
18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 1 of 10

FPGA Accelerated Fluid Simulation
Authors: Jeremy Dropkin, Alice Lai, Ziyi ZUo

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

For this project, we design a system capable of
running the fluid simulation kernel developed for the
Scotty3D graphics library on the Xilinx Ultra96 plat-
form. The original implementation is significantly bot-
tlenecked by the limited concurrency of multithreading
and data transfer, so we believed that it would be a
suitable target for a form of hardware acceleration that
could exploit the inherent parallelism offered by the
program. We epxloit the customizable nature of FG-
PAs to greatly improve the speed at which frames are
rendered, and managed to achieve a 100x speedup in
the render kernel.

Index Terms—Acceleration, Fluid Simulation,
FPGA, High Level Synthesis, Ultra96, Vitis, Vivado,
Xilinx

1 INTRODUCTION

Fluid simulation is one of the most popular computer
graphics applications for FPGA acceleration. Fluid simu-
lation is uniquely suited for FPGA acceleration due to its
high workload and high irregularity in computation. As
an example, a common task in fluid simulation is to han-
dle collisions between neighboring particles and the scene
geometry, which very easily is an O(n2) task. However, a
recent paper published in 2013 by Macklin et al. was able
to showcase an alternative approach to fluid simulation, one
free from much of the heavy computation that plagues con-
ventional fluid simulation algorithms, position based fluids.
Essentially, this new approach enforces a set of positional
density constraints to simultaneously allow for incompress-
ibility (the computationally expensive part of conventional
techniques) and for large time steps and stability.

Our project was based on Scotty3D, a custom 3D graph-
ics software package developed for 15-462 Computer Graph-
ics course at CMU, that features position based fluid sim-
ulation. Scotty3D features basic multi-threading as it is
designed to be accessible to students who may not have ac-
cess to a GPU, either on their laptop on their PC machine.
Unfortunately, this multi-threaded, CPU-only implemen-
tation of Scotty3D does not yield impressive performance,
taking up to 3 seconds to process a single frame of the fluid
simulation. This leads to choppy and visually unsatisfying
simulation results. As such, we propose our project as a
solution for accelerating and improving the user experience
of the Scotty3D fluid simulation engine.

One competing solution in our acceleration space is the
use of a GPU to accelerate this fluid simulation algorithm.
On one hand, while the GPU benefits from the high level
of thread-level parallelism, it suffers in the fact that it ne-

cessitates highly vectorized code, which may suffer some
overhead from needing to program the different branching
conditions. Compared to the GPU, an FPGA is much more
flexible in terms of different branching behaviors, yet still
retains the capability of high thread-level parallelism. An-
other competing technology is a custom ASIC implemen-
tation. While such a device would be expected to greatly
outperform the FPGA, its use is simply out of the picture
during a capstone semester.

2 USE-CASE REQUIREMENTS

Our main use-case requirements are about the metrics
of our fluid simulation. We want to ensure that we speed
up the simulation, but additionally that we maintain accu-
racy and are able to simulate a reasonable size of particles.
These goals seem like they may be in contention as gen-
erally the larger a problem is, the longer it will take to
simulate, additionally, if something is faster, it is likely to
lose accuracy. So it is important in our project that we
make requirements and optimizations that allow us to keep
all of our requirements achievable and do not interfere too
greatly with each other.

Our first use-case requirement is that we want to achieve
a 10x speedup with our accelerated version when compared
to a base implementation on a CPU. The motivation for
this requirement is from initial measurements that we took
on an i7 CPU and found that it takes roughly 3 seconds to
produce each iteration of the simulation for a size of 512
particles; this measurement is the same as 0.3 fps. We felt
that achieving a 10x speedup is realistic, as the fluid sim-
ulation problem is well suited for FPGA acceleration. So
being able to run the simulator at a rate of producing an
update iteration every 0.3s, i.e. 3fps would greatly increase
the utility of the rendering engine.

Next, we are targeting support for simulating 512 par-
ticles at once in our rendering engine. We arrived at this
number of particles after considering several factors, and
decided that this was the most practical number to target,
and is a useful number of particles for a user. 512 particles
is the default and typical simulation size for the Scotty3D
simulator, so this would allow us to easily create bench-
marks to measure against as many of the scenes present
in Scotty3D are this size. This number of particles also
reflects well to the specs of the hardware we are using.

