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Abstract—ASLearn is a platform that serves as a convenient
tool for users to learn and practice American Sign Language.
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ASL with correct and immediate evaluation results.
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I. INTRODUCTION

Hundreds of thousands of people within the U.S. alone rely

on American Sign Language (ASL) to communicate as a result
of hearing loss. Encouragement to learn sign language can
help bridge the communication gap between hearing people
and members of the hard-of-hearing community. However,
learning sign language correctly can be difficult to do without
an instructor, and many people may not have the opportunity
to take ASL classes on a regular basis. ASLearn, our learning
platform for American Sign Language, aims to combine the
flexibility of remote learning with the interactivity of live
feedback to give users an effective, engaging experience in
learning ASL.

While there are currently many websites, mobile apps, and
formal courses with live instructors for learning ASL, they
have different tradeoffs that influence how feasible they are
for people to use. With websites and mobile apps, users watch
or read instructions on how to do signs and then have to
practice them on their own, leaving students to figure out if
they are signing correctly without any expert feedback. With
formal courses, live instructors can provide the feedback
lacking in online learning platforms, but such courses might
present cost or scheduling barriers for many people. Thus,
with ASLearn, we specifically hope to reach people who have
wanted to learn ASL but either found watching online tutorials
to be too passive or could not commit to a formal course given
their busy schedule.

Some key features of ASLearn include embedding the user’s
live webcam video feed into the online platform where users
can see themselves attempting signs. In the ‘learning mode’ of
our platform, the user will be presented this video feed
side-by-side with an instructional video and prompt. Another

feature, ‘testing mode’, will still contain the user’s embedded
video feed but no instructional video. Instead, ‘testing mode’
will only prompt the user to attempt signs that they have
previously learned on the platform, and their performance is
recorded in the background (number of correct/incorrect
attempts). Using a combination of computer vision and
machine learning, our platform will analyze the user’s attempt
at a given sign and provide feedback on whether or not they
did it correctly, which will be displayed on an ASLearn web
application interface.

II. USE-CASE REQUIREMENTS

We defined specifications around computer vision of chosen
signs, accuracy of sign labeling, user distance from the
camera, latency, and web application usability. These criteria
combined, when met, will yield a successful platform that
meets our intended use-case.

In regard to the computer vision of ASL signs, we have
selected 51 signs that we want our platform to be able to teach
and test users on. These signs make up an essential
foundational understanding of ASL for beginners to work
towards mastering. Specifically, we will be including the
twenty-six letters of the English alphabet, digits 0-9, seven
conversational signs, and eight signs related to learning. It
should be noted that the alphabet and digits, thirty-six total
signs, are static, whereas the conversational and learning signs
are dynamic. The exact conversational and learning signs we
are using include the following:

Conversational signs: how, you, my, name, yes, no, maybe,
sign language (8 total)
Learning signs: school, major, ask, class, help me, what,

word (7 total)
Thus, for one of our use-case requirements, we want our

computer vision model to be able to detect that the user is
attempting one of these 51 signs and then send data collected
from the user’s attempt to a neural network model that
identifies what sign the user did. The model will be trained
with open-source image and video data demonstrating correct
ASL. We will determine whether the user has correctly done
the sign by comparing the identification generated by the
model to the expected sign.
With respect to the accuracy of our platform, we chose a 97%

accuracy metric for correct identification and feedback for
user-generated signs. Our platform will detect user signs after
a user is prompted to attempt a specific sign; thus, we will be
able to compare the predicted label assigned to the user’s
attempt to the expected label requested in the prompt. Because
our model will be trained on substantial data that meets the
community standard for proper ASL, along with the suitability
of our model structure (discussed further in the
implementation details) for video classification, our model
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will have a reasonable likelihood to achieve this accuracy
metric. We allow for a 3% error rate to account for incorrect
predictions as a result of human error or environmental
impediments that may occur as the user attempts signs.

A third use-case requirement we defined involves the
distance between the user and the webcam recording them
while they perform sign language gestures. This platform is
intended for usage on a laptop or desktop computer, not a
mobile device, so that users’ hands can both be free to sign. In
our research, we found that the typical distance between a user
and their laptop is about 2 feet [1]. With this in mind, we
require that the platform is able to accurately detect user signs
at a distance of 3 feet or less from the camera. An additional
foot of distance is added in case the user moves further away
to make sure both their hands are in frame.

