a
successful platform that meets our intended use-case.

In regard to the computer vision of ASL signs, we have
selected 51 signs that we want our platform to be able to teach
and test users on. These signs make up an essential
foundational understanding of ASL for beginners to work
towards mastering. Specifically, we will be including the
twenty-six letters of the English alphabet, digits 0-9, seven
conversational signs, and eight signs related to learning. It
should be noted that the alphabet and digits, thirty-six total
signs, are static, whereas the conversational and learning signs
are dynamic. The exact conversational and learning signs we
are using include the following:

Conversational signs: how, you, my, name, yes, no, maybe,
sign language (8 total)
Learning signs: school, major, ask, class, help me, what,

word (7 total)
Thus, for one of our use-case requirements, we want our

computer vision model to be able to detect that the user is
attempting one of these 51 signs and then send data collected
from the user’s attempt to a neural network model that
identifies what sign the user did. The model will be trained
with open-source image and video data demonstrating correct
ASL. We will determine whether the user has correctly done

2
18-500 Final Project Report: Team E5, 05/07/2022

the sign by comparing the identification generated by the
model to the expected sign.
With respect to the accuracy of our platform, we chose a 97%

accuracy metric for correct identification and feedback for
user-generated signs. Our platform detects user signs after a
user is prompted to attempt a specific sign; thus, we are able to
compare the predicted label assigned to the user’s attempt to
the expected label requested in the prompt. Because our
models are trained on substantial data that meets the
community standard for proper ASL, along with the suitability
of our model structure (discussed further in the
implementation details) for video classification, our model
will have a reasonable likelihood to achieve this accuracy
metric. We allow for a 3% error rate to account for false
positives, where our platform might indicate that an incorrect
sign is correct due to its similarity to other signs or a camera
angle that makes it resemble the prompted sign. Additionally,
the error rate accounts for false negatives, which can occur as
a result of environmental impediments such as lighting
conditions, where our platform considers a sign to be incorrect
even if it is done correctly.

A third use-case requirement we defined involves the
distance between the user and the webcam recording them
while they perform sign language gestures. This platform is
intended for usage on a laptop or desktop computer, not a
mobile device, so that users’ hands can both be free to sign. In
our research, we found that the typical distance between a user
and their laptop is about 2 feet [1]. With this in mind, we
require that the platform is able to accurately detect user signs
at a distance of 3 feet or less from the camera, giving an
additional foot to account for the user moving back to make
sure they are fully in frame and facing the camera head-on.

Another use-case specification for ASLearn is latency, both
with respect to web application responsiveness and the
execution time of the deep learning models that predict what
sign a user is making. For the web application, our research
and academic work suggest that a reasonable latency metric is
under 50 milliseconds [2], which is what we will aim for in
terms of page and button responsiveness. Response times
exceeding 50 milliseconds may negatively impact user
experience. For both the deep learning model to determine
what sign the user is doing and the web application to display
that feedback to the user, we will require an overall latency of
2 seconds. Latency exceeding this 2-second requirement may
make the platform frustrating for users. On the other hand, a
shorter latency requirement may underestimate the amount of
time needed to process input data and execute a model with
said data to generate a label prediction.

Finally, the intention of our platform is to easily and
conveniently learn ASL, so our usability requirements are
specified with the intent of ensuring a smooth user experience.

The two main components of this are that the site is easy to
navigate and that the feedback given to the user after
attempting a sign is easy to understand. In order to measure
this, we conducted user surveys towards the end of the
semester with about 5 users where they were asked to rate
aspects of our platform from 1 to 5 (5 being good, 1 being
poor). Our goal for this requirement is to have 90% user
satisfaction in regard to navigating and understanding the site.
We chose this number because we wanted to aim higher than
the industry standard of about 75% [3] - based on the
American Customer Satisfaction Index - for user testing
because a significant aspect of our project is improving user
experiences with online ASL learning.

To measure whether we achieve this 90% user satisfaction,
we had 4 questions - related to user registration, platform
navigation, the likelihood of continued use, and the likelihood
of recommending the platform to others - within the user
survey that require a 1-5 rating, meaning a total of 20 points
per user survey. At 5 users, with 90% user satisfaction, we are
aiming for 90/100 across all the surveys, rather than individual
user satisfaction of 18/20 for all five users. This is so that our
user experience results are not heavily influenced by one
individual tester’s experience, given the small number of users
we plan to test our platform with. Note that some of these
users will be experienced in ASL and others will be new to
learning ASL. At the end of the survey, we will ask users if
they had any additional comments to help us understand what
users would like to see. If time constraints allow, we will
apply this feedback to our solution to make it more
user-friendly.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The user video feed from the camera is embedded in our
web application interface so that the user can view a reflection
of how they are forming their sign language gestures in
response to a prompt shown on the web app interface.
Additionally, a ring light is used to maintain good lighting to
lessen the likelihood of the user’s hands not being detected in
a dimmer environment. Figure 1 demonstrates this connection
between our external setup and the internal implementation of
our system. Observe that the video is also sent to a computer
vision processing component that utilizes MediaPipe, an
open-source framework that allows us to extract feature data
from the user’s hands. This feature data consists of absolute
position coordinate data that provides information about the
shape/orientation of the user’s hand. This data is propagated to
the machine learning component of the system to then be fed
as inputs to a neural network model, which is selected from
among 7 neural networks–see Figure 11 at the end of this
report. Each model supports prediction generation for a
specific subset of sign language gestures. The groupings are
based on whether the signs are static (non-moving) or dynamic
(movement required), as well as physical similarity.

3
18-500 Final Project Report: Team E5, 05/07/2022

Specifically, the categories for static signs include fist-shaped,
one-finger, two-finger, three-finger, and open-hand for static.
The two categories for dynamic signs are learning terms and
conversation terms. Based on which subset the expected sign
belongs to, the correct neural network is selected for
execution.

