
18-500 Design Review Report - 4 March 2022 Page 1 of 8

EDIT FINAL DOC not this one
Authors: Jake Cerwin, Ryan Huang, Angela Zhang

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Currently there is no efficient way to
find an open seat in within Carnegie Mellon Univer-
sity’s shared spaces, especially during peak hours. Our
project is a system designed around solving the cur-
rent lack of an efficient way to find open seating within
Carnegie Mellon University’s open spaces by track-
ing table occupancy in real time and display current
occupancy status on a web application, specifically fo-
cusing on the UC second floor. Our project is split
into hardware design, hardware and software integra-
tion design, and software design. Each section has
their own use-case requirements, summing up to five
requirements relating to the battery life time, target
number of users and devices supported at once and
communication time. Our hardware solution consists
of an OMRON MEMS thermal sensor and a given PIR
sensor to sense occupation, as well as an ESP8266, a
voltage regulating module, and a 6 Amp-Hour Lithium
Ion battery. Each component was chosen to realistically
satisfy the battery life requirement. The hardware-
software integration mainly consists of the AWS IoT
Core, which is allows for safe communication without
risking credential leak as well as easy management and
scalability of the IoT fleet of embedded systems. Using
AWS IoT would hence satisfy the use-case requirements
associated to the hardware-software integration aspect
of our project as well as the software use-case require-
ment. Finally, our software implementation consists of
using AWS RDS to hold our MySQL database, decreas-
ing the volume of calls to our AWS server and freeing
up more computing power to support 25 concurrent
users. We are also using AWS EC2 to host the Django
application, allowing us to program the frontend and
backend in Python. We also completed a design trade
study on ideas we’ve come upon and abandoned. In
order to ensure the use-case requirements are satisfied,
we also added tests and validation for each aspect of
our project. Finally, we discuss our schedule for the
rest of the semester and the Bill of Materials of our
project.

Index Terms—AWS EC2, AWS IoT, Bat-
tery,Design, Django, MySQL, Occupancy Tracking,
PIR, Python, Seating, Sensor, Testing

1 INTRODUCTION

Students at Carnegie Mellon University often struggle
with finding a table to sit at on campus, mindlessly wan-
dering from room to room looking for an open table often
wasting time just to confirm there is nothing available. The
scope of this project focuses on solving this issue within the
second floor of the UC where the problem is particularly

exacerbated.
The designed solution to the problem is to track table

occupancy in real time and display this information within
a web application available to anybody. This implementa-
tion will be such that when students arrive to the UC, or
even before they proceed to head over, they can see if and
where space is available thus reducing both congestion and
wasted time.

The extent of our design at a high level is to have a fleet
of occupancy sensors deployed on the underside of each ta-
ble within the UC that detect whether that table is occu-
pied or not. Each sensor’s data is uploaded in real time to
the cloud and organized in an easily understandable format
that is made accessible through a web application to any
user in real time. This design is visualized in Figure 1.

2 USE CASE REQUIREMENTS

Our project has 5 use-case requirements. These are bro-
ken down into three main subsystems that each govern a
major aspect of the project’s design: hardware, hardware-
software communication, and software.

2.1 Hardware Requirement

The hardware subsystem only has one use case require-
ment. This requirement is that each component needs to
have a minimum battery life of 55 active hours with a 52+
hour deep sleep battery life requirement. This is derived
from the desire for ultimate freedom and flexibility in terms
of where the sensors are placed. The specific numbers of
hours are derived from the existing Google Maps data on
visitation rates of the Cohen University Center as displayed
in Figure 2. This data indicates peak hours within the UC
are from 9am to 8pm on weekdays with relatively minimal
crowds at all other times. As battery changing is often
annoying to the system’s administrators, we extrapolated
from this data that we would at minimum need to support
55+ hours of active use during peak occupancy times and
52+ hours of deep sleep battery life during non peak week-
day hours to confine all battery changes to once a week.