Another use-case specification for ASLearn is latency, both
with respect to web application responsiveness and the
execution time of the deep learning models that predict what
sign a user is making. For the web application, our research
and academic work suggest that a reasonable latency metric is
under 50 milliseconds [2], which is what we will aim for in
terms of page and button responsiveness. Response times
exceeding 50 milliseconds may negatively impact user
experience. For both the deep learning model to determine
what sign the user is doing and the web application to display
that feedback to the user, we will require a latency of 2
seconds. This is separate from the responsiveness of the web
application’s general interactive features. Latency exceeding
this 2-second requirement may make the platform frustrating
for users. To maintain convenience, we want the latency of
user feedback generation to not be much longer than feedback
from an in-person instructor. On the other hand, a shorter
latency requirement than 2 seconds may underestimate the
amount of time needed to process input data and execute a
model with said data to generate a label. Additionally, while
we found that our model initially has between 0.07-0.12
seconds of latency based on some experimental data, we
anticipate that once the model has been tuned for improved
accuracy, there will be significantly more latency due to
greater complexity of the model structure.

Finally, the intention of our platform is to easily and
conveniently learn ASL, so our usability requirements are
specified with the intent of ensuring a smooth user experience.
The two main components of this are that the site is easy to
navigate and that the feedback given to the user after
attempting a sign is easy to understand. In order to measure
this, we plan to conduct user surveys towards the end of the
semester with about 10 users and have them rate aspects of the
platform from 1-10. Our goal for this requirement is to have
90% user satisfaction in regard to navigating and

understanding the site, as that is industry standard for user
testing. To measure whether we achieve this 90% user
satisfaction, we will give a 20 question survey to all users who
try our web application during the testing phase. Currently, we
are planning on testing 10 users, 5 of whom are experts in the
ASL field and the other 5 are beginners taking the ASL stuco
course at CMU. This survey will ask questions such as “Was
the feedback you received quick?”, “Did you understand the
feedback?”, and “How difficult was it to navigate through the
pages?”. The answers to these questions will be ratings on a
scale of 1 to 10. At the end of the survey, we will ask users if
they had any additional comments to help us understand what
users would like to see. From there, we are getting the 90% by
adding up all the numbers we got for each question and seeing
if it's greater than 90. If it's not, we are planning on continuing
to develop the web application and make the appropriate
changes.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The user video feed from the camera will be embedded in
our web application interface so that the user can view a
reflection of how they are forming their sign language gestures
in response to a prompt shown on the web app interface. This
video will also be sent to a computer vision processing
component that utilizes MediaPipe, an open-source framework
that will allow us to extract feature data from the user’s hands.
This feature data will consist of absolute position coordinate
data that provides information about the shape/orientation of
the user’s hand. This data will be propagated to the machine

Fig. 1. Solution Approach Diagram
learning component of the system to then be fed as inputs to a
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neural network model. This neural network model is selected
from among 5 neural networks - see Figure 5 at the end of this
report - that each support prediction generation for a specific
subset of sign language gestures. Based on which subset the
expected sign belongs to, the correct neural network will be
selected for execution, and it will generate a prediction for
what sign the user is making. In comparing this prediction to
the expected sign, our system will generate feedback for the
user to inform them whether their gesture was correct (the
prediction matches the expected sign) or incorrect (the
prediction does not match).

IV. DESIGN REQUIREMENTS

For our web application, we will have a local tech stack
instead of deploying it to the cloud. Deploying it to the cloud
will heavily increase the latency in our web application (due to
the separation of our system components into different servers
that must interact with each other). Because the user is going
to be attempting signs in front of a camera from which a video
feed is embedded inside of our web app, we are sending the
data input into our computer vision component and machine
learning component. If the components were deployed to the
cloud, it would increase the latency of our user feedback
generation (indicating to the user whether the sign they made
was correct or not), as data must be passed between each
component and ultimately back to the web app. Ideally, we
want this latency to be less than 2 seconds, and keeping the
tech stack locally for now can help us achieve this metric.