Figure 2 demonstrates how information received from the
web app informs the logic of selecting the correct model to
execute for a given sign, as well as the feature data extracted
from the user’s sign attempt to input to the network. Executing
the model generates a prediction for what sign the user is
making. The prediction is sent back to the web app and
compared to the expected sign, our system will generate
feedback for the user to inform them whether their gesture was
correct (the prediction matches the expected sign) or incorrect
(the prediction does not match). Within the web application
itself, further user data relating to their progress on signs
(ratios of correct to incorrect prior attempts) will be tracked
and stored within a SQLite database. Various modes of
learning will also be provided to the user (practicing signs
with versus without instructional help, taking tests, etc.).
These details are further explored within our discussion of the
system implementation.

Fig. 1. Solution Approach Diagram

Fig. 2. Software Block Diagram

IV. DESIGN REQUIREMENTS

One of our design requirements involves the user load that
our platform can handle. Because we have decided to keep our
system as a local tech stack, we have limitations on how many
users can log in at once. From our previous experience, the
average number of users that a locally hosted application can
handle is 5 users, which aligns with our own experience using
local hosting for web applications. However, concurrency is
not the main priority of our solution, due to having only one
physical system handling the computer vision and the machine
learning models. Thus, we are focusing on an individual user’s
experience, where our solution must be able to perform
accurately and efficiently under the load of 1 sole user.

For the machine learning model in our system, we require
the input video length from the user to be 5 seconds or less, to
maintain uniformity with our training data. This is so that our
machine learning model does not process too much data at
once, which could inhibit neural network training and cause
sign evaluation to slow down. However, we also don’t want to
have too little data where there isn’t enough meaningful
information about the sign being demonstrated, hurting our
accuracy.

From each frame, we will extract 42 landmarks (21 points
from the left hand and the 21 points from the right hand) that
we get from MediaPipe. For image data, we must extract
landmark data from the image and duplicate the data 10 times
with noise applied (a process described further in our system
implementation). If some landmarks are missing (due to errors
in MediaPipe detection or single-handed signs), the missing
landmarks will be padded. Thus, we require our designed

4
18-500 Final Project Report: Team E5, 05/07/2022

solution to be able to retrieve landmark data for the user’s
hands, which can either be 42 total landmarks or less than that
with padding. Note that we are solely extracting features and
data related to the user’s hands, despite ASL also relying
heavily on emotive facial expressions and signs that touch
other parts of the body. The reason for this is due to the
additional complexity of dealing with signs that involve
contact with the face or body.

For model execution speed capabilities, we are requiring
our system latency to be under 2 seconds. This means that for
the machine learning model subsystem, the time it takes to
process the user image input and output a prediction must be
fairly low as well, while also maintaining our accuracy
requirements. This will require us to observe tradeoffs
between increasing the size of our model to achieve greater
accuracy despite that this also increases model execution time.
Given our requirement for user feedback latency (time
between the completion of a sign and telling the user whether
it was correct/incorrect), we must ensure that model execution
time is not severely worsened in conjunction with negligible
accuracy improvement.

We additionally have some requirements for the datasets we
are using to train and test the neural networks, particularly the
ones we find online. First, we require that they are correct to
standard ASL. Second, we require at least 1,000 images for
every static sign, and 5 videos for every dynamic sign from
outside sourced data. For static signs, we determined the value
based on-course experience in machine learning and
researching the data used in similar ASL recognition projects.
For dynamic signs, we decided on such a low amount because
we saw in our preliminary research that dynamic ASL datasets
are very rare, and if they do exist are very small. Thus, in
addition to the 5 videos per dynamic sign we find in datasets,
we will be creating our own training data so that we have at
least 50 additional videos per dynamic sign.

V. DESIGN TRADE STUDIES

A. Hosting Locally vs. Cloud
For our web application, we will have a local tech stack

instead of deploying it to the cloud. Deploying it to the cloud
will heavily increase the latency in our web application (due to
the separation of our system components into different servers
that must interact with each other). Because the user is going
to be attempting signs in front of a camera from which a video
feed is embedded inside of our web app, we are sending the
video data input to our computer vision component and
machine learning component. If the components were
deployed to the cloud, it would increase the latency of our user
feedback generation (indicating to the user whether the sign
they made was correct or not), as data must be passed between
each component and ultimately back to the web app. Hence,
we decided having a locally-hosted web application would
help in keeping latency down but we are aware that doing this
means we won’t be able to handle multiple users at once nor
have a web domain that the public can visit.

B. LSTM cells vs. GRU cells
Currently, our neural network models will utilize LSTM

cells in order to take into account temporal information that
comes with the sequencing order of frames within a video.
Another type of cell we considered is the GRU (Gated
Recurrent Units). LSTM cells have 3 gates: the input gate that
stores information in long-term memory, the forget gate that
removes information from long-term memory, and the output
gate that produces information to share with future time steps
[4]. GRU has 2 gates: the update gate which allows a subset of
past info to be carried forward and the reset gate which allows
a subset of past info to be ignored [4]. Based on past studies,
GRUs tend to execute faster due to more simplicity, and
LSTMs will be more likely to provide greater prediction
accuracy; on the other hand, GRUs may provide better
accuracy for smaller datasets [4]. Because we have over 4,000
videos and image data, we ultimately decided to use LSTM
layers in order to prioritize prediction accuracy, given that a
major component of success for our learning platform is to
provide accurate feedback to users as they practice sign
language. Moreover, some studies have been inconclusive as
to which cell type will always result in better performance,
and this result may vary based on the task the models are
being trained for [5]. We decided not to use GRU cells due to
this uncertainty, as a negligible improvement in model
execution latency would not warrant poorer prediction
accuracy.