Finally, we want to ensure that the accuracy of our sim-
ulation is high enough to produce realistic output. While
we want to produce output quickly, that output would be
useless if it was not an accurate simulation. We will eval-
uate accuracy using the Chamfer Distance (CD) metric,

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 2 of 10

which finds the nearest point in the other point set and
sums the squared distances. We will be comparing the
frames that we produce from the accelerated simulator to
the accurate, but slow, CPU simulator. We are targeting a
maximum Chamfer distance of 2.56 for any given frame.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

We implemented our solution with the standard accel-
erator architecture where a host computer dispatches accel-
eration tasks to a dedicated piece of acceleration hardware.
For this project, we are using the Xilinx UltraScale+ Ul-
tra96v2 development board, which features both an ARM
core for running C++ code and a flexible FPGA fabric for
accelerated kernels. We had initially planned to run the en-
tire Scotty3D environment on the FPGA, but after initial
testing we pivoted to having the FPGA being a dedicated
piece of acceleration for just the fluid simulation algorithm.

The high-level approach of our project is to isolate the
Scotty3D fluid simulation kernel to run on the board’s
FPGA fabric, and have a host computer manage launching
the simulation kernels, which includes handling the data
transfer to and from the fabric and a network-related cost
to scp the file between the FPGA and the host computer.
The simulations will produce output files which can be used
either for post-processing or to view an animation of the
simulated output. We implemented a modified version of
Scotty3D that is capable of displaying these files.

As illustrated in Figure 1, the CPU handles the initial
fluid simulation request and sends a signal to the FPGA
fabric controller. This then tells the board to execute the
main fluid simulation kernel. The CPU will also initiate
a burst data transfer from main memory, which will sends
the initial scene data and all of the fluid particles to the
Block RAM (BRAM) modules of the FPGA. We did all
of our simulation updates with the BRAM modules, which
get updated in-place by the main fluid simulation kernel.

Once the algorithm has completed a sufficient amount
of density iterations to perform a single step in the main
fluid simulation loop, the updated particles are returned
to the CPU. The CPU then finally takes the updated par-
ticles and saves them to the output file. This loop runs
for an indefinite number of iterations while producing the
simulated fluid output.

The main fluid simulation algorithm is split up into five
discrete steps, and this is where the bulk of the acceleration
will take place. These steps generally consist of addition,
convolution, multiplication, dot products, etc. to all of the
particles being simulated, as well as data transfer between
different data structures storing different physical informa-
tion. These steps will all be running on the FPGA fabric
on the board, and will be dispatched to by the CPU.

By taking advantage of the FPGA in conjunction with
the ease of writing code for a CPU, we are able to focus
our efforts on speeding up only what needs to be, and still

have the ability to write non-highly optimized code for the
controller on the CPU. This setup allows us to maximize
the time we spend on actual acceleration, instead of having
to focus on getting non-critical parts of the algorithm to
run on the FPGA fabric.

4 DESIGN REQUIREMENTS

Figure 2: Timing for CPU (i7) Base Implementation

4.1 Steps 2 and 3: Scale Factors & Posi-
tion Correction

Step 2 is responsible for calculating the scale factors
for the Newton’s Method optimization loop, and Step 3 is
responsible for calculating the position correction for each
particle, as well as collision detection and adjusting the po-
sition corrections accordingly. Our first design requirement
is that we want to achieve at least a 10x speedup of Steps
2 and 3 combined, and get the time to less than 5.583 ms.

4.2 Step 4: Vorticity & Viscosity

Vorticity is the local angular rate of rotation, or the
amount of ”circulation” in a fluid. Viscosity is the measure
of resistance to flow. To keep the fluid from exploding, the
algorithm subtracts the vorticity term and adds the viscos-
ity term to each particle’s next velocity. Our second design
requirement is that we want to achieve a 4x speed up, or
get the time to less than 4.667 ms for calculating XSPH
viscosity and vorticity confinement corrections.

4.3 Steps 1 and 5: Position Management

Steps 1 and 5 are responsible for the initial position and
particle data structure updates respectively. The compute

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 3 of 10

Figure 1: (top) High Level Block Diagram — (bottom) Detailed System Diagram

time is almost negligible compared to the previous target
optimization, but nonetheless our final design requirement
is that we want to achieve at least a 2x speed up for these
two steps, or less than 0.910 ms. This target essentially is
to ensure that the data transfer speeds on the FPGA with
BRAM are significantly faster than on CPU with DRAM
and cache memory.

4.4 Synthesizability

Something that was hugely important to our project
but somewhat initially overlooked in our design report was
the aspect of actually writing code that fits on the FPGA.
Since CPU code tends to assume that there is a nearly
unbounded amount of memory, and doesn’t have to worry
about meeting clock slack, when porting the code we had
to take all of this into account. So a potentially obvious
but large requirement is to actually write code that is able
to synthesize onto the FPGA.

5 DESIGN TRADE STUDIES

As with any acceleration endeavor, approaching this
project required us to make many careful considerations as
to the different directions by which we should approach the
project. For our project design, we considered the target
platform, the consequent hardware acceleration approach

for synthesizing to an FPGA, and finally the fluid similar-
ity metric for evaluating accuracy.