Because we have decided to keep our system as a local tech
stack, we have limitations on how many users can log in at
once. From our research, the average number of users that a
locally hosted application can handle is 5 users (1). This aligns
with our own experience using local hosting for web
applications. Due to having only one physical system handling
the computer vision and the machine learning models, we are
not prioritizing support for a large number of concurrent users.
In addition, we are focusing on an individual user’s
experience, and users are not interacting with each other on
the web app. Therefore, concurrency is not a major aspect of
our application that we need to worry about.

For our machine learning model, the average raw video
input is 3 seconds long among the training and testing data,
and, from preliminary testing, an average user does not take
more than 3 seconds to make a sign. Therefore, we require for
all data to be 3 seconds long to maintain uniformity. Because
we tested it will take 3 seconds for the average user, we are
not taking into account users with disabilities like arthritis.
Real-time video feed will be fed to MediaPipe at 30 frames
per second (fps). We will re-sample the videos we have at a
lower frame rate, allowing us to only have landmark data from
10 frames sent to our neural network rather than 150 frames.
Limiting to 10 frames will help us train our neural network
and will facilitate getting a predicted label faster. Considering

we are receiving 3-second clips, we don’t want our machine
learning model to have to process too much such data that
neural network training and evaluation slows down. However,
we also don’t want to have too little data where there isn’t
enough meaningful information about the sign being
demonstrated, hurting our accuracy. We believe that it is
sufficient to use 10 frames, especially given the feedback we
received from Professor Matt Gormley who teaches
Introduction to Machine Learning at CMU.

From each frame, we will extract 42 landmarks (21 points
from the left hand and the 21 points from the right hand) that
we get from MediaPipe. For image data, we must extract
landmark data from the image and duplicate the data 10 times
with noise applied (a process described further in our system
implementation). If some landmarks are missing (due to errors
in MediaPipe detection or single-handed signs), the missing
landmarks will be padded. We will exclusively retrieve
landmark data for the hands, and all the signs we will train the
models to identify only involve the hands. The reason for this
is due to the additional complexity of dealing with signs that
involve contact with the face or body. Such signs would
require a far larger amount of landmark data to be fed to the
neural networks. Apart from that, we would need to calculate
a distance/position error margin for users touching a certain
part of the face for the sign.

To observe model execution speed capabilities, we tested
our baseline model structure to determine how long it takes for
a model to generate a prediction. With the experimental data
that we currently have, we found that average model execution
time is 0.07 to 0.12 seconds over 15 trials. This baseline
model that was passed the experimental data only contained
one LSTM layer and one Dense layer. As of now, we are
planning on only using these two layers for our neural
network. As we tune the models, however, it is likely that we
increase the number of layers in order to improve prediction
accuracy. This will require us to observe how increasing the
size of our model to achieve greater accuracy increases model
execution time. Given our requirement for user feedback
latency (time between the completion of a sign and telling the
user whether it was correct/incorrect), we must ensure that
model execution time is not severely worsened in conjunction
with negligible accuracy improvement.

In the datasets we are using to train and test the neural
networks, the images and videos are of correct signs. As a risk
mitigation plan, if we see that our neural network model is not
accurate we are going to make our own database of incorrect
images for signs. Adding incorrect images can help detect if
there are false positives (incorrect signs being falsely
identified as a particular sign) since that may be a likely
source of error. Because of this, we added time to our schedule
to make 30 incorrect images for each sign to add into our
testing database.

For training our neural network, we are taking advantage of
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the AWS credits available to us and using an EC2 instance for
training. Training a neural network takes a long time to do,
which ends up occupying our computer resources and impedes
us from using our computers for other work. For this reason,
we decided to take advantage of the EC2 instance to conduct
model training. In doing so, we will also be able to train
multiple models concurrently, allowing us to take advantage of
all the training time that we have. Furthermore, we are using a
GPU inside our EC2 instance which will significantly speed
up our training time. Using a GPU helps us perform multiple,
simultaneous computations which is helpful when we are
trying to train five neural networks at the same time (2).