C. MediaPipe and LSTM vs. CNN and LSTM model
An approach we examined for our neural network is to have

a CNN and LSTM neural network. This combination is a
common approach for image and video classification [5, 6].
We decided not to use a convolutional neural network (CNN),
and instead decided to rely on MediaPipe. The main purpose
of a CNN prior to the LSTM layer would be to extract
meaningful features from the image(s) or video(s). MediaPipe,
however, is backed by CNN(s) and completes this feature
extraction for us, generating landmark coordinate data from
the hands. Therefore, there is no need to do another CNN layer
on top of it.

D. LSTM vs. Dynamic LSTM
Another approach we examined was to have a dynamic

LSTM neural network [7]. A dynamic LSTM model would
help us in grabbing frames dynamically, sending them to
MediaPipe, and having the features be sent immediately to the
neural network in real-time. So rather than waiting for a
certain time frame to end after a user does a sign, they can
receive immediate feedback. The main idea behind it is to
send the data points into the machine learning model, calculate
its LSTM layer for the frame, and then wait until the next
frame comes to continue doing the LSTM layer. After getting
all the required frames, we will move on to the rest of our
machine learning model which should take more than a second
to predict the label of the input frames. The main problem we
saw from this design was knowing when a sign is complete,
and we debated the possibility that if a hand isn’t detected in

5
18-500 Final Project Report: Team E5, 05/07/2022

the frame then the sign is done. In the end, we didn’t go with
this neural network model mainly because there is no reason,
as of now, to need a dynamic LSTM neural network,
especially since the majority of our signs are completed within
a 3-second window. However, if we want to extend our project
further by including phrases in our learning modules, this is a
great method to use in the future.

VI. SYSTEM IMPLEMENTATION

Before exploring the details of our solution approach, we
will once more clarify the connection between our web
application, our computer vision model, and our machine
learning model, as demonstrated in Figure 1. Initially, the
video feedback displayed in the web application is sent to the
computer vision model backed by MediaPipe, which will
generate data points on hands present in the video feed frame
by frame. These data points are then fed into our machine
learning component to generate a prediction label. This label
is sent back to our web application to inform the user if the
sign is correct or incorrect.

Data pre-processing and model training is done in a
g3s.xlarge EC2 GPU graphics instance with a Deep Learning
Amazon Machine Image (AMI) that has Tensorflow
pre-installed. We used both data we created as well as datasets
found online containing video and image data demonstrating
correct American sign language gestures to compose our
training, validation, and testing datasets. Each example (video
or image) will be assigned a label based on the sign it
demonstrates.

A. Computer Vision Component
We use MediaPipe to process and extract landmark data of

the hands detected in the videos or images. For each frame
that hands are detected, there are 21 landmarks per hand
(resulting in a total of 42 landmarks) that will be stored as
NumPy arrays. If only a single hand is detected and just 21
landmarks are present, the other 21 must then be padded as
zeros. The landmark data is formatted differently for static
signs and for dynamic signs. For static signs, inputs consist of
landmarks from a single frame/image of the sign gestures.
Given that there are 42 landmarks (with three features per
landmark), this input is flattened into an array of dimensions
(1 x 126). For dynamic signs, the feature data will be
composed by extracting landmarks from multiple frames
evenly spaced throughout a video input. Our current approach
grabs 30 frames from the video data, where there are, again,
42 landmarks (with three features per landmark). Given this
format, the data is formatted into an array of dimensions (30 x
126). For both static and dynamic signs, padding is emplaced
in the feature data vectors when landmarks are not detected.

For each example, there are three cases of accepted formats:
video of a dynamic sign, video of a static sign, and image of a
static sign. Other examples that do not fall into these
categories will be discarded (since, for example, data from
dynamic signs as images are definitely incorrect and thus not
appropriate for our model to learn from). In order to create

much more image data to supplement the online datasets we
use, we decided to create videos of static signs and parsed
them into individual frames to be saved as jpg images. This
proved to be a better approach than extracting and noisifying
landmark data from pre-existing images, and allowed us to
generate thousands of static sign image samples efficiently.
There is far less availability of sign language video data online
than image data. As such, we had to create individual video
samples for each dynamic sign in order to have enough
training data for our models.

Once formatted for training and testing, the data is stored
and fed to the machine learning component of the system to
carry out model creation and tuning, as demonstrated in Figure
3. The data was stored on our hard drive to back up, as well as
in GitHub repositories, such that it does not occupy excessive
space on our devices locally. Once the models were trained,
they were integrated into the web app for real-time evaluation.

Fig. 3 Feature Extraction Pipeline
The user submits a video or image input for their attempt at a
given sign specified by a prompt in the web app interface and
the landmark data from their input will be collected in the
same manner as described above for static and dynamic signs
respectively. Once a batch of landmark data is collected, this
will be passed to the machine learning component of the
system to evaluate and assign a prediction label.

B. Machine Learning Component
The models are instantiated, trained, and saved using

Tensorflow on an EC2 instance. As per Figure 4, the model
structure for static signs is created as a Sequential model
instance with five dense layers, as well as two dropout layers
to help mitigate overfitting. As per Figure 5, the model
structure for dynamic signs is also created as a Sequential
model instance, but instead with three LSTM layers followed
by three dense layers [12]. The LSTM layers allow the model
to take temporal information (ordered sequencing of the video
data) into account for classification. To do this, LSTM cells
propagate information forward as well as to each other (older
time steps inform future time steps). Further, the model
conducts categorical classification, where the output generated
is a set of probabilities indicating the likelihood of each
possible label being the correct prediction. We then use
argmax to select the highest probability, and the predicted sign
is the label associated with this probability.

