

Team E2 - Keshav Sangam, Jai Madisetty, Raymond Xiao

Motivation

A building is on fire, and the firefighters need to find where humans are. How is it possible to find humans without going in yourself?

Use Case

Enter SAR: Search and () Robot. An autonomous way of traversing a building and finding rooms where humans are likely to be.

Use-case Requirements

- 100% autonomous operation
 - Should be able to navigate unknown environments without entering an infinite loop
- Locate ArUco tags with 0% false negative
- Detect all tags in an obstacle-filled room within 60 seconds
- Entire system's weight must not exceed 15lbs
- Battery life of system must exceed at least 15 minutes

Solution Block Diagram (Original vs Updated)

Original

Updated

Solution Approach (Updated)

- Sensors
 - LIDAR sensor
 - Slamtec
 RPLIDAR-A1
 - Webcam
 - Logitech C920 HD Camera
 - Odometer
 - iRobot Create 2
- Software ROS
 - Path Planning
 - A* algorithm
 - Use the arUco tags as human analogues
 - SLAM
 - GMapping (with odometry)

Complete Solution

- Simulate hallway in 16 ft x 16 ft area using cardboard
- Maze-like layout within rooms
- Demonstrate mapping and place location of arUco tags on map

Testing & Verification/Validation (Original)

Requirements	Testing	Metrics
Autonomously map environment	View SLAM data in a set of environments	Subjective comparison between true and mapped environment
Autonomously navigate through environment	Let the robot explore a set of environments	<2% chance of robot getting stuck
Lightweight and portable	Weigh robot on scale	Weigh less than 15 pounds
Minimize false endpoint detection	Place varying number of beacons in environment	5% error in localizing the true amount of beacons
Battery life	Exhaust robot resources	Able to visit every room on battery power
Ensure odometry	Move the robot through a path that ends in a specified location	<1m offset between true endpoint and localized endpoint

Testing & Verification/Validation (Updated)

Requirements	Testing	Metrics
Autonomously map environment	View SLAM data in a set of environments	Subjective comparison between true and mapped environment
Autonomously navigate through environment	Let the robot explore a set of environments	0% chance of robot getting stuck
Lightweight and portable	Weigh robot on scale	Weigh less than 15 pounds
ArUco marker detection	Place ArUco markers in environment	Detects 100% of markers
Battery life	Exhaust robot resources	Explore 3+ rooms on battery power
Ensure odometry	Move the robot through a path that ends in a specified location	<1m offset between true endpoint and localized endpoint

Subunit Testing/Use-case requirements

Subunit / Use-case	Test	Passing Value/Result	Actual Value/Result
Logitech C920 HD Camera	Ensure that camera is able to detect multiple ArUCo markers	Correctly identify whether 0, 1, or more markers in image	Correctly identifies
NP-F750 Battery	Battery lasts long enough for system to explore 3+ rooms	N/A	N/A
RPLIDAR A1	Ensure that LIDAR is accurate	Qualitatively compare visualization with actual environment	Visualizations are relatively accurate
Overall weight	Weigh entire system	Less than 15 pounds	14.1 pounds
SLAM	Qualitatively measure performance	Visibly decent mapping of surrounding environment	Creates map of environment when non-autonomous
System can navigate environments quickly	Time system in testing environment	7 minutes to fully navigate	N/A
System is robust to different environments	Place system in new environments	Marks all tags on created map of environment	N/A

Design Tradeoffs

- iRobot Create 1 or iRobot Create 2
- Odometry vs. no odometry
- Full autonomy vs. driver control
- A* vs D* Lite