V. DESIGN TRADE STUDIES

A. LSTM cells vs. GRU cells
Currently, our neural network models will utilize LSTM

cells in order to take into account temporal information that
comes with the sequencing order of frames within a video.
Another type of cell we considered is the GRU (Gated
Recurrent Units). LSTM cells have 3 gates: the input gate that
stores information in long-term memory, the forget gate that
removes information from long-term memory, and the output
gate that produces information to share with future time steps
[3]. GRUs have 2 gates: the update gate that allows a subset of
past info to be carried forward, and the reset gate which allows
a subset of past info to be ignored [3]. Based on past studies,
GRUs tend to execute faster due to more simplicity, and
LSTMs will be more likely to provide greater prediction
accuracy; on the other hand, GRUs may provide better
accuracy for smaller datasets [3]. Because we have such large
datasets of video and image data, we ultimately decided to use
LSTM layers in order to prioritize prediction accuracy, given
that a major component of success for our learning platform is
to provide accurate feedback to users as they practice sign
language. Moreover, some studies have been inconclusive as
to which cell type will always result in better performance,
and that this result may vary based on the task the models are
being trained for [4]. We decided not to use GRU cells due to
this uncertainty, as a negligible improvement in model
execution latency would not warrant poorer prediction
accuracy.

B. MediaPipe and LSTM vs. CNN and LSTM model
An approach we examined for our neural network is to have

a CNN and LSTM neural network. This combination is a
common approach for image and video classification [5, 6].
We decided not to use a convolutional neural network (CNN),
and instead decided to rely on MediaPipe. The main purpose
of a CNN prior to the LSTM layer would be to extract
meaningful features from the image(s) or video(s). MediaPipe,
however, is backed by CNN(s) and completes this feature
extraction for us, generating landmark coordinate data from
the hands. Therefore, there is no need to do another CNN layer

on top of it.

C. LSTM vs. Dynamic LSTM
Another approach we examined was to have a dynamic

LSTM neural network [7]. A dynamic LSTM model would
help us in grabbing frames dynamically, sending them to
MediaPipe, and having the features be sent immediately to the
neural network in real-time. So rather than waiting for a
certain time frame to end after a user does a sign, they can
receive immediate feedback. The main idea behind it is to
send the data points into the machine learning model, calculate
its LSTM layer for the frame, and then wait until the next
frame comes to continue doing the LSTM layer. After getting
all the required frames, we will move on to the rest of our
machine learning model which should take more than a second
to predict the label of the input frames. The main problem we
saw from this design was knowing when a sign is complete,
and we debated the possibility that if a hand isn’t detected in
the frame then the sign is done. In the end, we didn’t go with
this neural network model mainly because there is no reason,
as of now, to need a dynamic LSTM neural network,
especially since the majority of our signs are completed within
a 3-second window. However, if we want to extend our project
further by including phrases into our learning modules, this is
a great method to use in the future.

VI. SYSTEM IMPLEMENTATION.
Before exploring the details of our solution approach, we

will once more clarify the connection between our web
application, our computer vision model, and our machine
learning model. Initially, the video feedback displayed in the
web application is sent to the computer vision model backed
by MediaPipe, which will generate data points on hands
present in the video feed frame by frame. These data points
are then fed into our machine learning component to generate
a prediction label. This label is sent back to our web
application to inform the user if the sign is correct or incorrect.

Data pre-processing and (as well as model training) will be
carried out in a p3.2xlarge EC2 instance with a Deep Learning
AMI that has Tensorflow preinstalled. We will be using
open-source datasets containing video and image data
demonstrating correct American sign language gestures to
compose our training, validation, and testing datasets. Each
example (video or image) will be assigned a label based on the
sign it demonstrates.
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Fig. 2. Software Block Diagram

A. Computer Vision Component
We will use MediaPipe to process and extract landmark data

of the hands detected in the videos or images. For each frame
that hands are detected, there will be 21 landmarks for each
hand (resulting in a total of 42 landmarks) that will be stored
as flattened numpy arrays. If only a single hand is detected
and just 21 landmarks are present, the other 21 must then be
padded as zeros. For each example, we must collect 10 frames
of flattened landmark data vectors. The numpy arrays for each
example will be stored and split into subsets of training,
testing, and validation data to use accordingly.

For each example from the open-source datasets, there are
three cases of accepted formats: video of a dynamic sign,
video of a static sign, and image of a static sign. Other
examples that do not fall into these categories will be
discarded (since, for example, data from dynamic signs as
images are definitely incorrect and thus not useful for our
model to learn from).