5.1 Hardware Platform

Our first major consideration was the hardware plat-
form that we would build the project on. Different compu-
tational platforms each have their own pros and cons, and
to efficiently accelerate this project, we would need to assess
the workload of Scotty3D fluid simulation kernel in order
to determine a suitable platform. Some of the different
platforms we considered but ultimately rejected include:

5.1.1 Purely CPU - Multithreaded

The most basic approach to acceleration is to just use a
multithreaded CPU implementation. However, we believe
that the most natural avenue for parallelism is to apply it
on the axis of particle number. Since we are working on the
order of hundreds or even thousands of particles, the scope
of multithreading is unable to fully capture the parallelism
inherent in the program. Furthermore, we could also stand
to pay significant costs through inter-thread communica-
tions and thread startup and synchronization costs.

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 4 of 10

5.1.2 GPU

So, if high concurrency is what we want, then surely it
would make sense to put the algorithm on a GPU? After
all, GPUs are already a common target for graphics accel-
eration tasks. The issue with the GPU implementation is
that the fluid simulation kernel is highly irregular. There
are many data-specific loops that operate on the nearest
neighbors of a particle. Due to how divergent the control
flow is for different threads, we could expect to pay signif-
icant overhead costs in realizing the algorithm on a GPU.
Furthermore, since the fluid simulation algorithm is highly
dependent on data movement, the memory architecture of
traditional GPUs leaves a bit more to be desired.

5.1.3 ASIC

Although an ASIC would be very efficient for any ap-
plication, unfortunately we do not have the proper amount
of or time in order to send our design off to a chip fab.
In order for an ASIC to be worth it we would need to be
producing our design at scale, and for a prototype system
this is not a good choice.

5.1.4 Why FPGA?

Ultimately, we decided to use an FPGA as the target
platform. FPGAs are applicable in our use for many rea-
sons - the customizability of the hardware allows us to
exploit massive parallelism potential in the fluid simula-
tion algorithm, and they are relatively cheap compared to
ASICs. There is also a lot of well-documented tooling avail-
able for accelerating code on FPGAs, so using an FPGA
makes a lot of sense given our application. FPGAs are also
well suited towards irregular computation since the hard-
ware does not have to be uniform, since we can just in-
stantiate extra hardware to account for the different cases.
Our algorithm is non-uniform as particles can be clustered
in random configurations, so using an FPGA helps us deal
with this non-uniformity. Another beneficial aspect of FP-
GAs is that they have great flexibility in their memory
architecture. By making use of the BRAM banks on the
FPGA, we are better able to exploit memory reuse and re-
duce the number of high-latency trips to and from DRAM.

5.2 Hardware Acceleration Approach

5.2.1 HLS vs. Traditional HDL

Once we decided to use the FPGA, we needed to de-
cide whether we would stick with using a traditional hard-
ware design language like SystemVerilog to write our kernel
or whether we would use high level synthesis. Ultimately,
our decision to use HLS was motivated first by the fact
that Scotty3D is already written in C++, so porting it to
something that works with HLS is more approachable than
rewriting it entirely in SystemVerilog. This means we have
more time to focus on actually accelerating the algorithm,

rather than reimplementing existing code in a different lan-
guage. Additionally, many HLS tools make parallelization
more accessible than if a traditional HDL is used, as the
compiler is able to smartly infer ways to optimize code from
a higher level that would not be possible from SystemVer-
ilog.

5.2.2 Fixed-Point vs Floating-Point Numbers

One major decision for our system was choosing
whether to use fixed or floating point numbers to repre-
sent positions of particles. Although using floating point
numbers allows for arbitrary amounts of precision, they are
much more costly to do computation on. We also examined
how the fluid simulation application uses, floats, and only
roughly 3 decimal digits of precision are needed to main-
tain accurate computation, so 16.16 fixed-point numbers
are more than precise enough. As we can see in Table 1,
the latency of a fixed-point add is about 4.5 times faster
than a floating point add.

Ultimately, we ended up using 12.6 fixed-point num-
bers, as the precision of 16.16 was actually greater than
what we needed, so we were able to shrink the size of the
numbers and take more advantage of the BRAMs to further
accelerate our kernel.

5.3 Fluid Similarity Metrics

Because the fluid is composed of discrete particles, the
fluid can actually be considered as a point cloud. There
exists many distance metrics for point clouds in computer
graphics and robotics literature. We provide a high-level
overview of some popular distance metrics we considered
as well as their strengths and weaknesses as followed.

