
18-500 Design Review Report Template - 4 March 2022 Page 1 of 9

18-500 Search and Rescue Robot
Authors: Raymond Xiao, Keshav Sangam, Jai Madisetty

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of autonomously assist-
ing firefighters detect human presence in an unknown
environment. This system will allow for firefighters
to quickly detect human presence via a remote noti-
fication from the robot. Using mmWave technology
to assist with detection in smoke-filled environments is
too expensive for the scope of this project; thus, we will
ignore that aspect of the problem and use CV instead.

Index Terms—autonomous, iRobot, OpenCV, LI-
DAR, SLAM, NVIDIA Jetson Xavier NX, path plan-
ning, robotics, SAR

1 INTRODUCTION

The Search and Rescue Robot originated from the ini-
tial idea of developing a robot that a rescue team would
be able to deploy in order to pinpoint the exact location
of a lost person(s) in dangerous environments like forests
or mountain ranges, for example. However, to narrow the
scope of our project, we decided to focus in on building
fires.

Building fires are not the same as house fires. During
house fires, firemen can simply access their truck and ob-
tain what they need; however, this would not be the case
on the 15th floor of building fire and as a result, are a lot
more stressful and dangerous for firefighters. One major
responsibility for firefighters is to accumulate any victims
to one safe floor where care will then be transferred.

Firefighting is a very dangerous profession, and a lot of
research and data show the contributions that the profes-
sion exposures have in chronic illnesses, such as cancer and
heart disease, and in behavioral health issues that may end
in suicide [1]. In addition to these long-term health issues,
firefighters face serious risks on the scene of a fire as there
is exposure to various combustion products. In addition
to harsh chemical exposure, firefighters have to deal with
oxygen depletion from the air which can result in a loss of
physical performance, confusion and inability to escape [6].
It appears that reducing the amount of time spent in these
dangerous environments would improve the well being of
those who put their lives on the line.

SAR is a completely autonomous robot that can quickly
navigate unexplored rooms and relay human presence and
even vital signs to a third party in real time. Such a robot
would facilitate searching empty rooms or floors, poten-
tially resulting in a significant reduction in the amount of
time firefighters would spend in these dangerous environ-
ments. Firefighters would be able to deploy a number of
these robots throughout a burning building, ideally one per
floor, and have the robots scout ahead and provide valuable

real time information. Additionally, this has potential to
speed up rescue of those caught in building fires. Firefight-
ers would not have to waste time searching empty rooms,
and would only search rooms that contain humans.

The closest competing technology to SAR is Thermite,
which is a robotic firefighter. It is designed to provide fire
suppression, situational awareness, and intelligence gather-
ing to first responders. They are user-controlled, and users
are provided a real-time video feed [8]. However, unlike
SAR, this robot is more meant for outdoor support rather
than to be able to search buildings.

The requirements for our solution were chosen with the
intention of making SAR able to operate in as close to real
conditions while still staying in our budget. Our primary
requirements are the following:

1. Completely autonomous robot that can create a map
of its environment

2. 0% false negative rate (always detect human pres-
ences)

3. Light-weight, efficient, and fast

2 USE-CASE REQUIREMENTS

The solution has various main use case requirements.
The use case requirements listed below are necessary to
guarantee a minimum level of system performance.

1. One of the main goals of SAR is to lighten the rig-
orous workload of firefighers. Thus, we do not want
firefighters to be responsible for controlling the robot.
The robot must be able to navigate environments
100% autonomously with no assistance from external
sources. This way firefighters can go about putting
fires out while the SAR robot(s) is searching for hu-
mans. This will be achieved through path planning
and SLAM algorithms.

2. The robot must be able to locate humans with 100%
false negative since no recognition could be the differ-
ence between life and death. However, false positives
are far less of an issue, since you can never be too
careful. This will be achieved with a robust CV algo-
rithm.

3. The solution must be able to detect one human pres-
ence per room with an area of approximately 10m2

in under 25 seconds. This number was determined
through our desire for high speeds. Although 25 sec-
onds is not a very tight bound, this project is merely
a first step.