Because pre-existing videos may have slightly different
durations (for example, one person may take 5 seconds to
complete a sign, while another person takes 3 seconds), we
will need to resample at different rates in order to select a total
of 10 frames from the time the sign starts to the time it is
completed. For instance, a duration of 5 seconds will require a
resampling rate of 2 frames per second. We will use
MediaSequence in order to conduct this resampling on video
data. For pre-existing image data, we must extract landmark

data from the image and format it as a flattened numpy array,
duplicate the array 10 times and noisify the data to closely
mimic variation observed normally in video input (greater
presence of noise at beginning and end of a video, versus less
noise towards the middle of a video due to the user stabilizing
their static sign). Once the data has been formatted for training
and testing, it will be fed to the machine learning component
of the system to carry out model creation and tuning.

For real time evaluation, there will be a specified window of
time (3 seconds) within which the user must attempt a given
sign specified by a prompt in the web app interface, and the
landmark data from their input will be collected. We will only
collect data within this time window and as long as a hand is
detected. If a user takes less time than they are allotted, data
collection will stop. The user’s input will be resampled to
acquire 10 frames. Once a batch of landmark data from the 10
frames is collected, this will be passed to the machine learning
component of the system to evaluate and assign a prediction
label.

Fig. 3 Feature Extraction Pipeline

B. Machine Learning Component
The models will be instantiated, trained, and saved using

Tensorflow on an EC2 instance. The initial model structure
will be created as a Sequential model instance with at least one
LSTM layer followed by at least one dense layer. The LSTM
layers will allow the model to take temporal information
(ordered sequencing of the video data) into account for
classification. LSTM cells propagate information forward as
well as to each other (older time steps inform future time
steps). Further, the model will conduct categorical
classification, where the output generated will be a set of
probabilities indicating the likelihood of each possible label
being the correct prediction. We will then use argmax to select
the highest probability, and the predicted sign will be the label
associated with this probability.

The models will be instantiated using Tensorflow. The
initial model structure will be created as a Sequential model
instance with at least one LSTM layer followed by at least one
dense layer. The LSTM layers will allow the model to take
temporal information (ordered sequencing of the video data)
into account for classification. LSTM cells propagate
information forward as well as to each other (older time steps
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inform future time steps). Further, the model will conduct
categorical classification, where the output generated will be a
set of probabilities indicating the likelihood of each possible
label being the correct prediction. We will then use argmax to
select the highest probability, and the predicted sign will be
the label associated with this probability.

Fig. 4. Neural Network Structure
The models will also be trained and saved using the

Tensorflow API. Each of the 10 frames for a given example is
treated as a time step fed in at each node of the model’s input
layer. Training data will be passed to the model using the
Tensorflow model.fit() method, whereas testing and validation
metrics will be generated through the model.evaluate()
method, which will allow us to observe the model prediction
accuracy. The methods model.save_weights() and
model.load_weights() will allow us to preserve the model after
training is complete (so it can be used later in real time sign
language evaluation). Table I denotes the different
hyperparameters we will have to tune and the ranges for these
values that the tuning process will explore. The learning rate

TABLE I. HYPERPARAMETERS FOR TRAINING

initial value is the default learning rate that the provided
Tensorflow optimizer uses. Further, because our training
dataset is very large for some signs, we will begin with 10

epochs and increase this should we need to improve model
accuracy. At the same time, increasing some of these
parameters too much may result in overfitting to the training
data, so we must exercise the range to determine the ideal
combination of hyperparameters for model training.

While using this ASL learning system, a user will be
generating signs in real time in front of a web camera that we
must identify and return feedback for. There are two primary
system steps for this, selecting the correct model to execute
and collecting the data in real time to pass to the model.
Initially, the web app indicates the sign being requested (this
will be based off of the user’s selection for what sign they
want to practice, or what sign the app requests the user to do
during a test, etc.). The requested sign will be the label that
indicates which of the 5 models we must execute, as well as
the label we compare the model’s prediction against to
determine whether the user made their sign correctly. The web
app itself will conduct this comparison and format it
accordingly for the user to understand (format a response to
display on the webpage for the user to know whether they did
the sign correctly).

C. Web Application
We are using JavaScript and HTML to create the web app

component of the ASLearn platform. Users will be able to log
in so that their ASL curriculum progress can be stored in a
database in association with their account. With this, they can
see which lesson plans they have completed. The pages of the
web app will consist of login, registration, homepage, courses,
learning mode, and testing mode. Because we want to create a
web application that allows for real-time responsiveness, we
are utilizing AJAX so that the user can receive feedback on
their sign without reloading the page.