2.2 Hardware-Software Communication
Requirements

The hardware-software communication subsystem has
two use case requirements, which stem from balancing
hardware power saving with the speed and reliability of
an occupancy status update within the user’s web applica-
tion experience. The first of these two requirements is that

18-500 Design Review Report - 4 March 2022 Page 2 of 8

Figure 1: High level system overview

occupancy status as recognized by the hardware detecting
device is accurately updated on the web in no more than 1
minute. This metric was derived from not only the neces-
sity of ensuring a faster alternative to student’s mindlessly
wandering and looking for a seat which takes 3-5 minutes
within the UC but also as any less times are not realisti-
cally compatible with the act of student’s packing up as
they leave which takes around a minute and is a difficult
edge case for detection.

The second use case requirement within this area is that
the hardware portion of the design will never go more than
30 minutes without sending some information. For power
saving it makes sense to only send updates from the hard-
ware components when there is a change in status. How-
ever, this means that a loss of signal could lead to incor-
rect information being displayed indefinitely. To mitigate
tarnishing the user experience it is important to be able to
detect when this has occurred. This specific metric is based
on CMU’s courses release schedule has classes ending ev-
ery 30 minutes. A 30 minute window of maximum silence
means indefinite loss of signal would never tarnish the user
experience of more than one wave of students without being
detected.

The third requirement is that the cloud deployment can
support 80 hardware devices at once. This is because the
UC has 80 tables, and for our use case, each table will have
a hardware node detecting occupancy. The cloud deploy-
ment will have to support every device for our project to
work.

2.3 Software Requirements

The software use case requirement is about the scale of
support for this design. The software use-case requirement
is that the web app has to be able to support 25 concurrent
users. As an application designed around crowd mitigation,
a lot of concurrent users is the expectation. We envision
that our web application will take no more than 5 minutes
to be used. From first-hand research, during peak hours,
at most 25 people enter the UC within a 5 minute win-
dow; thus, we need to ensure 25 concurrent users can be
supported.

Figure 2: Google Maps’ reported occupancy within the UC
on a typical weekday.

3 ARCHITECTURE OVERVIEW

In this section, we will provide a high-level overview of
our project. This can be seen in Figure 9. The system
is broken down into three subsystems: the Hardware IOT
Device, the AWS IOT Core, and the AWS EC2 Instance,
which correspond with our project’s hardware, hardware-
software communication, and software subsystems respec-

18-500 Design Review Report - 4 March 2022 Page 3 of 8

tively. The Hardware IOT Device will communicate occu-
pancy data to the AWS IOT Core through MQTT, which
will then store the data in an Amazon RDS for the Amazon
EC2 Instance to access. Finally, the Amazon EC2 Instance
will service user HTTP requests and display all information
in a user browser. A more specific overview for each sub-
system will be described in further detail in the following
subsections.

3.1 Hardware IOT Device

Figure 3 focuses specifically on the Hardware IOT De-
vice System. The entire system is battery-powered, and
this battery’s voltage is broken up in a voltage converter
module, consisting of a boost and a buck switching regu-
lator, to properly supply the rest of the hardware system.
Specifically, the PIR sensor and the thermal sensor both re-
ceive a 5V input, and the ESP8266 processing unit receives
a 3.3V input. Both sensors are used to detect occupancy by
monitoring the ground beneath a table for traces of move-
ment or heat, and report data back to the processing unit
as GPIOs. The processing unit will be written with code
to wake it or put it to sleep, along with code to use sensor
inputs to detect occupancy. The code will be optimized to
save power, in accordance with our 55+ hour battery life
use case requirement. Finally, the processing unit’s Wi-Fi
block will send any data it wants to communicate to the
server to the AWS IOT Core.

DesignReportTemplate/hardware_overview.PNG

Figure 3: High level overview of the Hardware IOT Device

3.2 AWS IOT Core

Our hardware software interface consists of a cloud
pipeline, broken into 3 components, all within the AWS
product line. The first level of communication starting from
the hardware device is through AWS IoT core which acts
as our security point authenticating each device, verifying

information and then based on whether data needs to be
updated in the database will send an update. This data
arrives at an AWS hosted relational database where it is
stored for access by our Django server.

3.3 AWS EC2 Instance

Specifically, we will be deploying our Django app on
AWS EC2 instance using Ubuntu as our AMI. The Django
server queries the MySQL database for data on the oc-
cupancy status of tables and will display information and
statistics on the frontend as needed by HTTP requests.