18-500 Design Review Report Template - 4 March 2022 Page 2 of 9

Figure 1: Block Diagram of Entire System

4. The entire system’s weight must not exceed 4.5 kg
since weight directly correlates to higher energy con-
sumption and lower speed. This limit is mainly
derived from the combined weights of the iRobot,
NVIDIA Jetson Xavier, battery pack, and depth cam-
era.

5. The battery life of the system must exceed 15 min-
utes. This is so the robot can navigate through mul-
tiple rooms on a single charge.

3 ARCHITECTURE

The architecture of the SAR consists of image process-
ing, robot automation, and robot control. All the software
we develop will be hosted on the Nvidia Jetson Xavier NX.

There are three primary sensors that we will be utiliz-
ing. All of the sensors are used as inputs to at least one
block of software we are developing. Discussion of the soft-
ware will occur later in the report. The first of which is a li-
dar, specifically Slamtec’s RPLIDAR AM1. The lidar’s pri-
mary function is to provide real time sensor information for
our Simultaneous Localization and Mapping (SLAM) algo-
rithm. Next, we are employing an Xbox Kinect, which is
essentially a camera that provides the classic RGB color in-
formation of an image frame, alongside a depth map of the
frame. This will be referred to as an RGB-Depth or RGB-
D frame. The purpose of the RGB-D frames is to inform
our visual beacon detection algorithm. Finally, we have

the odometer, which comes pre-packaged with the iRobot
Create 2. The odometry data is given by the iRobot’s two
wheel encoders, encoders being sensors which can detect
and enumerate the revolutions of a wheel. This will again
be used to provide information for the SLAM algorithm.

On the hardware side, the iRobot Create 2 will house all
the equipment necessary for the robot to function. These
components include all the off-the-shelf parts seen in the
diagram; specifically, the RPLidar AM1, the Xbox Kinect
V1, the NP-F750 battery that will be used to power the
Nvidia Jetson Xavier, and of course the Nvidia Jetson
Xavier itself.

The software of SAR consists of two major parts. There
is the robot control subsystem, consisting of SLAM (in-
formed by lidar and odometry), path planning (informed
by the kinect), and movement control. The robot con-
trol subsystem will be built using the open source Robot
Operating System (ROS) infrastructure. There is also the
beacon detection subsystem, also known as the human ana-
logue detection subsystem, consisting of computer vision
and image processing.

The beacon detection subsystem utilizes RGB-D frames
and a known beacon format to detect and determine the
distance of beacons in the environment. The detection will
be performed using a combination of OpenCV functions
and our own algorithms. Currently, we are exploring a va-
riety of beacon types that each have a different detection
method. AprilTags or neon colored blocks are examples
of two such beacons. Detecting the beacons will involve

18-500 Design Review Report Template - 4 March 2022 Page 3 of 9

filtering out erroneous detections. Finally, once the bea-
con is detected, the RGB-D frames from the Kinect will be
enough to determine the distance of the beacon from the
robot. This information will be fed into the path planning
algoritm.

As aforementioned, the robot control subsystem has
three major blocks. First, we will discuss SLAM. The two
inputs for SLAM are the lidar point cloud data and the
odometer data. In order for the robot to autonomously
move through its environment, it first needs to understand
how the environment is structured. Only then can it ef-
fectively plan a route through the environment. The lidar
provides data in the form of a point cloud. Each point in
the point cloud is a 3D coordinate describing the location of
a point in the environment relative to the lidar sensor. By
pre-processing and interpolating the data, the SLAM algo-
rithm can create a map of the environment. The SLAM
algorithm also solves a correspondence problem between li-
dar point cloud packets (i.e., it determines which points
from one packet are the same as which points from another
packet). By doing this, the SLAM algorithm can get a gen-
eral sense of where the robot is located in the environment
and how the robot is moving in the environment. This lo-
calization is refined with odometry data. SLAM algorithms
we are considering include the ROS packages for