The home page will show multiple courses available for the
user to take, each of which will be a sign language topic such
as the alphabet, numbers, conversation, etc. If a user clicks a
sign language topic on the home page, like the alphabet, they
will be guided to the specific course page for that topic. Inside
the course page, the user will see the individual modules they
can access. For example, if a user is viewing the alphabet
course page, the individual modules they would see will be A,
B, C, etc. Each individual module would have learning and
testing mode options for the user to select. The pages for
learning and testing will be similar in format. The testing page
will give an indication to attempt a certain sign and will have
real-time video feedback embedded into the page so the user
can see themselves doing the sign. On the other hand, the
learning page is going to have both real-time video feedback
and an instructional demo video showing how to do the sign
correctly.

For both the testing and training pages, we are calling on
our machine learning model using JavaScript. As the user
attempts a sign, the real-time video feedback of their attempt
is captured and sent to the machine learning model. Apart
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from the video feedback being sent to the computer vision
model, the web application would also be in charge of sending
an indication of what sign the user is testing/training on. As of
now, we will send a string of what the expected sign is e.g.,
‘A’, ‘B’, etc., to the machine learning model to help it select
the correct neural network it needs to make a prediction for the
user’s attempt.

The computer vision model will receive the real-time video
feedback to format as landmark data that can be fed to the
machine learning model’s corresponding neural network,
which will generate a predicted label for what the sign is
identified as (e.g. ‘A’, ‘B’, ‘C’, etc.). This label is sent back to
our web application, where we are going to check whether the
predicted label we received is the same one as the one we sent
to the machine learning model. The results we receive from
this comparison will be displayed to the user in the web app. If
the user’s sign is correct, the boundary of the real-time video
feedback will light up as green. If incorrect, the boundary will
glow red. Having the boundary of the real-time video
feedback box light up will capture the user’s attention and
make these correct results clear.

As for how the computer vision model is receiving video
feedback of the user’s attempt at a sign, a 3-second timer will
indicate to the user when they should start their sign and how
much time they have left to make the sign. The timer is going
to start once the user clicks a button on the page indicating
that they want to begin attempting their sign. This eliminates
the problem of needing to know when the user makes the sign
and wants it to be checked for correctness. The timer is
beneficial to both our computer vision and machine learning
models since it helps us restrict how many frames we are
sending to the models.

Apart from that, we do have a risk mitigation strategy if we
see that the accuracy of our models is too low. If this issue
arises, we plan to have a bounding box that can restrict what
portion of the frames the computer vision model looks at to
collect landmark data. The bounding box will help restrict the
view and have its main focus be on the user’s hands. Within
the real-time video feedback, we are going to display this
bounding box to the user and instruct them to make their signs
within it. The feedback that we get within the bounding box
will then be sent to our computer vision model, hopefully
improving it by restricting the portion of each frame from
which it must extract hand landmark data.

VII. TEST, VERIFICATION AND VALIDATION

In regard to testing, we have broken down our plan into
subsystems and overall system tests. This is to ensure that the
tools we are using match our needs and that the ASLearn
platform we create is aligned with our intended use-case and
specifications.

For subsystem tests, we will examine the MediaPipe data
received using the Hands library on a web camera, the format

of the data before it is sent to our deep learning model for
processing, and the correctness of our created testing data
along with the training data found online. For the Hands
library data from MediaPipe, we will verify that when hands
are in frame, they are detected with 21 landmarks each as
specified in the MediaPipe documentation. We will ensure that
this works both with live video feed and when given
pre-existing video or image data. In terms of the data format,
we expect that the 21 landmarks will have x,y,z coordinates
associated with them, which is verified both in MediaPipe
demos and in our own experience testing the Hands library.
Finally, we will verify the correctness of testing data by
referring to online ASL guides and relying on Hinna’s
expertise given that she took an ASL course last semester.
Similarly, for online datasets - see Table III at the end of this
report - we will verify the correctness and quality of the ASL
sign data by using reputable sources and manually looking at
examples from the dataset.

As for ASLearn platform testing, we will conduct tests based
on the use-case requirements detailed in section II of this
paper. To reiterate what these requirements are, we will be
testing the user distance from the camera, the overall platform
latency, the accuracy of the platform sign detection, the ability
to handle left/right-hand dominance based on user preference,
and the web application user interface.