The models are trained and saved using the Tensorflow API
and Keras API. For static signs, the flattened array of

6
18-500 Final Project Report: Team E5, 05/07/2022

landmarks for a given frame is fed to the model’s input layer.
For dynamic signs, each of the frames for a given example is
treated as a time step fed in at each node of the model’s input
layer. This training is done through the Tensorflow model.fit()
method, whereas testing and validation metrics are generated
through the model.evaluate() method, which allows us to
observe the model prediction accuracy. The method
model.save() allows us to preserve the model’s weights and
structure after training is complete. The method
keras.models.load_model() allows us to load up this saved
model format for evaluation of signs in the web application.
We trained our models and observed their training and testing
accuracy every 10 epochs (beginning with 10 epochs, up to
and including 1000 epochs).

Fig. 4 Static Model Structure

Fig. 5 Dynamic Model Structure

C. Web Application
We are using JavaScript and HTML to create the web

application component of the ASLearn platform. Users will be
able to log in so that their ASL curriculum progress can be
stored in a database in association with their account. With
this, they can see which signs they have tested on and the
percentage of times they have done the sign correctly. The
pages of the web app will consist of login, registration,
homepage, courses, learning mode, testing mode, and a profile
page. Because we want to create a web application that allows
for real-time responsiveness, we are utilizing AJAX so that the
user can receive feedback on their sign without reloading the
page.

The home page will show multiple courses available for the
user to take, each of which will be a sign language topic such
as the alphabet, numbers, conversation, etc as seen in Figure
12. If a user clicks a sign language topic on the home page,
like the alphabet, they will be guided to the specific course
page for that topic. Inside the course page, the user will see the
individual modules they can access as seen in Figure 13. For
example, if a user is viewing the alphabet course page, the
individual modules they would see will be A, B, C, etc. Each
individual module would have learning and testing mode
options for the user to select. The pages for learning and
testing will be similar in format. As seen in Figure 14, the
testing page will give an indication to attempt a certain sign
and will have real-time video feedback embedded into the
page so the user can see themselves doing the sign. On the

other hand, the learning page is going to have real-time video
feedback, an instructional demo video showing how to do the
sign correctly, and text blurbs giving hints to the user on how
to do the sign correctly as seen in Figure 15. We are also going
to have a separate course module called testing where a user is
prompted to pick the topics they want to be tested on like in
Figure 16. They will be given 10 random questions, depending
on the topics they chose and will be shown a testing page for
each of the questions. In the end, they would be shown their
results as seen in Figure 17. Lastly, the user has a profile page
where they can see how they have done for each individual
sign that they have tested on as seen in Figure 18. For
example, if a user has 50% this means that out of the two
times they have been tested on the sign, they have only gotten
it right once. The purpose of this page is to motivate users to
practice the signs that they are still having trouble with.

For both the testing and training pages, we are calling on
our machine learning model using JavaScript. As the user
attempts a sign, the real-time video feedback of their attempt
is captured and sent to the machine learning model. Apart
from the video feedback being sent to the computer vision
model, the web application would also be in charge of sending
an indication of what sign the user is testing/training on. We
are sending a string of what the expected sign is (e.g., ‘A’, ‘B’,
etc.), to the machine learning model to help it select the
correct neural network it needs to make a prediction for the
user’s attempt.

The computer vision model will receive the real-time video
feedback to format as landmark data that can be fed to the
machine learning model’s corresponding neural network,
which will generate a predicted label for what the sign is
identified as (e.g. ‘A’, ‘B’, ‘C’, etc.). This label is sent back to
our web application, where we are going to check whether the
predicted label we received is the same one as the one we sent
to the machine learning model. The results we receive from
this comparison will be displayed to the user in the web app. If
the user’s sign is correct, the boundary of the real-time video
feedback will light up as green. If incorrect, the boundary will
glow red. We also have a message box at the bottom to inform
users if they were correct or not as well. Having the boundary
of the real-time video feedback box light up will capture the
user’s attention and make these correct results clear. However,
we do have the message box as well as an additional indicator
of sign correctness.

As for how the computer vision model is receiving video
feedback of the user’s attempt at a sign, a 5-second timer will
indicate to the user when they should start their sign and how
much time they have left to make the sign. The timer is going
to start once the user clicks a button on the page indicating
that they want to begin attempting their sign. This eliminates
the problem of needing to know when the user makes the sign
and wants it to be checked for correctness. The timer is
beneficial to both our computer vision and machine learning
models since it helps us restrict how many frames we are
sending to the models. The user can choose to either let the
timer run out for the submission to finish recording or they can

7
18-500 Final Project Report: Team E5, 05/07/2022

press the stop recording button once they have finished their
sign submission.

When doing the web application component, some
problems did arise with respect to the integration between the
web application and the machine learning component. Our
original idea was to record the user’s sign submission and send
this to the machine learning component, but this ended up
being extremely complicated especially since our recording
was a Blob object. Therefore, we decided to start real-time
predicting once the ‘Start Recording’ button has been pressed.
The recording button ended up giving us the opportunity to
know when a prediction starts. We also had trouble saving the
data with respect to a user for each individual test that they
made, so we ended up creating a model called Test where it
created a new test object, saving all of the questions and
answers, and linking it to the current user that’s logged into
the account.

VII. TEST, VERIFICATION AND VALIDATION

In regard to testing, we have broken down our plan into
subsystems and overall system tests. This is to ensure that the
tools we are using match our needs and that the ASLearn
platform we create is aligned with our intended use-case and
specifications.