Next, there is the path planning algorithm. Now that
we have a map of the environment and a way to detect bea-
cons, we need a way to autonomously plan a route through
the environment. This involves two different algorithms,
for exploration and for waypoint navigation. Exploration
is necessary in order to fully search the provided environ-
ment. While exploring, if the beacon detection system finds
a new beacon, the robot must switch to the waypoint nav-
igation algorithm to approach the beacon. The reason we
are approaching the beacon rather than just detecting and
reporting the location of it is to simulate an automated vital
sign detection program, as motivated by our use case. Both
algorithms will likely be the same graph traversal algorithm
(i.e., Djikstra or A* or similar), but their end node will mo-
tivated by the type of navigation the robot is pursuing. In
particular, the end node of the exploration algorithm will
be the unmapped region of the environment, whereas the
end node of the waypoint navigation algorithm will be the
beacon.

Finally, once the robot knows what route to take, it ac-
tually needs to move along the path. This will be done by
the movement control block. This block involves providing
each iRobot motor a linear velocity, in the form of a pulse-
width modulated signal. By changing the ratio between
the velocities of each motor, we can make the robot move
in any direction and turn to face any direction.

Finally, the Jetson itself will be powered by an external
battery pack on-board the iRobot Create. The Jetson will
provide power to the lidar via the USB bus. The iRobot
Create 2 will be powered via its internal battery pack.

4 DESIGN REQUIREMENTS

To develop a robot that will be able to operate in as
close to real conditions as possible, we will need to steer as
close to our design requirements as possible.

The weight of the robot is 3.583 kg. Accounting for the
weight of the Jetson Xavier (.024 kg) and the sensors (.051
kg), the approximate total weight is 3.658 kg. The aver-
age speed of the robot base with all accessories attached is
around 0.6 m/s. Our tentative current environment size is
10 m2.

1. Complete autonomy with 100% false negative rate:
In order to guarantee complete autonomy while also
guaranteeing all rooms with humans will be flagged,
we need to ensure the robot will not get stuck try-
ing to map out a certain portion of the room, get lost
while looking for a certain beacon, or enter an infinite
loop while trying to map an unknown environment.
Thus, anytime SAR is looking for a beacon for more
than 15 seconds, we will switch the search algorithm
from waypoint to explore. 15 seconds comes from the
constraint that the robot can detect beacons from up
to 8 meters away and given the average speed of the
robot is 0.6 m/s, we can compute the max time it will
take for the robot to approach the beacon. Thus,

8m/(0.6m/s) = 13.3 s (1)

time should be more than enough time for the robot
to approach the beacon before we switch to explo-
ration to prevent anymore wasted time.

2. Detection (or lack thereof) within 25 seconds: In or-
der to detect human presence, in the worst case, we
would need to search every square meter of the room.
The average speed of the robot is 0.6 m/s, and LI-
DAR can generate point cloud data from 8 meters
away. Thus, having the robot rotate in place in the
center of an empty room during exploration should
generate a full point cloud map, since the maximum
distance from the wall to the lidar is the diagonal of
the room:

distance = 5
√
2meters (2)

Assuming that the angular velocity of the robot is
the same as the linear velocity, we can estimate that
a full rotation will take

2π radians

0.6 radians/second
= 10.5 seconds (3)

We decided to allot 0.25*10 s per corner for poten-
tially navigating the corners behind obstacles and an
extra 5 s for slack.

3. Weight must not exceed 4.5 kg : We intend to main-
tain a speed of approximately 0.6 m/s, so we can
search compromised rooms quickly. The iRobot and
all other components weigh 3.6 kg. We found 4.5 kg
total weight to be the point at which the iRobot slows

18-500 Design Review Report Template - 4 March 2022 Page 4 of 9

down a sizable amount, thus, we aim to not exceed
4.5 - 3.6 kg = 0.9 kg for any structure keeping the
components in place.

4. Battery life must exceed 15 minutes: If we were to
launch one SAR robot per floor, where we would ex-
pect 10 rooms a floor, we would need to search within
25 s and then find another room within a short pe-
riod of time. If finding and searching a room takes
40 s, we would expect SAR to finish searching a floor
within approximately 7 minutes. This expectancy is
doubled for slack.