A. Tests for User Distance from Camera
For the user distance from the camera, which we specified to
be within 3 feet, we will conduct signs at various distances
(i.e. 1.5 feet, 2 feet. 2.5 feet, and 3 feet) and check how well
ASLearn is able to determine if the sign is correct or not. A
passing test will have 97% accuracy in determining sign
correctness at any distance within and including 3 feet. If our
tests for this requirement fail, we will direct the user to be
within whatever distance we have determined to be successful
and also use a bounding box to hone in on the user’s hand
motion.

B. Tests for Platform Latency
A second set of testing will be conducted in regard to the

platform latency, which we have decided will be within 2
seconds. Note that this latency requirement is specifically for
how long it takes our model to predict the correctness of the
sign and the web application to display feedback related to this
prediction rather than the responsiveness of the ASLearn
platform itself. In order to test this, we will time how long it
takes for the site to give the user correct feedback, where we
will start our timer once the user has stopped their sign, which
should take no longer than 3 seconds, as explained in Section
III of this report. If we find that our latency consistently
exceeds 2 seconds, we have the contingency plan of adjusting
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our prediction generation algorithm to be a faster but
potentially less accurate method. For instance, we may try to
use a CNN for faster execution (and reduced data formatting
complexity), which would simply take in image data at the
input layer; although, it may pose lower accuracy due to
interference from extraneous colored pixel data surrounding
the hands performing sign language.

C. Tests for ASLearn Accuracy
As previously mentioned, we have specified that the

ASLearn platform should be 97% accurate when determining
the correctness of user sign. The 3% where this could be
inaccurate would mostly be due to environmental impediments
such as poor lighting or the user wearing jewelry or other
accessories that could interfere with hand recognition through
MediaPipe. Thus, we will conduct tests in various lightings
(i.e. low light, natural light, studio light) and with distracting
accessories (bracelets, rings, nail polish, etc) to check if our
platform remains at least 97% accurate in the sign predictions.
If this test fails, we will communicate to the user that before
testing signs on the platform they should be in a well-lit space
and have little to no impediments on their hands.

D. Tests for Left or Right Handed Signs
An additional aspect of ASLearn that will need to be tested is

accuracy based on whether the user is right or left-handed. To
test this we will do signs on the platform using our right
hands, and then again using our left hands, where we expect
that the model remains at least 97% accurate regardless of
which hand is used. However, if this test fails, we will
communicate that our platform is currently only suited for
right-handed signs, given that the majority of data available
online is right-handed and that all our group members are
right-handed.

E. Tests for User Satisfaction
Finally, we will be conducting user satisfaction surveys after

having users test the ASLearn platform based on certain
usability metrics. Our plan is to interview at least 10 users in
the later weeks of the semester and have them rank features of
ASLearn - like navigability and how intuitive it is to use -
from 1 to 10. Overall, we plan to have at least 90% user
satisfaction based on the industry standard. If the survey
results are lower than expected, we will do what we can to
modify the user interface based on user feedback in order to
improve the overall experience. If there is enough time
between the given user feedback and the final demo, we will
potentially conduct a second round of user satisfaction surveys
to see how the changes have affected the user experience.

VIII. PROJECT MANAGEMENT

Given the time constraints and complexity of this project,
good project management will be essential to keeping our
team on track for a successful demo at the end of the semester.
We have assigned Hinna to be our group’s project manager,
with Valeria in charge of note-taking at meetings, and
Aishwarya in charge of updating WordPress with team
milestones.

A. Schedule
To manage the time constraints of the semester, we have

created a detailed Gantt chart, which can be found at the end
of this report in Figure 6, to plan out tasks for every week of
the semester. The chart is color-coded based on the team
member who is primarily responsible for each task, with
various tasks involving all team members.

In referring to Figure 6, it should be noted that we have
planned for the last four weeks of the semester to heavily
involve integration and contingency planning. In regard to
integration, our solution has a lot of different parts -
MediaPipe, neural networks, web application, and external
camera feed - that need to be combined in the overall ASLearn
platform. Thus, by allowing multiple weeks for integration we
can account for obstacles that could arise due to data
formatting, incompatible tools, etc. As for contingency
planning, in Section VII it was mentioned that we will have
risk mitigation and contingency plans in place if any of our
validation tests fail. So, the contingency task on the schedule
is to allow time for us to alter our solution based on that risk
mitigation so that by the end of the semester we still have a
product that meets our requirements and specifications.