For subsystem tests, we examined the Hands library data
from MediaPipe, where we verified that when hands are in
frame and moving with signs, they are detected with 21
landmarks each as specified in the MediaPipe documentation.
We ensured that this works both with live video feed and when
given pre-existing video or image data. In terms of the data
format, the 21 landmarks were verified to have x,y,z
coordinates associated with them, both in MediaPipe demos
and in our own experience testing the Hands library. Finally,
we verified the correctness of testing data by referring to
online ASL guides and relying on Hinna’s expertise given that
she took an ASL course last semester. Similarly, for online
datasets–see Table III at the end of this report–we verified the
correctness and quality of the ASL sign data by using
reputable sources and manually looking at examples from the
dataset.

As for ASLearn platform testing, we conducted tests based
on the use-case requirements detailed in section II of this
paper. To reiterate what these requirements are, we tested the
user distance from the camera, the overall platform latency,
the accuracy of the platform sign detection, the ability to
handle left/right-hand dominance based on user preference,
and user satisfaction with the web application user interface.

A. Tests for User Distance from Camera
For the user distance from the camera, which we specified to
be within 3 feet, we conducted signs at various distances (i.e.
1.5 feet, 2 feet. 2.5 feet, and 3 feet) and check how well

ASLearn is able to determine if the sign is correct or not. A
passing test will maintain prediction accuracy in determining
sign correctness at any distance within and including 3 feet. If
our tests for this requirement fail, we direct the user to be
within whatever distance we have determined to be successful
and also use a bounding box to hone in on the user’s hand
motion.

B. Tests for Platform Latency
A second set of testing was conducted in regard to the

platform latency, which we have decided should be within 2
seconds. This latency requirement is specifically for how long
it takes our model to predict the correctness of the sign and the
web application to display feedback responsiveness of the
ASLearn platform itself. In order to test this, we timed how
long it takes for the site to give the user correct feedback,
starting from the point at which the user submits their sign,
which should take no longer than 5 seconds, as explained in
Section III of this report. If we found that our latency
consistently exceeds 2 seconds, we had the contingency plan
of adjusting our prediction generation algorithm to be a faster
but potentially less accurate method; for instance, using a
CNN for faster execution and reduced data formatting
complexity. Using a CNN would simply take in image data at
the input layer, though it may pose lower accuracy due to
interference from extraneous colored pixel data surrounding
the hands performing sign language.

Figure 6 demonstrates our analysis of model latency
variation for dynamic signs as we increased the number of
frames we rely on for formatting the feature data of each video
sample. For our system, we decided to use 30 frames, as this
allowed us to achieve lower model latency while not
undermining accuracy too much. We were able to achieve a
maximum model testing accuracy of about 94% for both
dynamic models (conversation and learning) at this 30 frame
metric.

In testing our system after integration, we found web app
latency (for submitting a sign and formatting user feedback) is
less than 0.5 seconds. This includes the latency for model
execution and latency for formatting and sending a request to
the model execution server and receiving a prediction
response. Model execution time involves feeding an input to
the neural network and generating a prediction at the output
layer, which is less than about 0.18 seconds. The latency for
sending a post request involves formatting the user’s feature
extracted data as part of an HTTP POST request, creating the
request, sending it, and then receiving the response containing
the prediction generated by the model selected for execution.
These steps together make for a latency of about 0.3 seconds.
Overall, the 0.5 second latency is well below our initial
requirement of 2 seconds.

8
18-500 Final Project Report: Team E5, 05/07/2022

Fig. 6 Average Model Execution Time

C. Tests for ASLearn Accuracy
As previously mentioned, we have specified that the

ASLearn platform should be 97% accurate when determining
the correctness of user sign. As such, we observed the training
and testing accuracy our models were able to achieve across
various training epochs. Figure 7 demonstrates how all of the
models achieved almost 99% training accuracy, which verifies
that the models are indeed learning from the data. Figure 8
demonstrates our initially found model testing accuracies
(generated by evaluating the models on data they were not
initially trained with). The dynamic sign models both achieved
about 94% accuracy, and the fist model achieved about 93%.
On the other hand, the remaining static sign models still had
room for improvement. We observed that the low accuracy
may be due to the models overfitting to the data found through
online sources. For some signs, the data was created by one
person, and often in the same lighting for most samples. Thus,
we created more of our own static sign image data to add to
the training set in order to improve the testing accuracy of the
one-finger, two-finger, three-finger, and open-hand models.
We created these images in various lightings (i.e. low light,
natural light, studio light, etc.). Figure 9 demonstrates the
improved testing accuracies achieved for each of these
models, where each had an improvement of at least 8.5% to at
most a 22% for the one-finger model, as observed in Figure
10. Overall, creating and adding more of our own data added
more diversity of examples to the data set we were relying on
from online sources. The one-finger model may have
experienced the highest improvement due to its slightly lower
physical complexity in comparison to the other multi-finger
signs. Given that we did not quite achieve a 97% accuracy for
each of the models, we decided to take additional measures to
improve accuracy during real-time performance by
communicating to the user that they should be in a well-lit
space and have little to no impediments on their hands (e.g.
bracelets, rings, etc.). Moreover, it seems that training
accuracy defines a limitation on how much testing accuracy
we are able to achieve. We cannot simply keep training for
more epochs in hopes to improve test accuracy, as once the

models hit almost 100% training accuracy consistently, this
can indicate overfitting, which is difficult to mitigate.