4 DESIGN REQUIREMENTS

In this section, we will discuss the qualitative specifica-
tions of each subsystem in the implementation of the final
product. Specifically, we will discuss how each subsystem’s
quantitative values align with our use case requirements.

4.1 Hardware Design Requirements

The only use case requirement related to the hardware
subsystem is that of the minimum battery life of 55+ ac-
tive hours and 52+ deep sleep hours. Therefore, most of
the quantitative specification work was done towards deter-
mining battery capacity and voltage. Specifically, we per-
formed first-order power analysis using voltage and current
data from the PIR sensor, thermal sensor, and processing
unit datasheets [1] [5] [6], where energy consumed can be
calculated as

E = I · V · t (1)

where E is energy in Joules, I is current in Amperes, V is
voltage in volts, and t is time in hours.

The results of this analysis can be seen in Figure 4.
The processor’s power consumption is broken down into
three categories: transmitting, light sleep, and deep sleep.
We expect the processor to spend around 0.5 seconds trans-
mitting data throughout the week, assuming that the occu-
pancy status of a table changes once in approximately every
30 minutes, since the processor takes less than 2 millisec-
onds to send data [6]. The processor is expected to spend
around 52 hours in deep sleep outside of active hours, and
around 55 hours in light sleep during active hours, when it
does not actively need to transmit data. Both the thermal
and PIR sensor are assumed to be active for 55 hours.

18-500 Design Review Report - 4 March 2022 Page 4 of 8

DesignReportTemplate/battery_consumption.PNG

Figure 4: Table outlining the power consumption, in Joules,
of each hardware component. The processor’s power con-
sumption is broken down into transmitting, light sleep, and
deep sleep.

From this analysis, we determined that we’d need a bat-
tery to supply at least 19.42 Joules. After researching bat-
teries that fit this requirement, we found that a 3.7V, 6
Amp-hour battery, which would supply over 22 Joules of
energy, would make the most sense to use to meet our use
case requirement.

We chose our PIR and thermal sensors based off of per-
formance and capabilities, and both sensors require a 5V
input. Additionally, our processor requires a standard 3.3V
input. As a result, the other quantitative values we decided
for the hardware subsystem were that our boost switching
regulator would need to input 3.7V and output 5V, and
our buck switching regulator would need to input 3.7V and
output 3.3V.

4.2 Hardware-Software Integration De-
sign Requirements

The hardware software interface consists of our cloud
infrastructure into 3 components, all within the AWS prod-
uct line. The first level of communication starting from the
hardware device is through AWS IoT core. This provides a
secure connection layer that allows easy connection, man-
agement, and scalability of the IoT fleet of embedded sys-
tems allowing 80 devices to be well within means of support
meeting the use case requirements. The MQTT protocol is
used to send messages from the devices over wifi that then
have their keys validated by AWS IoT’s message broker, all
ensuring security within our application. Traffic through
AWS IoT is also securely sent over TLS (Transport Layer
Security).[3]

4.3 Software Design Requirements

The AWS IoT rules engine allows updates to be sent
to the MySQL database, which we are hosting through
Amazon RDS. By using Amazon RDS, we can host the
database separately from the EC2 instance to free up
computing power and ensure support of 25 concurrent
users on the website. Amazon RDS also automates a lot
of time-consuming and out-of-scope administrative tasks,
such as ”hardware provisioning, database setup, patching,
and backups”.[2] We chose to use MySQL because within
our application, the necessity for scalability is minimized.
Hence, we are able to take advantage of this excellent, free
option that is quickly capable of being integrated with our
Django server.

Based on prior experience and ease of use, a Django
server allows the design to meet necessary use case require-
ments. Particularly the elastic nature of an EC2 deploy-
ment in combination with the “all under one roof” inte-
gration with the rest of our AWS system means secure and
compact organization and accessibility to our data. Django
also provides an ideal framework for both the front ends
and back ends of our web application code, due to the non-
compromising nature of Python.