B. Team Member Responsibilities
In regard to team member responsibilities, we have divided

the labor between our three group members with the more
intensive tasks involving effort from everyone. Aishwarya will
mainly be responsible for setting up the initial deep learning
model, working with the AWS EC2 instance, embedding the
camera feed into the web application, and conducting distance
tests. Hinna will be responsible for making the ASLearn
instructional materials, verifying the correctness of testing and
training data, as well as testing latency and
left/right-handedness. Valeria will be doing the web
application UI design, the deep learning model with
Aishwarya, and testing of the lighting/environmental
requirements. Tasks that all three of us will be working on
include fine-tuning the deep learning model, making testing
data for the model, and conducting user tests.
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C. Bill of Materials and Budget
Refer to Table II for a detailed list of the tools we plan to

utilize for our design and the purpose each component will
have. Refer to Table III for a list of the open-source datasets
we plan to use for model training, validation, and testing.

D. Risk Mitigation Plans
The critical risk in our project mainly concerns processing

the input and detecting the correctness related to our chosen
dynamic signs. The reason why this is a huge risk is because
most of the similar ASL recognizing deep learning models
only include the alphabet and numbers, which are largely
static signs. Thus, by creating a model to also include 15
dynamic signs, we are doing something a little less common
and more complex. As a result, we have less training data
available online for those signs and thus must augment the
data we currently have in order to  better tune our model.

For risk mitigation in this sense, we are considering creating
our own training and testing datasets. Our best solution right
now is to create a Python program that can iterate through
YouTube and find videos that include our desired signs in the
title. From the concise list that we will receive, we will double
check that the videos contain the signs and that there is
sufficient duration of time consisting of the video subject
making the sign for our neural network’s 3-second restriction.
Otherwise, another option that we are considering is to do
one-to-one mapping instead of an LSTM network for dynamic
signs. However, we are still going to use LSTM for static signs
because we want consistency and clearness in the signs that
the users are making.

IX. RELATED WORK

There are existing examples of utilizing TensorFlow to
create neural network models and MediaPipe to generate
landmark coordinate data from video or image inputs of sign
language or other tasks. In one specific example involving
ASL identification for the letters J and Z, the TensorFlow
models were able to achieve at least 96% training accuracy
using 612 videos and 100% training accuracy on 91 videos.
This poses promising results for our implementation, as it sets
a precedent of successful sign identification with a similar
model structure (LSTM layers and dense layers) and set of
tools [8].

Another example utilizes an LSTM followed by dense layer
structure to train a model on time sequenced data recognition
[9]. Overall, this is a standard approach used for the neural
network structure when carrying out recognition tasks where
temporal data also informs the resultant classification. In
another previous work, comparison between different model
structures/approaches was also conducted, where using LSTM
layers demonstrated better accuracy results (at least 86%)
compared to other machine learning approaches such as
Hidden Markov models. The project further utilized

MediaPipe and TensorFlow to extract landmark data and
create the models [10].

X. SUMMARY

ASLearn holds the potential to foster better inclusivity for
those who are part of the hard-of-hearing community. Making
ASL curriculum and access to quick, correct feedback easily
accessible will hopefully also encourage people to learn ASL
when they may not have considered it to be feasible before.

Upcoming challenges to our design will include achieving
our goals for model prediction accuracy due to requirements
for formatting input data and collecting data to be used for
tuning our models. Thus far, we have considered many ways
that we may mitigate these risks, such as various sign
detection methods, planning our approach to hyperparameter
tuning, and considerations for making sure we have enough
data to train and test the models with. Thus far, we have
reviewed many solution approaches and hope to continue
perfecting our design as we progress through developing the
implementation.

GLOSSARY OF ACRONYMS

AJAX - Asynchronous JavaScript and XML
ASL – American Sign Language
CNN - Convulational Neural Network
EC2 - Elastic Compute Cloud
GRU - Gated Recurrent Unit
HTML - Hypertext Markup Language
LSTM - Long Short-Term Memory
UI - User Interface
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TABLE II. BILL OF MATERIALS
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TABLE III. TRAINING DATASETS

Fig. 6. Project Management Schedule