Fig. 7 Model Training Accuracy

Fig. 8 Initial Model Testing Accuracies

Fig. 9 Improved Model Testing Accuracies

9
18-500 Final Project Report: Team E5, 05/07/2022

Max Test
Accuracy
Before

Max Test
Accuracy
After

Percent
Improvement

one-finger 69.79% 85.25% 22.15%
two-finger 78.93% 85.62% 8.48%
three-finger 82.04% 89.32% 8.87%
open-hand 71.90% 79.52% 10.60%

Fig. 10 Maximum Achieved Model Test Accuracy Before
and After Addition of Training Data

D. Tests for Left or Right Handed Signs
An additional aspect of ASLearn that will need to be tested is

accuracy based on whether the user is right or left-handed. To
test this we will do signs on the platform using our right
hands, and then again using our left hands, where we expect
that the model remains at least 97% accurate regardless of
which hand is used. However, if this test fails, we will
communicate that our platform is currently only suited for
right-handed signs, given that the majority of data available
online is right-handed and that all our group members are
right-handed.

E. Tests for User Satisfaction
Finally, we conducted user satisfaction surveys after having

users test the ASLearn platform based on certain usability
metrics. We had users in the later weeks of the semester rank 4
features of ASLearn, as described in section II, - from 1 to 5.
Overall, we planned to have at least 90% user satisfaction
based on the industry standard, where we aimed for a total
score of 90/100 across all surveys. However, the survey results
were lower than expected, with most of the complaints being
about the accuracy of the static signs and not being graded
correctly. With the time that we had left in the semester when
we conducted the surveys, we decided to add more training
data for the static signs to improve the overall experience.
Another comment left from one of the users was to add a
profile page to our web application which we ended up doing
to show the user their progress in learning a sign.
Unfortunately, we were unable to conduct a second round of
user satisfaction surveys to see how the changes have affected
the user experience.

VIII. PROJECT MANAGEMENT

Given the time constraints and complexity of this project,
good project management will be essential to keeping our
team on track for a successful demo at the end of the semester.
We have assigned Hinna to be our group’s project manager,
with Valeria in charge of note-taking at meetings, and
Aishwarya in charge of updating WordPress with team
milestones.

A. Schedule
To manage the time constraints of the semester, we have

created a detailed Gantt chart, which can be found at the end
of this report in Figure 19, to plan out tasks for every week of
the semester. The chart is color-coded based on the team
member who is primarily responsible for each task, with
various tasks involving all team members.

In referring to Figure 19, our schedule did not change
drastically from our design document to the final project
report. The only major change was adding more weeks of
training our neural network. By training, we mean creating
more training data for our static and dynamic signs to improve
the accuracy of our seven neural network models.

B. Team Member Responsibilities
In regard to team member responsibilities, we have divided

the labor among our three group members with the more
intensive tasks involving effort from everyone. Aishwarya was
mainly responsible for setting up the initial deep learning
model, working with the AWS EC2 instance, embedding the
camera feed into the web application, and conducting distance
tests. Hinna was responsible for making the ASLearn
instructional materials, verifying the correctness of testing and
training data, as well as testing latency and
left/right-handedness. Valeria did the web application UI
design, the deep learning model with Aishwarya, and the
testing of the lighting/environmental requirements. Tasks that
all three of us worked on include fine-tuning the deep learning
model, making testing data for the model, integrating the web
application component and the machine learning component,
and conducting user tests.

C. Bill of Materials and Budget
Refer to Table II for a detailed list of the tools we plan to

utilize for our design and the purpose each component will
have. Refer to Table III for a list of the open-source datasets
we plan to use for model training, validation, and testing.

D. AWS Usage
We requested 150 credits for AWS. Our initial idea was that

we would use these credits to help train our neural networks.
Instead, due to time constraints, we decided to only focus on
training our neural networks. Since our training is data-heavy,
most of our usage went into parsing our video and image data
in addition to training the Tensorflow models. We ended up
using 42.92 credits in total. After our initial training of the
neural networks, we decided to stop using AWS. There wasn’t
that much of a difference between how much time it took to
train locally versus in AWS. Furthermore, it took a long time
to just move our data locally into AWS. Thank you to Amazon
for allowing us to use their platform to help train our machine
learning models.

E. Risk Management
The main risk of our project was that there was no data

10
18-500 Final Project Report: Team E5, 05/07/2022

available online on the dynamic signs that we wanted to
include in our project. Because of the lack of data online, we
decided to create our own training and testing datasets for all
the dynamic signs. Instead of creating a Python program that
iterates through YouTube to find videos of the signs we want,
we ended up creating the data ourselves. We made over 70
videos for each of the 15 dynamic signs. These videos were
five seconds long and the signs were done at different angles
to account for user error when they are testing themselves.
Apart from creating our own dynamic sign language dataset,
we also created our own static sign language data. As we
continued training our models with online datasets, we
realized that some of these datasets were incorrectly doing the
signs. Because of this, we ended up having to scrap most of
the online data that we found and create it ourselves. We made
the decision to make the data ourselves because we knew we
would be doing the signs consistent with the ASL standard.
The total amount of static data we created was over 100
images for each of the static signs.

IX. ETHICAL ISSUES

In examining the potential impacts of our project, a few
ethical issues can be raised, with two main broad groups that
are most vulnerable if our platform fails or is misapplied:
people with physical or learning impediments and those in the
hard of hearing community.

The first group is vulnerable because our platform requires
users to be able to do signs that they learn relatively quickly in
our ‘testing’ mode, which provides engagement and
interactivity despite it being a remote, online learning
platform. However, if someone has a physical disability
particularly involving the motion of their hands or a learning
disability that results in slower understanding, our testing
mode might be incredibly frustrating or even impossible to
use, leaving such users out of the equation. However, these
users can still use our ‘learning mode’ and live embedded
video to learn new ASL terms and see themselves attempt to
sign these terms side by side with the instructional video.