As for frontend design, we made the decision to make
our map a zoomable interface. This means that the user
will be able to scroll and zoom to navigate the map. This al-
lows the illusion of constantly accessible information, while
in reality, the need for backend queries would be decreased.
For example, when a user scrolls past a table such that it’s
no longer displayed on the screen, that data would not be
needed and an extra backend call would not be necessary.
On top of that, we also decided that when the user zooms
out far enough on the map, individual tables would not
be displayed anymore and that area would turn into a col-
ored block paired with the overall occupancy statistic of
the area, as shown in Fig. 8. By using this Zoomable UI, a
zoomed out view of the UC would not seem too cluttered
and would not require each table’s occupancy status to be
displayed, ultimately limiting the volume of backend calls.

5 SYSTEM IMPLEMENTATION

In this section, we will discuss the system implementa-
tion for each subsystem. This will include specific details on
what hardware and software each subsystem will be using.

5.1 Hardware Implementation

Based on the specifications determined for our battery
in Section 4.1 Hardware Design Requirements, we decided
to use a SparkFun 3.7V, 6 Amp-Hour Lithium Ion bat-
tery. The main reason we chose this battery is because it is
rechargeable. Since the hardware system will ideally be a
permanent installment, we thought that it would cost much
less and save a lot of battery waste to use a rechargeable
battery, as opposed to replacing batteries each week as they

18-500 Design Review Report - 4 March 2022 Page 5 of 8

run out of charge. These batteries would have all weekend
to charge back to full capacity.

We have tentatively chosen Texas Instruments boost
and buck switching regulators to step up to 5V for the sen-
sors, and step down to 3.3V for the processor. However, the
both regulators are surface mount mounting types, as op-
posed to the dual inline package mounting type that would
fit on a breadboard, so we acknowledge that they might not
be permanent solutions. We have already planned to meet
with our advisors to find a better approach.

Our PIR sensor was already in stock in the lab when
we began the project, and we were recommended it by our
advisors, so we decided to use it for factors of availability
and convenience. Upon further research, it seems to be a
DIYmall sensor. However, we have not extensively tested
the sensor yet, and as noted in Figure 4, it consumes nearly
all of the power of the hardware system, so we may replace
this sensor as we see fit.

We chose an Omron MEMS thermal sensor to take ther-
mal readings. The sensor has a 4x4 array of data points,
providing 16 points or 4 bits of resolution for detecting oc-
cupancy. Although this resolution is certainly on the small
side, the next thermal sensor in the series with a 32x32 ar-
ray of data points is much more expensive at around $170
per sensor, and would not fit within our budget. A more
in-depth discussion of our project’s budget and Bill of Ma-
terials can be found in Section 8.2 Bill of Materials. We
decided to incorporate a thermal sensor into our design
as a secondary means of occupancy detection to help with
noise from the PIR sensor, and we are hopeful that this
sensor’s resolution will be sufficient for that purpose.

Finally, our processor is an ESP8266 ESP-12E. An in-
depth explanation of why we chose this processor can be
found in Section 6 Design Trade Studies, as we initially
began with using a different processor before switching to
this one. The processor is the brain of our hardware system,
and will execute code we will write to detect occupancy and
send it to the web app. At a high level, the processor will
sit in a deep sleep outside of the UC’s active hours, with a
timer to awaken itself the next day. During active hours,
the processor will sit in a light sleep until it gets input from
either sensor, where it will awaken to gather data and de-
termine if the table is changing state (i.e. being occupied
or being unoccupied). If the processor determines that the
input is noise, it will go back into a light sleep. However, if
it determines a state change, it will send an update to the
web application on the table’s new occupancy status before
going back into a light sleep.

5.2 Hardware-Software Integration Sub-
system

5.3 Software Subsystem

Our MySQL database will be periodically updated with
each device’s occupation status. To keep track of each de-
vice, the devices would have to have table location and
table shape associated with it. While the table shape is

not as important as the location, displaying the table ac-
curately on the web application would require this data to
be stored.

Our web application UI will be represented by a map
interface, overlaid with a search bar and a bottom statistics
tab. Upon opening the web application, the user will see a
similar UI to that in Fig. 5.

