
Occupancy Monkey
A Seating Solution

Our Solution:

Currently there is no efficient way to find

an open seat in the CMU University Center

2nd floor, especially during peak hours.

The Use Case:

Track table occupancy in real time and

display current occupancy on a web

application.

Use Case Implementation
ECE Areas:

● Software

○ Web Applications

○ Embedded Systems

Programming

● Hardware

○ Embedded Systems

Architecture

Use-Case Requirements: Hardware
● 55+ hour battery life for hardware system

○ Product will function for UC peak weekday hours of 9am to 8pm

○ Device will run in ultra low power mode during off-peak hours

○ Batteries will be changed and web app will not operate over the weekend when UC occupancy

decreases significantly

Use-Case Requirements: HW/SW Communication
● Occupancy status is accurately updated on web app every minute

○ Trade-off between power usage and web app accuracy

○ Usually takes about a minute for someone to pack up and leave a table

● Hardware will never go more than 30 minutes without sending information

○ Battery saving will likely mean device transmissions are minimized.

○ No L.O.S. will cause incorrect data to be displayed for more than 30 minutes

○ CMU classes exit every 30 minutes. A 30 minute check-in ensures a malfunction could only

damage the experience of one wave of students looking for seats

Use-Case Requirements: Web Application
● Web App Front end will support 25 concurrent users

○ We envision the web app experience lasting ~5 minutes

○ Application is designed around crowd mitigation -> we expect lots of concurrent users

○ During peak hours this is the number of people who enter the UC every 5 minutes

● Cloud Deployment can support 80 hardware devices at once

○ Ubiquitous integration would require a device at every table we want to support

○ There are 80 tables in the UC

Technical Challenges: Hardware + HW/SW Communication
Requirements Technical Challenges

Device Battery must last for 55+

hours of use

Sensors and wifi module must

draw low power loads during

operation without compromising

performance

Occupancy status is updated on

web app every minute; hardware

will never go more than 30

minutes without sending

information

Hardware must be able to quickly

and accurately detect occupancy

while filtering out noise

Technical Challenges: Web Application
Requirements Technical Challenges

Cloud deployment can support

80 hardware devices at once

Need to ensure proper and

accurate communication between

device and server for high

number of hardware devices

Web App deployment can

support 25 users at once

Server will need to cope with high

influx of concurrent requests

Solution Approach - Hardware
● IoT device

○ Arduino + esp8266 vs esp8266

○ Battery

○ Sensor

● Sensor options:

○ PIR infrared motion sensor (displayed in the diagram

on the right)

○ Thermal sensor

■ thermometer

■ Thermal imager

○ Wifi/bluetooth RSSI based distance detection

Solution Approach - Web Application
● AWS hosted

● Web application that displays availability of tables in UC second floor

○ Django web framework

● MySQL database to store occupation status

Testing Verification and Metrics
Requirement Test Metric

Device can run for 55 hours
without battery replacement

Run hardware device
continually with sensors and
status updates

Record time until battery
died

Device updates status on
web app within a minute

Run a single hardware
device linked to web app
and spoof a status update

Record time from change in
status to website indicating
change in status

80 hardware device can be
supported simultaneously

Create a test program to
send several devices worth
of information

Record number of simulated
nodes at which data is first
lost

25 users can be supported
on web app concurrently

Create a test program to
simulate web traffic

Record EC2 CPU credit
balance loss

Tasks + Division of Labor
Jake Cerwin

● Create HW/SW interface for sending data from devices to web

● Minimize power consumption of sending data

Ryan Huang

● Order and assemble all hardware components

● Set up and read data from all sensors to determine occupancy

Angela Zhang

● Make UI for map of UC - Angela

● Front end design and implementation

Schedule