Additionally, some of these issues center around the fact that
our project aims to teach people in the hearing community
how to communicate with those in the hard-of-hearing
community. So, if our platform doesn’t meet the ASL standard
when we are teaching users different signs or if the process is
so frustrating that users decide to stop trying to learn ASL -
through our platform or at all. The consequences of this and
of our platform failing, in general, most deeply affect the hard
of hearing community. Our platform aims to help hearing
people learn how to communicate with deaf people, thus any
failure in the platform would result in those in the hard of
hearing community to continue bearing the brunt of bridging
the communication gap with hearing people through lip
reading, text communication, and doing non-sign language
gestures.

Another ethical aspect of our project to consider involves the
data we used to train and test our models. An ideal dataset
would have high resolution 3-5 second videos of all 51 signs

we are doing, with at least 100 iterations of each in both left
and right-handed signs, and contain a variety of different
signers (i.e. different skin tones, hand sizes, environmental
factors, etc). Currently, we are using a variety of datasets as
the 51 signs are not all contained in one. We have a dataset for
the alphabet, the digits (0-9), and some communicative,
dynamic signs. Particularly for the communicative signs, we
have nowhere near 100 iterations and the dataset video quality
is fairly inconsistent, but there are a variety of signers. For the
letter and numbers datasets, there is less variation in signers
but there are at least 100 iterations of each sign.

To mitigate these problems, a potential solution is to have
more people help us create our training data over time, with us
putting a hard focus on having a variety of hand sizes and skin
tones. Creating more data would help us have an algorithm
that isn’t biased toward a specific skin tone or hand size
allowing more users to be able to use our platform and get
correct feedback. We also want this data to be in environments
where the light isn’t perfect so that users can use this platform
anywhere.

As for our users with physical or learning impediments, we
can create a special mode for these users. In this special mode,
testing will be more lenient in regards to the timing of the
video submission, giving users 15 seconds rather than the 5
seconds limit. Another possibility is to not have a timeout
running and instead give the users the ability to stop the
recording once they are done. This way, the users are not
constricted to doing the sign in 5 seconds which can be tough
to do for someone with impediments.

Hence, if this project were to be deployed, we would need to
work on these ethical issues before it is free to the public. As a
platform that is meant to help bridge the gap between the hard
of hearing community and the hearing community, these
issues need to be fixed. We also still need to consider the
limitations of American Sign Language data if we want to add
more topics to the lesson plans.

X. RELATED WORK

There are existing examples of utilizing TensorFlow to
create neural network models and MediaPipe to generate
landmark coordinate data from video or image inputs of sign
language or other tasks. In one specific example involving
ASL identification for the letters J and Z, the TensorFlow
models were able to achieve at least 96% training accuracy
using 612 videos and 100% training accuracy on 91 videos.
This poses promising results for our implementation, as it sets
a precedent of successful sign identification with a similar
model structure (LSTM layers and dense layers) and set of
tools [8].

Another example utilizes an LSTM followed by dense layer
structure to train a model on time sequenced data recognition
[9]. Overall, this is a standard approach used for the neural
network structure when carrying out recognition tasks where
temporal data also informs the resultant classification. In
another previous work, comparison between different model
structures/approaches was also conducted, where using LSTM

11
18-500 Final Project Report: Team E5, 05/07/2022

layers demonstrated better accuracy results (at least 86%)
compared to other machine learning approaches such as
Hidden Markov models. The project further utilized
MediaPipe and TensorFlow to extract landmark data and
create the models [10].

XI. SUMMARY

ASLearn holds the potential to foster better inclusivity for
those who are part of the hard-of-hearing community. Making
ASL curriculum and access to quick, correct feedback easily
accessible will hopefully also encourage people to learn ASL
when they may not have considered it to be feasible before.

A. Overall System Performance
Our system was able to meet the design specifications we set

for ourselves at the beginning of the semester. While we do
have a fully functional, locally-hosted platform that can detect
sign correctness for static and dynamic signs, there are some
limitations to it. The first limitation is the user must use the
platform in places with good lighting and have a good camera
in order for the model accuracy to be at its highest. The user
should also be within 3 feet of the camera to use the feedback
system and sign into it. Apart from that, the model accuracy is
averaging 80% among all the neural network models. From
the testing that we have done, the platform tends to detect sign
submission to be incorrect even when it isn’t, making it
frustrating for the user. In order to improve this, more training
data needs to be added in. As more training data gets added,
the model accuracy improves.
B. Future Work
If we continue working on this project, our main priority

would be to add facial recognition. Facial recognition is
important in ASL since it's a way for people in the community
to show their feelings and be able to express themselves.
Adding facial recognition would consist of redoing all of our
data, specifically our data for dynamic signs, to add landmarks
of the face present in the video. These landmarks we can
probably also get from MediaPipe using the facial recognition
feature that they already have.
Apart from that, another aspect that we can add to our project

is checking if the dominant hand is doing the primary motion
for two-handed dynamic signs. Making sure this occurs is
imminent to correctly do these two-handed dynamic signs. We
are also thinking about deploying the web application to the
cloud so that more users have the ability to use our platform.
By deploying on the cloud, this means that we would have a
domain name that users can visit and it also means that we
would be able to handle multiple users at once. Finally,
adding more dynamic signs is something that we consider
doing for the future so that users can learn how to do phrases
like “Where’s the bathroom?”.

C. Lessons Learned
Throughout this semester, we learned that scheduling and

having a plan is extremely important. We found that revisiting
our schedule every week, and seeing where our progress
currently stands, helped tremendously in prioritizing tasks for
the next week. We also found that starting early, from figuring
out what project we wanted to complete to starting the
presentation slides, is the best way to go about completing
such a huge project. Because this project had two main
separate components, communication and documentation were
key to making the integration between these two components
work. Furthermore, one of our main lessons is to vet the data
you are using before training your neural network on it.
Ideally, the datasets should be diverse and comprehensive. But
regardless of that, the main priority with the datasets is to vet
them to make sure that the datasets are up to standard before
training.

