Aishwarya’s Status Report for 4/10/22

This week, I refined the integration of the web app and our neural networks. Previously, for static signs, we have been downloading a video and sending that to our python code to extract features and use one of the models to execute with this input data and generate a prediction for the sign the user completed. I changed it such that feature extraction is done directly in the javascript backend portion of the web app for each frame of the video camera input. An array of this data is sent as part of POST request to a python server to generate and send back a prediction response. I brought 5 separate models into the backend that are loaded upon webapp start-up. This removed the additional latency I observed the week before due to having to load a model with its structure and weights every time a prediction needed to be made. This integration appears to work smoothly, though we still need to refine an implemention taking a video input from the user in order to support dynamic sign prediction. In addition to this work with the web app, I continued tuning the models and created some additional video data to be used as training samples for our dynamic signs (conversational sign language that requires hand movements).

My progress is on schedule. This coming week, I hope to tune a model to support predictions for dynamic sign language. If the dynamic models have minimal issues, I also plan to help Valeria work on the web app support for user video inputs during the later half of the week.

Leave a Reply

Your email address will not be published. Required fields are marked *