DesignReportTemplate/panel1.PNG

Figure 5: UI on initial load of the web application

The initial map displayed will be a zoomed in area of
the UC 2nd floor in which each table will be colored ma-
genta if it’s occupied or green if it’s open. The color palette
is specifically designed such that people with red-green col-
orblindness can distinguish the table colors. The statistic
displayed on the bottom would be that of the entire UC 2nd
floor. This statistics tab can extend upward with a swipe
to reveal a more detailed analysis of the selected area. The
resulting UI would be that of Fig. 6.

DesignReportTemplate/panel2.PNG

Figure 6: UI after upward swipe on the bottom tab

The map area and the displayed statistic can be changed
if the user clicks on the search bar, which would reveal the
UI in Fig. 7.

DesignReportTemplate/panel3.PNG

Figure 7: UI after user clicks on search bar

If the user taps a specific area, the screen will switch
back to the UI in Fig. 5 but with the new area that the user

18-500 Design Review Report - 4 March 2022 Page 6 of 8

selected. The map interface is designed to be a Zoomable
UI, meaning that the user will be able to swipe continu-
ously around the map as well as zoom in and out. Once
the user zooms out far enough, the UI will change to look
like Fig. 8, where each area would just be a block of color
based on the overarching occupation percentage of the area.

DesignReportTemplate/panel4.PNG

Figure 8: UI after map is zoomed out

The color of each block would be a range from the ma-
genta (100% occupation) to the bright green (0% occupa-
tion). This UI would only happen after the user has zoomed
out to the point where each table covers 1% or less of the
map interface.

6 DESIGN TRADE STUDIES

While iterating through the design process, we consid-
ered three implementation ideas which we ultimately chose
not to pursue. The first implementation idea involved using
an Arduino Uno as our processor with an ESP8266 ESP-01
added on for Wi-Fi communication. We primarily wanted
to use an Arduino because we are all familiar with the Ar-
duino IDE. However, we realized that we would likely need
another module to support the Wi-Fi communication which
we would have to integrate with the Arduino. We ended
up settling on only using an ESP8266 ESP-12E, as it not
only supports the required Wi-Fi communication but also
has a built-in processor with GPIO pins which would be ef-
fective in replacing the Arduino. As a bonus, the ESP8266
ESP-12E supports the Arduino IDE, so this was an obvi-
ous choice, as it would save us extra effort to integrate two
devices otherwise.

The second implementation idea involved alternate
sources of powering our hardware. Specifically, we received
an early suggestion to use solar panels to charge our bat-
tery. This would eliminate the necessity of a high-capacity
battery, as the battery would be able to charge through-
out the day as opposed to needing to last on one charge
all week. Although this was an intriguing option, we chose
not to pursue it as we found that it did not fit our use case.
Specifically, we wanted the hardware on each table to be
minimally intrusive on the user experience, and we were al-
ready planning on all other hardware being mounted on the
underside of the table. Since a solar panel would only be
able to rest on top of the table, we decided not to include
it in our design.

One final implementation idea involved including a but-
ton in our hardware to account for an edge case within our
use case. Specifically, if a user sits down at a table but gets
up to use the bathroom or do something else while leav-
ing their possessions at a table, our current solution would
indicate that table as open, while in reality it would be
occupied. We quickly ruled out the possibility of detecting
a user’s possessions, as that would require a camera which
would have to be deployed above the table and would raise
privacy issues. We also considered allowing the user to re-
quest to hold the table on the web application, but quickly
realized that could get abused by users holding tables while
leaving the UC to do other things. Finally, we considered
incorporating a button into the hardware which would hold
the table for a short duration when pressed. However, sim-
ilar to the solar panel, this does not fit within our use case,
as the button would have to sit on top of the table, and
wiring it from the top of the table to the rest of the hard-
ware on the table’s underside would be haphazard. After
much deliberation, we decided that our use case would not
consider this edge case at all. An average uses the bath-
room 6-7 times in a 24 hour period [4]. Assuming that 3
of those trips happen during the 9am to 8pm active time
period of the application and each bathroom trip lasts an
average of 10 minutes, then the maximum of 30 minutes of
bathroom time per table out of the 720 minutes of activity
per day would result in a 4% chance of a user encountering
a free table that actually is occupied. We decided this per-
centage was insignificant enough for us to ignore the case
entirely.