Rest of page intentionally left blank.

18-500 Design Review Report Template - 4 March 2022 Page 5 of 9

Figure 2: Trade-offs between lidar, radar, and cameras

5 DESIGN TRADE STUDIES

We have and are exploring multiple approaches for the
various blocks we are designing. These different approaches
came with their pros and cons that we must balance. In-
cluded below is an analysis of these different trade-offs

5.1 Robot Base

In our final design, we have elected to use the iRobot
Create 2 base. Our original plan was to use the iRobot
Create 1 as our base, due to the iRobot Create 1 having
decent ROS support, but also because there was already
one in the ECE inventory. After realizing that the iRobot
Create 1 was not powering on, we decided to re-look at
our options. One possiblity was designing our own custom
robot base. The benefits of this included having control
over the mechanical parameters of the robot, and the abil-
ity to better fit our use-case by creating a frame that was
appropriately heat and smoke resistant. However, none
of our group have the mechanical engineering experience
necessary to design such a robot, so we opted to buy a pre-
built base. In exploring other options for pre-built bases,
we settled on the iRobot Create 2 for a few reasons. The
first is due to its extensive ROS support (better supported
than even the Create 1). Though it is well supported, the
iRobot Create 2 is still not the most supported base; for
example, the Turtlebot is the de facto base for ROS sim-
ulations and in-the-wild implementations. Another critical
reason is that by using the iRobot Create 2, we maximize
the backwards compatibility between the software we al-
ready wrote for the Create 1 and the software we need to
write for the Create 2.

5.2 SLAM Primary Sensor Input

The primary input for our SLAM algorithm is critical
to ensure good robot autonomy. There are three options
to consider: lidar, radar, and depth cameras. The trade-
offs can be summarized in the Figure 2. Although radar
would technically work the best for our scenario due to its

ability to be accurate in conditions like fog (which is akin
to smoke) and its insensitivity to lighting, there were a few
reasons we decided to settle on lidar. The first is that radar-
informed SLAM is currently a research area, and so there’s
little documentation on how to use it for SLAM, and even
less information on using radar with ROS. The second is
that the radar costs $300, which makes investing in one
far too risky. We could have also used depth cameras, but
in order to maximally satisfy our use case requirements,
we would want our sensor for SLAM to be as invariant to
weather and lighting conditions as possible. This leaves
lidar, which provides a good balance of everything.

5.3 Beacon Localization Sensors

The type of beacon and how to localize said beacon had
many design trade-offs. The goal of the beacons is to strike
a good balance between faithfully satisfying the use-case
while also ensuring consistency and realism. There were
three options we considered throughout our design process:
Bluetooth Low Energy (BLE) beacons, Ultra-Wide Band
(UWB) beacons, and visual becaons. The benefit of BLE
beacons is that they are prebuilt and proven technology
for localization. Furthermore, BLE beacons are realistic
in that smartphones can act as Bluetooth beacons, which
makes the human detection use-mase more grounded. How-
ever, this option comes with several drawbacks. The first
is that BLE beacons can only localize to within a radius
of around 8 meters. This is simply not accurate enough
for our purpose. We then looked to UWB beacons, an-
other pre-built technology that offers an impressive accu-
racy of within 30 centimeters. However, this was not real-
istic enough for our liking; there’s no reason for a human to
have an UWB beacon on them. Finally, we settled on vi-
sual beacons, and detecting them using our own computer
vision process. Visually identifying a beacon can realisti-
cally be scaled to visually identify a human. Furthermore,
by employing a depth camera, we can localize the beacon
extremely accurately. Although cameras are very sensi-
tive to lighting conditions, we figured that it was a worthy
trade-off for our purposes. The lidar for SLAM is meant

18-500 Design Review Report Template - 4 March 2022 Page 6 of 9

to be as invariant to such conditions as reasonably possible
given the constraints we are working under, so using the
depth-camera for this purpose seemed reasonable to us.

