

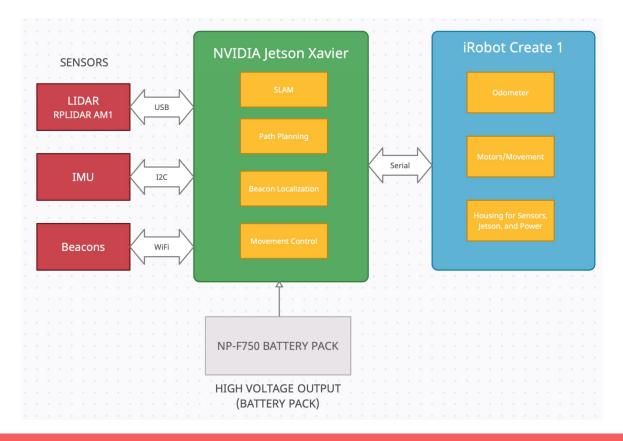
Team E2 - Keshav Sangam, Jai Madisetty, Raymond Xiao

Motivation

A building is on fire, and the firefighters need to find where humans are. How is it possible to find humans without going in yourself?

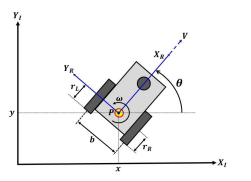
Use Case

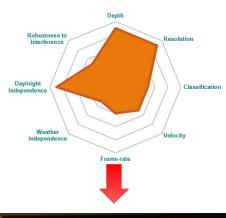
Enter SAR: Search and () Robot. An autonomous way of traversing a building and finding rooms where humans are likely to be.

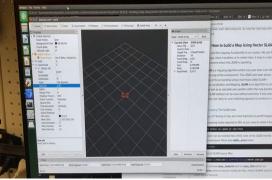

Use Case Requirements

Completely autonomous robot navigating an unexplored environment Able to find human analogues reliably and accurately Robot moves quickly and efficiently throughout the environment

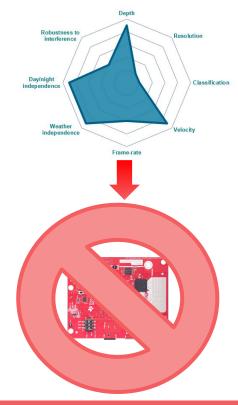
Environment modifications don't affect robot performance


< 5% miss rate on beacon localization 7 minutes to fully navigate demo environment

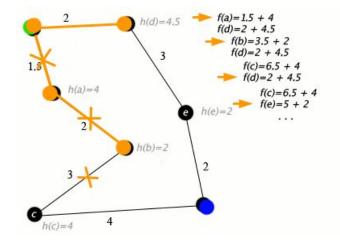

Solution Block Diagram


Solution Approach – Sensors

- 1. LIDAR sensor
 - Slamtec RPLIDAR
- 2. Potential Extra sensors
 - o IMU
- 3. UWB Beacons
- 4. Odometer
 - iRobot Create



Lidar



Radar

Solution Approach - Software

- Software Platform
 - ROS for SLAM, path planning, and controls
- Path Planning
 - A* algorithm vs. Djikstra
 - Use the UWB nodes as human analogues
- SLAM
 - Hector (no odometry)
 - GMapping (with odometry)

comparison of different technologies for server-based indoor positioning

Implementation Plan

Components	Develop/Purchase/DownloadDevelop: Hector vs. Gmapping vs. OtherDevelop: Testing A* vs. Djikstra for multiple node endpoint traversalPurchase: iRobot Create 1Purchase: Slamtec RPLidar A1Purchase: DWM1001-DEV
SLAM	Develop: Hector vs. Gmapping vs. Other
Path Planning	
Robot Frame	Purchase: iRobot Create 1
Lidar	Purchase: Slamtec RPLidar A1
Bluetooth Beacon	Purchase: DWM1001-DEV
Battery Packs	Purchase: NP-F750 Battery Pack
Localization	Develop: Integrating bluetooth data with path planning for node traversal

Testing and Verification of Subsystems

Requirements	Testing	Metrics
Autonomously map environment	View SLAM data in a set of environments	Subjective comparison between true environment and mapped
Autonomously navigate through environment	Let the robot explore a set of environments	<2% chance of robot getting stuck
Lightweight and portable	Weigh robot on scale	Weight is less than 15 pounds
Minimize false endpoint detection	Place varying number of beacons in environment	5% error in localizing the true amount of beacons
Battery life	Exhaust robot resources	Able to visit every room on battery power
Ensure odometry	Move the robot through a path that ends in a specified location	<1m offset between true endpoint and localized endpoint

Validation of Use-Case Requirements

Environment modifications don't affect robot performance

< 5% miss rate on beacon localization

7 minutes to fully navigate demo environment

Change environment between runs

Average localization error over a set of 5 runs

Time how long it takes for robot to navigate environment

Project Management

						Janua					ebruary								irch									pril							
	Tasks	Start	En	nd	Team Member	18	21	24	27	30	2	5 1	8 1	1 14	17	20	23	26	1	4 7	10	0 1	3 1	6 19	22	25	28	3	6	9 1	2 1	5 18	21	24	_
Part 1	Proposal and Planning																																		
	Brainstorm different projects		/18		Everyone																														
	Project abstract	1	/26	1/26	Everyone							1																							
	Proposal presentation		2/7	2/9	Everyone																														
	Finalize parts required		2/5		Everyone			1.4																											
	Brainstorm algorithms/implementation		2/5		Everyone									1																					
Part 2	Implementation and Design																																		
	Milestone 1: Proof of concept																																		
	Order necessary components				Everyone																														1
	Planning and movement algorithms				Jai Madisetty																														
	Interfacing with all sensors				Keshav Sangan	n																													
	Learn to program ROS				Raymond Xiao																														
	Milestone 2: Integration																																		
	Implement basic SLAM				Keshav Sangan	n																													
	Receive data from LIDAR				Keshav Sangan	n														SP															
	Integrate components with ROS				Raymond Xiao															SPRING	1														
	Interface with Jetson Xavier				Raymond Xiao	13												1		GB						S									
	Set up testing environment				Everyone															BREAK															
	Improve SW algorithms				Jai Madisetty	· · · · · ·												1.1		Ŗ						ACK									
	Milestone 3: Final Design																																		
	Finalize path planning				Everyone																														
	Systems integration check				Everyone	1																													
Part 3	Verification and Optimization																																		
	Rigorous testing in different scenarios				Everyone	-																													
	Tweak design paremeters (accuracy, speed, etc.	.)			Everyone																														
	Test/improve robot's battery life				Everyone																														
	Test/improve robot's speed				Everyone																														
Part 4	Finalize and Present				ATA CA CAN HA																														
	Record video explaining project				Everyone																														
	Edit and finish video				Everyone																														
	Final presentation				Everyone																														

Conclusion

One of the primary applications of robotics is the ability to replace human intervention in dangerous conditions; a firefighting/SAR robot is the epitome of this idea.

Our project is a first step in creating a fully featured robot that can help firefighters and save lives.