7 TEST & VALIDATION

To test to make sure that our project is functional ac-
cording to our 5 use case requirements, we have come up
with 6 tests. These tests are broken into subsystems as the
use case requirements are in Section 2 Use Case Require-
ments, with the hardware subsystem having two tests for
one use case requirement. Additionally, we have come up
with risk mitigation plans for each use case requirement,
should our system fail testing.

7.1 Hardware Tests

There are two ways we plan on testing our use case of a
55+ active hour and a 52+ inactive hour battery life. The
first test simply involves running the hardware system in a
real-life environment from Monday to Friday. We are cur-
rently planning on setting up a system on a Hamerschlag
Hall 1300 wing table, as we believe that it will be easier to
implement the project within an ECE-controlled space as
opposed to the UC, and we believe that the environment
should be similar enough to emulate that of the UC. We
will turn on the system at 9am on Monday, and at 8pm
on Friday, we will measure the battery. If there is still any
charge left in the battery, the test will pass, with alignment
to our use case.

18-500 Design Review Report - 4 March 2022 Page 7 of 8

The second test for this use case involves verifying
that components within the hardware system are draw-
ing the expected amount of power, as compared to their
datasheets. Specifically, we will set one hardware system
up in a Hamerschlag Hall 1300 Lab with a multimeter and
read the voltage differences and current draws from the PIR
sensor, the thermal sensor, and the processor. For the pro-
cessor specifically, we will take three sets of readings: one
when the processor is in deep sleep, one when the processor
is in light sleep, and one when the processor is detecting
occupancy and sending the data to the web server. We will
take five readings for each set, and use the average current
and voltage of the set of readings to measure power, which
is calculated as

P = I · V (2)

where P is power in watts, I is current in Amperes, and V
is voltage in volts. We will compare these measurements
to each device’s theoretical maximum power consumption,
using maximum current and voltage listed in each device’s
datasheet. If the calculated power is less than the theoret-
ical power for all three devices, the test will pass, which
supports that the energy consumption calculations in Sec-
tion 4.1 Hardware Design Requirements used to support
our battery choice are accurate.

If these tests fail, we have a risk mitigation plan to en-
sure we still pass our battery life use case. As noted in
Section 4.1 Hardware Design Requirements, the PIR sen-
sor consumes almost 18 Joules of energy, which is nearly
all of the energy consumed by the hardware system, due
to its high current draw. We plan to reduce the amount
of energy this sensor consumes by decreasing the time it is
powered on. Since we expect there to be long stretches of
time where occupancy status doesn’t change, we will only
have the thermal sensor on detecting any possible changes
in occupancy during that time. If the thermal sensor de-
tects a possible change, only then will we turn on the PIR
sensor to confirm a change in occupancy status. Doing this
should greatly reduce the operating time and energy drawn
by the PIR sensor without sacrificing occupancy detection
accuracy.

7.2 Hardware-Software Communication
Tests

7.3 Software Tests

For testing concurrent users and simulating web traffic
for stress testing, we will be using Loadview. Although the
price is $199/month, there is a free trial we can use for the
scope of this project. Loadview allows the user to define
the amount of concurrent users, test duration, real user test
scenarios, ramp up and ramp down periods, etc.

While testing with Loadview, we should monitor EC2
CPU credit balance loss. If the credit balance loss exceeds
the assigned credit per hour, then we will know that this
website cannot host this many concurrent users. We will
be able to test for 25 concurrent users and make changes
accordingly for each test.

8 PROJECT MANAGEMENT

8.1 Schedule and Team Member Respon-
sibilities

A full breakdown of the project schedule and the work
distribution can be found in Fig. 10. Notably, Ryan is
largely in charge of the hardware bring-up and sensor de-
tection, Jake is largely in charge of setting up AWS and
facilitating from the hardware to the web app, and Angela
is largely in charge of the front-end and back-end of the
web application. Specifically, as it relates to this report,
Ryan has been in charge of everything in the hardware
subsystem, Jake has been in charge of everything in the
hardware-software communication subsystem, and Angela
has been in charge of everything in the software subsystem.

