Design Review

Team E4: Occupancy Monkey Jake Cerwin, Ryan Huang, Angela Zhang

The Use Case:

Currently there is no efficient way to find an open seat in the CMU University Center 2nd floor, especially during peak hours.

Our Solution:

Track table occupancy in real time and display current occupancy on a web application.

Quantitative Use-Case Requirements

- 55+ hour active battery life and 52+ hour deep sleep battery life for hardware system
- Occupancy status is accurately updated on web app within a minute
- Hardware will never go more than 30 minutes without sending information
- Web App Front end will support 25 concurrent users
- Cloud Deployment can support 80 hardware devices at once

Solution Approach: Overview

Each sensor's occupancy data is uploaded to the cloud and made accessible to the web app

Fleet of occupancy sensors are deployed under every table and detect whether tables are open

Web App visualizes occupancy information allowing users to view it from anywhere

Solution Approach - Hardware

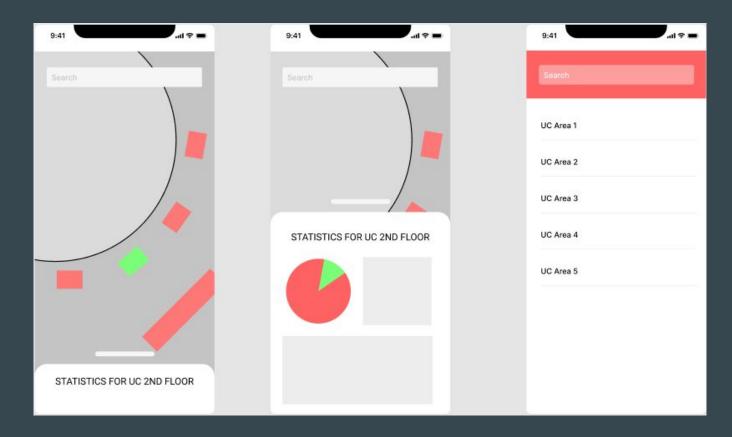
- Battery: 3.7V 6000mAh Lithium Ion, rechargeable
 - High-level power analysis concluded 20J needed (around 3.7V 5400mAh)
- Sensors: PIR and thermal
- MCU with WiFi Communication Module

Solution Approach - HW/SW Communication

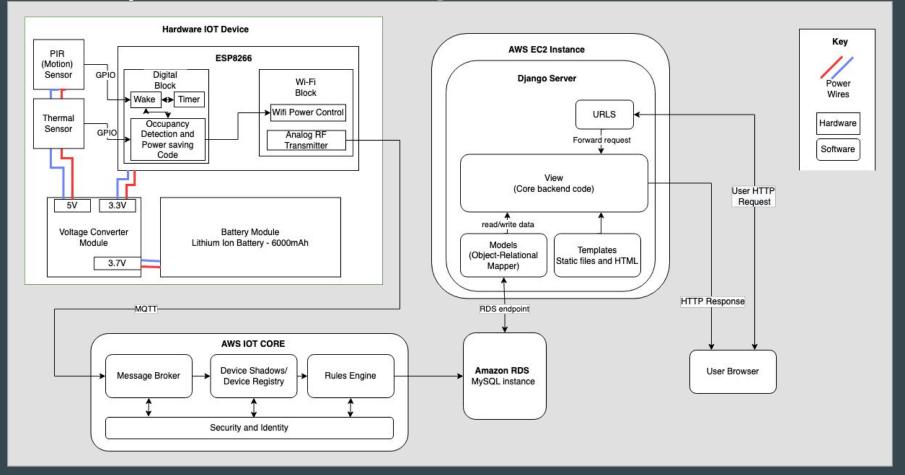
Three modules under AWS:

1. AWS IoT Core

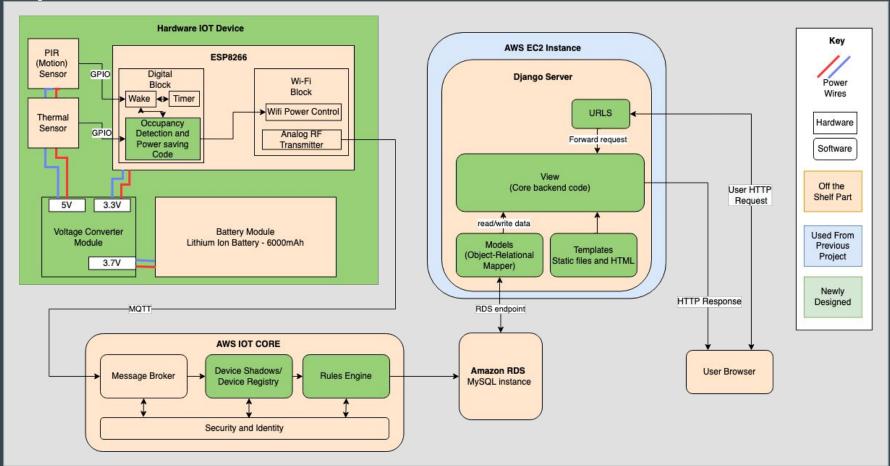
- a. Websocket connection with esp8266
- b. Fleet focus, allows us secure and scalable routing of messages


2. MySQL instance - Amazon RDS

- a. MySQL- Scalable, Quick, Easily integrated with Django DOM
- b. Amazon RDS hosting of our database frees up EC2 server

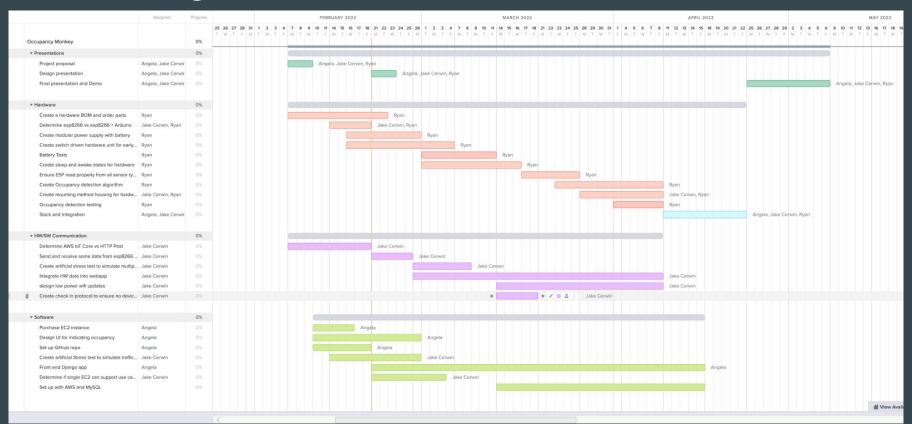

3. Django Server

- a. EC2 instance hosting a Django Server
- b. Interacts with Amazon RDS for dynamic data on status
- c. Holds all static files and backend code


Solution Approach - Web Application

System Specification / Block Diagram

Implementation Plan


Test, Verification and Validation

Requirement	Test	Passing Metric	Risk Mitigation
Battery Capacity	Run hardware device for a week, simulating real environment	After 55 active hours and 52 deep sleep hours, battery has >0% capacity	Reduce active time of PIR sensor (heaviest power consumer)
Component Power Consumption	Measure current into all components during operation	Current draw is less than or equal to datasheet numbers	Reduce active time of PIR sensor (heaviest power consumer)
Device updates status on web app within a minute	Link a single hardware device to web app and spoof a status update	Time delay from status change to website update is within 1 minute	Cut out the intermediate AWS service that is causing the greatest slow down

Test, Verification and Validation

Requirement	Test	Passing Metric	Risk Mitigation
80 hardware device can be supported simultaneously	Hardware can successfully update cloud DB	A Hardware sent message propagates to DB in less than a minute	Move DB to EC2 and send signals directly from esp8266
80 hardware device can be supported simultaneously	Create a test program to send several devices worth of information	Record number of simulated nodes at which data is first lost	Add an intermediary device to aggregate status updates of a portion of IoT fleet then send combined data to cloud
25 users can be supported on web app concurrently	Create a test program to simulate web traffic	Record EC2 CPU credit balance loss	Restructure backend to minimize unnecessary computing

Project Management