5.4 Computer

The Jetson Xavier was chosen since this compute plat-
form contains a 6-core CPU and 384-core GPU which al-
lows for real time computer vision and path planning. The
computer vision algorithms would benefit massively from
the GPU. Using an Arduino or Raspberry Pi would not
provide enough compute power since there is no dedicated
GPU in these systems, which is necessary to accelerate our
computer vision and our SLAM algorithms. The maximum
rated power consumption of this system is 30 Watts.

5.5 Algorithm Selections

This final section is dedicated to the various pre-made
implementations of SLAM, in addition to our choice of path
planning algorithms. All of these trade-offs are yet to be
explored, so we are discussing how we will eventually com-
pare these approaches The ROS infrastructure provides a
rapid way of testing out different SLAM and path planning
techniques. Because of this, we can easily test out various
implementations. Regarding path planning, we are likely
using either Djikstra or A* for both types of path planning
(exploration and waypoint navigation). Since Djikstra can
be reduced to A* without a heuristic, we can easily test
the efficacy of each implementation in ROS simulations and
in the real world. We have decided to not create our own
SLAM algorithm due to the complexity of the software and
the timeline of our project. Thus, we will be testing the
real-world efficacy of the most popular implementations; in
particular, we are looking at the Hector-SLAM, Gmapping,
and Cartographer ROS SLAM packages [3][4].

6 SYSTEM IMPLEMENTATION

As shown in Figure 1, our system is comprised of a
few main subcomponents: the NVIDIA Jetson Xavier NX,
the software on the Jetson, the RPLIDAR AM1, the Xbox
Kinect, the iRobot Create 2 system, and the NP-F750 bat-
tery. The software will be run on the Jetson. Main software
responsibilities include extracting data from the LIDAR
and Xbox Kinect as well as interfacing with and control-
ling the iRobot system. The USB interface will be utilized
for all of these peripherals. This software also includes the
beacon detection subsystem which will process sensor data
using OpenCV and use that data to locate human presences
in a given room. The following is a detailed implementation
plan of each subsystem.

6.1 Beacon Localization

The beacon localization algorithm reads RGB image
frames from the Xbox Kinect v1 and extracts the location

of the beacon from this sensor. To accomplish this task,
the read images will go through a processing pipeline. The
exact details of this processing pipeline are yet to be deter-
mined, due to us settling on using a visual beacon within
the past 5 days. However, we can generalize the steps as
follows:

6.1.1 Filtering

Before we can accurately detect our beacon, we will
likely need to go through a filtering stage. The exact type
of filtering will depend on the type of beacon we decide to
use. One type of beacon used could be something akin to
an AprilTag. By using an AprilTag we don’t have to worry
about color filtering. However, a beacon that is simply a
neon color would have to go through a color filtering phase.
In order to accurately detect the beacon, we transform our
RGB images into HSV (Hue Saturation Value) images. By
transforming our images into the HSV color space, we can
take advantage of hue being a single channel to easily find
a range of colors that our beacon lies within, without wor-
rying about the saturation or the brightness of that color.

6.1.2 Denoising

If we use a color beacon, we will also have to go through
an denoising process. Erroneous pixels that happen to have
the correct hue value will get through our filtering and thus
be incorrectly detected as a beacon. To prevent this, a sim-
ple low-pass/blurring filter operation can be done, which
will remove most noise from the image. This comes with
the drawback of effectively lowering the resolution of the
image we get, but we don’t need the improved resolution
in order to best detect the beacons.

6.1.3 Detection

The detection is relatively simple. With a color beacon,
we simply pre-filter the image and search for the color of
our beacon. With an AprilTag, we can apply a built-in
OpenCV function to determine where in the image frame
our beacon is. Based on these results, we can use the depth
information from the Kinect to accurately determine where
the beacon is.

6.1.4 Persistence

One concern with the algorithm is persistence of beacon
localization. For example, let’s say the robot enters a room,
and can initially find the beacon. If the robot then crosses
behind a barrier that obstructs the direct line of vision to
the beacon, it must remember where the beacon was. To do
this, when first detecting a beacon, we will save its location
in our SLAM map. While the robot has not approached
the beacon, the path planning algorithm will use the saved
SLAM map location to navigate to the beacon without di-
rect line-of-sight being necessary. Finally, when the robot
is suitably close to the beacon, we will inform the SLAM
map to mark the beacon as visited. This way, we can not

18-500 Design Review Report Template - 4 March 2022 Page 7 of 9

only remember where a beacon is within a room, but also
remember if we have already found the beacon previously.