												Janua	ry			February								M	arch 1 4									April								
	Tasks	Start		End	Tear	m Member	18	21	24	27	30	2	5 8	3 11	14	17	20	23	26	1	4 7	10	13	16	19	22	25	28	3	6	9	12	15	18	21	24	27					
Part 1	Proposal and Planning																																									
	Brainstorm different projects		1/18		1/25 Eve	ryone																																				
	Project abstract		1/26		1/26 Eve	ryone																																				
	Proposal presentation		2/7		2/9 Eve	ryone																																				
	Finalize parts required		2/5		Eve	ryone									1																											
	Brainstorm algorithms/implementation		2/5		Eve	ryone																																				
Part 2	Implementation and Design																																									
	Milestone 1: Proof of concept																																									
	Order necessary components				Eve	ryone																																				
	Planning and movement algorithms				Jai	Madisetty																																				
	Interfacing with all sensors				Kes	shav Sangam	÷																																			
	Learn to program ROS				Ray	mond Xiao																																				
	Milestone 2: Integration																																									
	Implement basic SLAM				Kes	shav Sangam																																				
	Receive data from LIDAR				Kes	shav Sangam															SP																					
	Integrate components with ROS				Ray	mond Xiao	1														R	1																				
	Interface with Jetson Xavier				Ray	mond Xiao	3												1		GE	-					10															
	Set up testing environment				Eve	ryone															R						Š															
	Improve SW algorithms				Jai	Madisetty	1														Ř						Ŗ															
	Milestone 3: Final Design																																									
	Finalize path planning				Eve	ryone																																				
	Systems integration check				Eve	ryone	1.1																																			
Part 3	Verification and Optimization																																									
	Rigorous testing in different scenarios				Eve	ryone	-																																			
	Tweak design paremeters (accuracy, speed, etc.	.)			Eve	ryone																																				
	Test/improve robot's battery life				Eve	ryone																																				
	Test/improve robot's speed				Eve	ryone																																				
Part 4	Finalize and Present																																									
	Record video explaining project				Eve	ryone																																				
	Edit and finish video				Eve	ryone																																				
	Final presentation				Eve	ryone																																				

				Janu	ary			F	ebruar	у			March														April				ay							
Tasks	Start	End	Team Member	18	21	24	27	30	2	5	8	11	14 1	7 2	0 2	3 26	1	4	7	10	13	16	19	22	25	28	3	6	9	12 1	5 18	21	24	27	29	2	4	6
Proposal and Planning																																						
Brainstorm different projects	1/1	8	1/25 Everyone																																			
Project abstract	1/2	6	1/26 Everyone																																			
Proposal presentation	2	7	2/9 Everyone																																			
Finalize parts required	2	5	Everyone																																			
Brainstorm algorithms/implementation	2	5	Everyone																																			
Implementation and Design																																						
Milestone 1: Proof of concept																																						
Order necessary components			Everyone																																			
Planning and movement algorithms			Jai Madisetty																																			
Interfacing with all sensors			Keshav Sangam																																			
Learn to program ROS			Raymond Xiao																																			
Milestone 2: Integration																																						
Implement basic SLAM			Keshav Sangam																																			
Receive data from LIDAR			Keshav Sangam																																			
Integrate components with ROS			Raymond Xiao																																			
Interface with Jetson Xavier			Raymond Xiao																																			
Milestone 3: Final Design																																						
Set up testing/verification environment			Everyone																																			
Improve and debug SW algorithms			Jai Madisetty																																			
Finalize path planning			Everyone																																			
Systems integration check			Everyone																																			
Verification and Optimization																																						
Rigorous testing in different scenarios			Everyone																																			
Tweak design paremeters (accuracy, speed, etc.)			Everyone																																			
Test/improve robot's battery life			Everyone																																			
Test/improve robot's speed			Everyone																																			
Finalize and Present																																						
Record video explaining project			Everyone																																			
Edit and finish video			Everyone																																			
Final presentation			Everyone																																			

Conclusion

One of the primary applications of robotics is the ability to replace human intervention in dangerous conditions; a firefighting/SAR robot is the epitome of this idea.

Our project is a first step in creating a fully featured robot that can help firefighters and save lives.

