SAR (Search and Rescue Robot)

Team E2 - Keshav Sangam, Jai Madisetty, Raymond Xiao

Motivation

No autonomous robots in SAR field with sensors specifically designed for fire/smoke

Firefighters can deploy these robots to assist with dangerous situations

Robots can scout ahead and provide valuable real ti

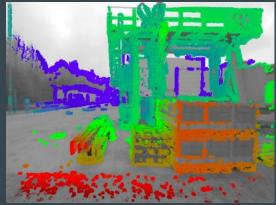
Use Case/Our Robot

- Robot that can accurately detect human presence in a smoke-filled room
 - Running under the assumption that humans always have their phones on them/nearby
- Robot can quickly navigate unexplored rooms and relay human presence to third party in real time
- Facilitates searching empty rooms/floors

ECE Areas:

- Software (Planning and movement algorithms)
- Signals (Integrating sensor data from LIDAR, radar, Bluetooth, etc)
- Hardware (Robot itself)

Use Case Requirements


- Completely autonomous robot under varying environment
 - SLAM + Path Planning
- Process LIDAR/mmWave data at speeds higher than 20Hz
- Be able to reach Bluetooth beacon per room in under 45 seconds
- 100% Bluetooth localization accuracy

Technical Challenges

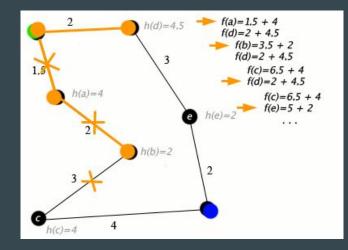
• Developing a SLAM technique that is robust to airborne particulates

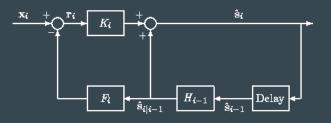
- mmWave techniques provide low-density point-cloud data.
- LIDAR provides high-density point-cloud data
- RGB-D comparable to LIDAR
- Testing path planning algorithms for movement around an enclosed environment
 - 0 A* vs. Djikstra
- Accurate target localization
 - Bluetooth based localization

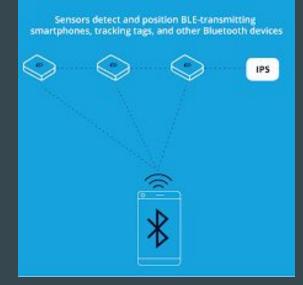
Solution Approach - Robotics System

- Robotics Platform
 - $\circ \quad iRobot\ base$
- Processor for compute
 - Nvidia Jetson Xavier
- Interface
 - UART between Xavier and iRobot, mmWave, and LIDAR
- Power
 - Xavier Portable battery pack

Solution Approach - Sensors


- Sensors and Data Acquisition
 - mmWave radar board
 - TI AWR1443BOOST
 - LIDAR sensor
 - Slamtec RPLIDAR
 - Potential additional sensors:
 - IMU
 - Odometer
- Bluetooth Beacon


Solution Approach - Software


- Software Platform
 - ROS for SLAM, path planning, and controls
- Path Planning
 - A* algorithm
 - Heuristic determined via bluetooth signals

Solution Approach - Signals

- Sensor Filtering
 - milliMap: <u>https://arxiv.org/pdf/1911.00398.pdf</u>
 - Extended Kalman Filtering
- Bluetooth Localization
 - Use existing BLE beacon
 technologies to provide off-the-shelf
 localization.

Testing & Verification

Requirements	Testing	Metrics
Autonomously navigate and plan path through environment	Record time it takes for robot to visit each room	One room per 60 seconds
Lightweight and portable	Weigh robot on scale	Weight is less than 15 pounds
SLAM accuracy under varying conditions	Test robot's ability to map an environment under fog	Compare ground-truth LIDAR map to experimental map found with mmWave
Minimize false endpoint detection	Place varying number of BLE beacons in environment	100% accuracy in counting true number of beacons
Battery life	Exhaust robot resources	Able to visit every room on battery power

Tasks and Division of Labor

Team Member	Specialization	Tasks
Keshav Sangam	Signals	LIDAR and mmWave interfacing, bluetooth localization, Kalman filtering, SLAM
Jai Madisetty	Software	SLAM, A* path planning, learning ROS, learning CUDA
Raymond Xiao	Hardware	Programming Roomba, interfacing with Jetson Xavier, learning ROS

Gantt Chart

	Teammates:																										-		· · · ·	-	-	
-	Keshav Sangam																															
-	Jai Madisetty																															
-	Raymond Xiao																															
	Everyone																															
							Janua	arv			Febr	uary						Mar	ch							April						
	Tasks	Start	En	d	Team Member	Status			24	27 3		2 5	8	11 14	4 17	20	23 2			7	10	13	16 *	9 2	2 25		6	9	12	15 18	3 21	24
Part 1	Proposal and Planning					-																										
	Brainstorm different projects		1/18	1/25	Everyone	Done																					_					
	Project abstract		1/26		Everyone	Done																										
	Proposal presentation		2/7	2/9	Everyone	Done																										
	Finalize parts required		2/5		Everyone	In progress																										
	Brainstorm algorithms/implementation		2/5		Everyone	In progress																										
Part 2	Implementation and Design				-							1											100									
	Milestone 1: Proof of concept																															
	Order necessary components				Everyone	In progress																							_	_		
	Planning and movement algorithms				Jai Madisetty																											
1	Interfacing with all sensors				Keshav Sangam																											
	Learn to program ROS				Raymond Xiao																											
	Benchmark algorithm performance				Everyone																											
	Milestone 2: Integration				and the second																											
	Implement basic SLAM				Keshav Sangam	1																										
	Receive data from mmWave				Keshav Sangam																											
	Receive data from LIDAR				Keshav Sangam																											
	Integrate components with ROS				Raymond Xiao																											
	Interface with Jetson Xavier				Raymond Xiao																											
	Set up testing environment				Everyone																											
	Improve SW algorithms				Jai Madisetty																											
	Milestone 3: Final Design																															
	Finalize path planning				Everyone																											
	Systems integration check				Everyone																											
Part 3	Verification and Optimization																															
	Rigorous testing in different scenarios				Everyone																											
	Tweak design paremeters (accuracy, speed, etc.)			Everyone																											
	Test/improve robot's battery life				Everyone																											
	Test/improve robot's speed				Everyone																											
Part 4	Finalize and Present																															
	Record video explaining project				Everyone																											
	Edit and finish video				Everyone																											
	Final presentation				Everyone																									1		