6.2 SLAM

In this section, we will discuss the exact implementa-
tion differences between two popular ROS Slam packages:
Hector-SLAM and Gmapping. Those two algorithms differ
from the information sources used for localization and map-
ping. GMapping uses odometry and lidar point cloud data,
whereas Hector SLAM uses the lidar only. Theoretically,
GMapping should perform better then Hector SLAM, espe-
cially on environments that cause lidar-based localization
to be ambiguous, such as a long hallway without features.
The reason such environments would cause problems with
Hector-SLAM is that lidar based localization solves a cor-
respondence problem between points in one lidar packet
vs. points in the next. By determining which points corre-
spond to which, the algorithm can get an estimate of how
far the robot has moved. In a hallway environment, there is
a huge number of points from the second frame that could
theoretically map to a single point in the first frame. Be-
cause of this trade-off, Hector SLAM theoretically has poor
performance when it comes to linear movement in large fea-
tureless areas, though it will still be able to compute angu-
lar motion with a high degree of accuracy. In this scenario,
GMapping can rely on odometry to get a bearing on the
linear motion of the robot. However, real-world tests show
that even with the extra information that GMapping is re-
ceiving, it often still performs worse than Hector SLAM [2].
Since these are pre-designed packaegs, our implementation
plan for this subsystem revolves around testing the efficacy
for our robot in particular.

6.3 Path Planning

In this section, we will discuss the implementation dif-
ferences between two shortest path algorithms: Djikstra’s
algorithm and A*. These two algorithm’s differ as A* uses
heuristics to optimize search using Djikstra’s algorithm.
Since edge weights from one node to another will not be
consistent due to obstacles, we will use A* as our path
planning algorithm with an approximate straight-line dis-
tance (from node to beacon) as a heuristic function. We
will add a number of potential nodes to search from to a
priority queue with the combined edge weight and heuristic
value. As a result, we will prioritize nodes that are most
likely to produce the optimal path.

6.4 iRobot Create 2 Control System

The iRobot Create 2 is a prebuilt robot that contains
all the components necessary for customization. We de-
cided to go with this robot since it provides flexibility at a
relatively low cost. Designing and building our own robot
would be better since we would be to add specific sensors
and modify it to our needs, but due to time and budget

constraints, we are purchasing a prebuilt system. In addi-
tion, the iRobot has an Create 2 Open Interface that allows
us to easily communicate with it using UART. As an ex-
ample, to drive backwards at a speed of 200 mm/s with a
turn radius of 500 mm, we could send 137 (the opcode for
the drive command), 255 (the upper byte of the velocity),
56 (the lower byte of the velocity), 1 (the upper byte of the
turn radius, and 244 (the lower byte of the turn radius).

6.5 Power

To power our Jetson, we are using a NP-F750 Recharge-
able Battery. This battery is made of lithium ion and has
an operating voltage of 7.4V. It’s maximum capacity is
5200mAh. Based on the Jetson Xavier’s 30W power rat-
ing, this battery will provide approximately 76 minutes of
usage before recharging is required. The iRobot Create 2
base will use its built-in power supply. According to the
specs, this internal battery can last up to 2 hours given 0
load. This should definitely be enough to run the robot
with a light load (caused by the Jetson and the sensors) for
at least 30 minutes.

7 TEST & VALIDATION

Since our project has multiple components, thorough
testing and validation is required to ensure that our system
works. We will be testing both the hardware and software
components separately as well as together.††

7.1 Tests for Complete Autonomy

To test whether the SLAM and path planning algo-
rithms works effectively, we will activate the robot in a
series of different environments. To measure the individ-
ual accuracy and performance of each part, we will do the
following:

• Mapping : Subjectively compare the error between
the true environments and the mapped environments.
If the algorithm performs well enough, the differences
between the top-down view and the scan should be
minimal.