8.2 Bill of Materials

Table 1 lists the Bill of Materials for our project. As
can be seen, most of the line items within the Bill of Mate-
rials are for hardware to support the hardware subsystem,
with one line item for AWS credits to facilitate our web ap-
plication. The total cost for the materials in our project is
$379.32. Importantly, this Bill of Materials only supports
the 4 hardware nodes which we will use for testing pur-
poses, as opposed to the approximately 80 hardware nodes
that would be necessary to track every table in the UC. As
our budget for this project is only $600, it is outside of our
scope to purchase and instantiate all 80 hardware nodes for
testing. We decided to only purchase 4 hardware nodes to
leave some room in our budget in case we need to add to
our design or buy additional support equipment for testing.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• AMI - Amazon Machine Image

• AWS - Amazon Web Services

• EC2 - Amazon Elastic Compute Cloud

• ECE - Electrical and Computer Engineering

• GPIO - General Purpose Input/Output

• IOT - Internet of Things

• MEMS - Micro Electronic Mechanical System

• MQTT – Message Queuing Telemetry Transport

• OBD – On-Board Diagnostics

• PIR - Pyroelectric Infrared Sensor

• RDS - Relational Database Service

18-500 Design Review Report - 4 March 2022 Page 8 of 8

Table 1: Bill of Materials

Description Model # Manufacturer Source Quantity Cost @ Total
Processor with Built-In Wi-Fi ESP8266 ESP-12E KeeYees Amazon 4 $15.98 $63.92
3.7V 6Ah Lithium Ion Battery PRT-13856 SparkFun SparkFun 4 $32.50 $130.00
5V Boost Switching Regulator TPS613222ADBVR Texas Instruments Digikey 4 $0.61 $2.44
3.3V Buck Switching Regulator TPS62046DRCR Texas Instruments Digikey 4 $2.39 $9.56
PIR Sensor HC-SR501 DIYmall ECE Lab 4 $0.00 $0.00
Thermal Sensor D6T44L06 OMRON Digikey 4 $43.35 $173.40
AWS Credits N/A AWS AWS 1 $50.00 $50.00
Breadboard N/A N/A ECE Lab 4 $0.00 $0.00
Jumper Cables N/A N/A ECE Lab 4 $0.00 $0.00

$379.32

• RPi – Raspberry Pi

• UC - (Cohon) University Center (Second Floor)

• UI - User Interface

• V - Voltage

References

[1] lady ada. PIR Motion Sensor. 2021. url: https :

//learn.adafruit.com/pir-passive-infrared-

proximity-motion-sensor.

[2] Amazon Relational Database Service (RDS). Amazon
Web Services. url: https://aws.amazon.com/rds/
#:~:text=It%20provides%20cost%2Defficient%

20and , security % 2C % 20and % 20compatibility %

20they%20need..

[3] AWS IoT Security. Amazon Web Services. url:
https : / / docs . aws . amazon . com / iot / latest /

developerguide/iot-security.html.

[4] Chaunie Brusie. Does How Often You Pee Say Some-
thing About Your Health? Healthline. 2018. url:
https://www.healthline.com/health/how-often-

should-you-pee.

[5] D6T MEMS Thermal Sensors. OMRON.

[6] Espressif Systems IOT Team, ed. ESP8266EX
Datasheet. Version 4.3. Espressif Systems, 2015.

18-500 Design Review Report - 4 March 2022 Page 9 of 8

D
e
s
i
g
n
R
e
p
o
r
t
T
e
m
p
l
a
t
e
/
a
r
c
h
i
t
e
c
t
u
r
e
_
o
v
e
r
v
i
e
w
.
P
N
G

F
ig
u
re

9
:
A

h
ig
h
-l
ev
el

ov
er
v
ie
w

o
f
th
e
p
ro
je
ct
’s

sy
st
em

a
rc
h
it
ec
tu
re
.

18-500 Design Review Report - 4 March 2022 Page 10 of 8

D
e
s
i
g
n
R
e
p
o
r
t
T
e
m
p
l
a
t
e
/
g
a
n
t
t
c
h
a
r
t
.
p
n
g

F
ig
u
re

1
0
:
G
a
n
tt

C
h
a
rt

