Occupancy Monkey

A Seating Solution

The Use Case:

Currently there is no efficient way to find
an open seat in the CMU University Center
2nd floor, especially during peak hours.

Our Solution:

Track table occupancy in real time and

display current occupancy on a web
application.

Each sensor's occupancy data is
uploaded to the cloud and made
accessible to the web app

Use Case Implementation

E CE Are aS . Sensor1: occupied .
Sensor2: occupied
Sensor3: unoccupied J

e Software =

o Web Applications
o Embedded Systems
Programming
e Hardware
o Embedded Systems
Architecture

Web App visualizes occupancy
information allowing users to view it
from anywhere

Fleet of occupancy sensors
detect whether tables are open

Use-Case Requirements: Hardware

® 55+ hour battery life for hardware system
o Product will function for UC peak weekday hours of 9am to 8pm
o Device will run in ultra low power mode during off-peak hours
o Batteries will be changed and web app will not operate over the weekend when UC occupancy
decreases significantly

9a 12p 3p 6p

Use-Case Requirements: HW/SW Communication

® Occupancy status is accurately updated on web app every minute

(@)

(@)

Trade-off between power usage and web app accuracy
Usually takes about a minute for someone to pack up and leave a table

e Hardware will never go more than 30 minutes without sending information

(@)

(@)

(@)

Battery saving will likely mean device transmissions are minimized.

No L.O.S. will cause incorrect data to be displayed for more than 30 minutes

CMU classes exit every 30 minutes. A 30 minute check-in ensures a malfunction could only
damage the experience of one wave of students looking for seats

Use-Case Requirements: Web Application

e Web App Front end will support 25 concurrent users

o We envision the web app experience lasting ~5 minutes
o Application is designed around crowd mitigation -> we expect lots of concurrent users
o During peak hours this is the number of people who enter the UC every 5 minutes

e Cloud Deployment can support 80 hardware devices at once

o Ubiquitous integration would require a device at every table we want to support
o There are 80 tables in the UC

Technical Challenges: Hardware + HW/SW Communication

[Requirements

Device Battery must last for 55+
hours of use

Occupancy status is updated on
web app every minute; hardware

will never go more than 30

minutes without sending
information

[Technical Challenges }

Sensors and wifi module must
draw low power loads during
operation without compromising
performance

Hardware must be able to quickly
and accurately detect occupancy
while filtering out noise

Technical Challenges: Web Application

[Requirements } [Technical Challenges }

Need to ensure proper and
Cloud deployment can support accurate communication between
80 hardware devices at once device and server for high

number of hardware devices

Web App deployment can Server will need to cope with high

support 25 users at once influx of concurrent requests

Solution Approach - Hardware

e JoT device
o Arduino + esp8266 vs esp8266
o Battery
o Sensor

e Sensor options:
o PIR infrared motion sensor (displayed in the diagram
on the right)
o Thermal sensor
m thermometer

m Thermal imager
o Wifi/bluetooth RSSI based distance detection

Solution Approach - Web Application

e AWS hosted
e Web application that displays availability of tables in UC second floor

o Django web framework

e MySQL database to store occupation status

AWS django

\./‘7

Testing Verification and Metrics

Requirement

Test

Metric

Device can run for 55 hours
without battery replacement

Run hardware device
continually with sensors and
status updates

Record time until battery
died

Device updates status on
web app within a minute

Run a single hardware
device linked to web app
and spoof a status update

Record time from change in
status to website indicating
change in status

80 hardware device can be
supported simultaneously

Create a test program to
send several devices worth
of information

Record number of simulated
nodes at which data is first
lost

25 users can be supported
on web app concurrently

Create a test program to
simulate web traffic

Record EC2 CPU credit
balance loss

Tasks + Division of Labor

Jake Cerwin

e Create HW/SW interface for sending data from devices to web
e Minimize power consumption of sending data

Ryan Huang

e Order and assemble all hardware components
e Set up and read data from all sensors to determine occupancy

Angela Zhang

e Make Ul for map of UC - Angela
e Front end design and implementation

Schedule

FEBRUARY 2022 MARCH 2022 APRIL 2022

112347 8910114151617 18212223242528 1 2 2 4 7 8 910 1114151617 18 212223242528293031 1 4 5 6 7 8 11 1213141518 1920212225262728292 2 4 5 6 9 10

Occupancy Monkey

¥ Presentations
Project proposal Angela, Jake Cerwir Angela, Jake C
Design presentation Angela, Jake Cerwir Angela, Jake vin, Ryan

Final presentation Angela, Jake Cerwir Angela, Jake Ci

¥ Hardware
Create a hardware BOM and order parts Ryan
Determine esp8266 vs esp8266 + Arduino Jake Cerwin, Ryan J win, Ryan
Create modular power supply with battery Ryan
Create switch driven hardware unit for early... Ryan
Create sleep and awake states for hardware ~ Ryan
Ensure Arduino read properly from all senso... Ryan

Create Occupancy detection algorithim with... Ryan

¥ HW/SW Communication
Determine AWS loT Core vs HTTP Post Jake Cerwin e Cerwin
Send and receive some data from esp8266 ... Jake Cerwin J Cerwin
Create artificial stress test to simulate multip... Jake Cerwin Jake Cerwin
Create check in protocol to ensure no devic... Jake Cerwin Jake Cerwin
design low power wifi updates Jake Cerwin ke Cerwin

Integrate HW data into webapp Jake Cerwin Jake Cerwin

¥ Software
Purchase EC2 instance Angela
Front end Django app Angela
Set up Github repo Angela
Design Ul for indicating occupancy Angela
Determine if single EC2 can support use ca... Jake Cerwin

Create artificial Stress test to simulate traffic... Jake Cerwin 3 erwin