• Localization: In each environment, set the robot to
follow a path with known starting and ending points.
After letting the robot traverse between the points,
measure the distance between the robot’s calculated
endpoint within the map and the true endpoint. We
will consider the localization to be a success if the
robot is within a 1 meter radius of the true endpoint.

• Exploration: First we will disable the waypoint nav-
igation portion of the path planning. We then let
the robot run exclusively on explore mode through
the various environments. If the SLAM map at the
end covers more than 90% of the true area, we will
consider it a success.

18-500 Design Review Report Template - 4 March 2022 Page 8 of 9

• Waypoint Navigation: Disable the exploration por-
tion of path planning. Place the robot in a series
of different individual rooms, with various obstacles
that may or may not block direct sight-lines to the
beacon. If the robot can successfully navigate to-
wards the beacon 100% percent of the time, we will
consider it a success.

7.2 Tests for Beacon Localization

This test is similar to that of waypoint navigation.
Place the robot in a series of different individual rooms,
with various obstacles that may or may not block direct
sight-lines to the beacon. If the robot can successfully de-
tect (rather than navigate towards as in the waypoint nav-
igation test) the beacon 100% of the time, we will consider
it a success.

7.3 Tests for Battery

• Weight : We will simply measure the end weight of
the robot to ensure that it is under 15 pounds. This
should definitely be achievable given that the iRobot
base is around 10 pounds and the sensors and Jetson
are not very heavy.

• Battery Life: Run the robot under full load until the
battery depletes. If it lasts greater than 15 minutes,
we will consider it a success. If the battery life is
shorter than this, a battery with a higher energy ca-
pacity will be used.

7.4 Tests for Xbox Kinect

To ensure that the Xbox Kinect is working as intended,
we will connect it to the Jetson Xavier via USB. We will
interface with the Kinect using OpenCV and read the RGB
frames and depth map that it is sending. This data can be
verified both visually and by writing a suite of tests.

8 PROJECT MANAGEMENT

8.1 Schedule

Our project has been broken down into 4 components:
proposal and planning, implementation and design, verifi-
cation and optimization, and finalization. The first three
weeks of this semester were spent finalizing the idea and
gathering all the necessary components. During this time
period, we also explored various design trade offs such as
using a Jetson versus an Arduino. During the second phase,
the subsystem components will be implemented and inte-
grated into one cohesive unit. The third stage will then
begin where we test our system under a variety of differing
environments to make sure it is robust. This is also the
place where we will fix any issues that arise. Lastly, we will
finalize our design and get ready to present. The schedule
is shown in Fig. 4.

8.2 Team Member Responsibilities

While each team member is assigned to a different por-
tion of this project, there are a lot of interconnected com-
ponents and so various responsibilities will be shared. Each
team member is also responsible for making sure that the
others are on schedule and that no one is falling behind.
The table below lists the primary and secondary responsi-
bilities of each team member.

Team Member Primary Tasks Secondary
Tasks

Keshav Sangam LIDAR and
Xbox Kinect
setup and inte-
gration

SLAM and bea-
con localization
for ’human’ de-
tection

Jai Madisetty Designing path
planning algo-
rithm

iRobot move-
ment control
and SLAM

Raymond Xiao Program iRobot
to react to sen-
sor data

Integration of
all components
to form cohesive
system

8.3 Bill of Materials and Budget

The bill of materials is shown in Table 1. The main
hardware components used in this project are the NVIDIA
Jetson Xavier NX, the iRobot Create 2 system, the RPLI-
DAR AM1 and Xbox Kinect, and the NP-F750 Battery to
power the entire system. For software components, we will
be using libraries such as OpenCV and pycreate2.