GLOSSARY OF ACRONYMS

AJAX - Asynchronous JavaScript and XML
AMI - Amazon Machine Image
ASL – American Sign Language
CNN - Convolutional Neural Network
EC2 - Elastic Compute Cloud
GRU - Gated Recurrent Unit
HTML - Hypertext Markup Language
LSTM - Long Short-Term Memory
UI - User Interface

REFERENCES

[1] “The Ergonomic Equation.” Make Ergonomics Simple: Tips for Adding
Ergonomics to your Computing. Ergotron. Accessed March 4, 2022.
https://www.ergotron.com/en-us/ergonomics/ergonomic-equation#:~:text
=Position%20the%20monitor%20at%20least,larger%2C%20add%20mo
re%20viewing%20distance.

[2] “Understanding Latency - Web Performance .” Web Performance |
MDN, February 18, 2022.
https://developer.mozilla.org/en-US/docs/Web/Performance/Understandi
ng_latency.

[3] U.S. Overall Customer Satisfaction. (n.d.). The American Customer
Satisfaction Index. Retrieved May 7, 2022, from
https://www.theacsi.org/the-acsi-difference/us-overall-customer-satisfact
ion/

[4] Yang, Shudong, Xueying Yu, and Ying Zhou. “LSTM and GRU Neural
Network Performance Comparison Study: Taking Yelp Review Dataset
as an Example.” IEEE Xplore, 2018.
https://ieeexplore.ieee.org/document/9221727.

[5] Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. “Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling.” arXiv, December 11, 2014.
https://arxiv.org/pdf/1412.3555v1.pdf.

[6] Paul, Sayak. “Keras Documentation: Video Classification with a
CNN-RNN Architecture.” Keras, June 5, 2021.
https://keras.io/examples/vision/video_classification/.

[7] Rosebrock, Adrian. “Video Classification with Keras and Deep
Learning.” PyImageSearch, July 15, 2019.
https://pyimagesearch.com/2019/07/15/video-classification-with-keras-a
nd-deep-learning/.

[8] Damien, Aymeric. “Dynamic Recurrent Neural Network (LSTM).”
WizardForcel. Accessed March 4, 2022.
https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/co
ntent/3.08_dynamic_rnn.html..

[9] Pandurangan, G. (R. (2021, July 12). New Machine Learning (ML)
approaches for American sign language (ASL) recognition. LinkedIn.
Retrieved March 4, 2022, from

https://www.ergotron.com/en-us/ergonomics/ergonomic-equation#:~:text=Position%20the%20monitor%20at%20least,larger%2C%20add%20more%20viewing%20distance
https://www.ergotron.com/en-us/ergonomics/ergonomic-equation#:~:text=Position%20the%20monitor%20at%20least,larger%2C%20add%20more%20viewing%20distance
https://www.ergotron.com/en-us/ergonomics/ergonomic-equation#:~:text=Position%20the%20monitor%20at%20least,larger%2C%20add%20more%20viewing%20distance
https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://ieeexplore.ieee.org/document/9221727
https://arxiv.org/pdf/1412.3555v1.pdf
https://keras.io/examples/vision/video_classification/
https://pyimagesearch.com/2019/07/15/video-classification-with-keras-and-deep-learning/
https://pyimagesearch.com/2019/07/15/video-classification-with-keras-and-deep-learning/
https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.08_dynamic_rnn.html
https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.08_dynamic_rnn.html

12
18-500 Final Project Report: Team E5, 05/07/2022

https://www.linkedin.com/pulse/new-machine-learning-ml-approaches-a
merican-sign-asl-pandurangan-/

[10] Recurrent neural networks (RNN) with Keras : Tensorflow Core.
TensorFlow. (2022, January 10). Retrieved March 4, 2022, from
https://www.tensorflow.org/guide/keras/rnn

[11] Domènech, A. (2020, July 28). ASL recognition in real time with RNN.
upcommons.upc.edu. Retrieved March 4, 2022, from
https://upcommons.upc.edu/bitstream/handle/2117/343984/ASL%20reco
gnition%20in%20real%20time%20with%20RNN%20-%20Antonio%20
Dom%C3%A8nech.pdf?sequence=1&isAllowed=y

[12] Renotte, Nicholas. (2021, June). ActionDetectionforSignLanguage.
https://github.com/nicknochnack/ActionDetectionforSignLanguage

[13] ASL Alphabet. (2018).
https://www.kaggle.com/grassknoted/asl-alphabet

[14] Khalid, Muhammad. (2020) Sign Language for Numbers.
https://www.kaggle.com/muhammadkhalid/sign-language-for-numbers

[15] Li, Dongxu and Rodriguez, Cristian and Yu, Xin and Li, Hongdong.
(2020) "Word-level Deep Sign Language Recognition from Video: A
New Large-scale Dataset and Methods Comparison".
https://dxli94.github.io/WLASL/

Fig. 11. Neural Networks as Microservice Architecture

13
18-500 Final Project Report: Team E5, 05/07/2022

TABLE II. BILL OF MATERIALS

14
18-500 Final Project Report: Team E5, 05/07/2022

TABLE III. TRAINING DATASETS

15
18-500 Final Project Report: Team E5, 05/07/2022

Fig. 12. Web Application: Home Page Fig. 16. Web Application: Picking Topics Page

Fig. 13. Web Application: Course Page Fig. 17. Web Application: Results from Quiz Page

Fig. 14. Web Application: Testing Page
Fig. 18. Web Application: Profile Page

Fig. 15. Web Application: Learning Page

16
18-500 Final Project Report: Team E5, 05/07/2022

Fig. 19. Project Management Schedule