8.4 Risk Mitigation Plans

This project has a lot of inherent risks associated with
it. The entire system needs to be integrated seamlessly,
otherwise, the whole system will not work. The main crit-
ical risk factors are no previous knowledge of ROS, inter-
facing with various sensors, and ensuring that the robot
is completely autonomous. We will mitigate the first risk
by ensuring that everyone of the team participates in ba-
sic ROS tutorials and has a working knowledge of it. The
Xbox Kinect has various tutorials online [7] on how to in-
terface with it using OpenCV that will be helpful. Beacon
detection can be simplified by using AprilTags. AprilTag
detection is already in the OpenCV library, which should
provide us an easy alternative to a neon beacon. In ad-
dition, the RPLidar comes with a startup kit to allow for
easy ROS interfacing. To mitigate the last risk, we will
thoroughly test the system under a wide variety of environ-
ments to ensure that it can reliably operate in all types of
situations. Furthermore, problems regarding development
of the various robot control algorithms can be mitigated
with online tutorials; the worst case could be using a pre-
built package to provide robot control.

18-500 Design Review Report Template - 4 March 2022 Page 9 of 9

Table 1: Bill of materials

Description Manufacturer Quantity Unit Cost Total
NVIDIA Jetson Xavier NX NVIDIA 1 $1,797.92 $1,797.92
iRobot Create 2 System iRobot 1 $200.00 $200.00

RPLIDAR AM1 Slamtec 1 $99.99 $99.99
Xbox Kinect Microsoft 1 $40.00 $40.00

NP-F750 Battery Powerextra 1 $40.00 $40.00

9 RELATED WORK

There are few projects that truly encapsulate our use-
case. Some papers we looked at include ”See Through
Smoke: Robust Indoor Mapping with Low-cost mmWave
Radar” [5]. This paper was determined the efficacy of us-
ing radar for SLAM, specifically for situations like fires.
However, we are not using the neural network created in
the paper since we have decided to move away from radar.
Furthermore, as mentioned earlier, there is a commercially
available firefighting robot known as Thermite [8]. How-
ever, this system is mainly for fire control (as in literally
fighting the fire via a hose), and less for search and rescue.

10 SUMMARY

Our design is an autonomous robot which will help fire-
fighters quickly scour a building for survivors and people in
need of help. This robot is designed to efficiently navigate
through a building floor in dangerous conditions, scouting
for humans and providing valuable information back to the
firefighters. This robot can save both time and lives as it
will mark rooms that need to be searched whilst skipping
empty rooms. Challenges that we anticipate in the im-
plementation phase include integration of all components,
ensuring that the robot is fully autonomous, and achieving
100% beacon localization accuracy.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• SAR - search and rescue

• LIDAR - light detection and ranging

• SLAM - simultaneous localization and mapping

• CV - computer vision

• USB - universal serial bus

• ROS - Robot Operating System

• UWB - Ultra-Wide Band

• BLE - Bluetooth Low Energy

References

[1] Rita Fahy. “Firefighter fatalities in the United States”.
In: National Fire Protection Agency (Oct. 2021).

[2] Alessandro Francescon. Navigation stack test: GMap-
ping vs Hector Slam. 2015. url: http : / / www .

geduino.org/site/archives/36.

[3] Hector SLAM.

[4] Hector SLAM. 2019. url: http://wiki.ros.org/
gmapping.

[5] Chris Xiaoxuan Lu et al. “See Through Smoke: Robust
Indoor Mapping with Low-cost mmWave Radar”. In:
(2020). arXiv: 1911.00398 [eess.SP].

[6] “Occupational Health and Safety”. In: Canadian Cen-
tre for Occupational Health and Safety (Feb. 2022).

[7] Lee Stott. “Image Based Motion Analysis with Kinect
V2 and OpenCV”. In: Microsoft Education (Mar.
2019).

[8] “Thermite”. In: Howe Howe Technologies (Feb. 2022).

18-500 Design Review Report Template - 4 March 2022 Page 10 of 9

F
ig
u
re

3:
A

fu
ll
-p
a
g
e
v
er
si
o
n
o
f
th
e
sa
m
e
sy
st
em

b
lo
ck

d
ia
g
ra
m

a
s
d
ep
ic
te
d
ea
rl
ie
r.

18-500 Design Review Report Template - 4 March 2022 Page 11 of 9

F
ig
u
re

4
:
G
a
n
tt

C
h
a
rt