5.3.1 Earth Mover’s Distance (EMD) /
Wasserstein Distance

The Earth Mover’s Distance (EMD) is another met-
ric for measuring the distance between two distributions of
points. Colloquially, this distance metric views each distri-
bution as a unit of soil, and measures the minimum cost of
transforming one pile into the other. The cost is calculated
by multiplying the “amount of earth” with the ”average
distance moved”. More formally, for two probability mea-
sures µ and v, the distance dEMD is defined as:

dEMD (S1, S2) = min
ϕ:S1→S2

∑
x∈S1

∥x− ϕ(x)∥2

where ϕ : S1 → S2 is a bijection. (1)

The EMD is the Wasserstein Distance using one-
dimensional distributions, i.e. p = 1. Applied to our sce-
nario in R3, this would mean that we would have to pick one
axis to evaluate the point distributions along. While it is
tempting to use the Wasserstein Distance with p = 3 given
the R3 nature of the problem, computer graphics literature

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 5 of 10

Table 1: Fixed-point vs Floating-point Metrics
Addition Latency (ns) Multiplication Latency (ns)

Floating 7.717 10.432
Fixed 1.692 4.369

tells us that the computational cost associated with it is
too high. For reference, see below for the formal definition
of Wasserstein Distance:

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

(2)

5.3.2 Chamfer Distance

The Chamfer distance metric is a rather straightforward
one. For every point in Point Cloud A, it finds the nearest
point in Point Cloud B and sums the squared distances. It
then goes the other way and sums the squared distance be-
tween the points in Point Cloud B and their nearest Point
Cloud A points. Mathematically, the Chamfer Distance
dCD is defined as:

dCD (S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22 (3)

5.3.3 EMD vs. Chamfer Distance

The EMD and Chamfer Distance metrics are the two
most popular distance metrics using in computer graphics
algorithms at the moment. Though EMD allows for more
accurate learning-based 3D reconstructions, the Chamfer
Distance is generally favored over the EMD however due
to light computational cost.

Since the fluid simulation is comprised of multiple
frames, i.e. multiple pairs of point distributions, we would
need to evaluate the distances for each frame (which for the
baseline fluid simulation is about 10), so we decided that
the computational cost was more important than increase
in accuracy and chose the Chamfer Distance metric.

6 SYSTEM IMPLEMENTATION

6.1 Pipelining

One key benefit of using an FPGA, and a way that
we can increase the throughput of our system, is by using
pipelining. Pipelining consists of splitting up steps of a pro-
cess between registers and increases hardware utilization by
concurrently having different operations use the various re-
gions of hardware at once. By making sure that all the
functional units are busy, we maximize the work done by
the hardware, thereby increasing throughput of our kernel.

When we render each frame, each point needs to un-
dergo several mathematical operations, and these must be

done sequentially to ensure the algorithm is correct. But,
it is possible to have some points using the hardware for
one mathematical operation, while other points are using
undergoing another operation. See Fig. 3 for an example
of pipelining - each set of boxes represents an entire task,
so without pipelining an entire task must finish entirely be-
fore the next one starts, but with pipelining, independent
stages of a task can execute concurrently thus improving
throughput. Specifically in our system, steps 2 and 3 are
easy to pipeline, as they work on the same set of particles,
and are sequential mathematical operations.

Figure 3: Pipelining

Nevertheless, when it comes to pipelining, we will both
be limited by the algorithm itself. Specifically, there are
some steps that have inherent data dependencies, where
new tasks cannot be initiated due to relying on data from
previous tasks. As such, we cannot pipeline between cer-
tain steps, as certain steps will require all the data for the
previous steps to be calculated for all of the particles.

6.2 Loop Unrolling

When running a loop on a single-core, non out of order
CPU, each iteration of the loop must run sequentially, even
if there are no dependencies between iterations of the loop
as the CPU can only run one instruction at a time. When
running in hardware, the equivalent of a loop on a CPU
can run easily in parallel; it is as simple as creating more
hardware to do multiple computations of the loop body in
parallel. See Fig. 4 for an illustration of unrolling - in this
figure time is passing from left to right, so initially all the
iterations run sequentially, but in the final stage all of the
iterations run at once. In the fluid simulation algorithm,
there are many places where it loops over all particles, and
does some mathematical transform on them. We are able
to exploit massive parallel gains here, as we are able to
do these computations at the same time for many points,
thereby reducing the time for each loop to complete by a
large factor.

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 6 of 10

Figure 4: Loop Unrolling

6.3 Fixed-Point Numbers

The fluid simulation algorithm we are accelerating uses
a lot of fractional numbers as positions that particles are
at need to be tracked accurately. The distance between
particles is important to have as precise as possible to end
up with the best results. Using floating point numbers
was our initial thought for how to represent these num-
bers, as in nearly any CPU-based implementation floats
would be the default. But, when speed is priority floats
are slow. Floating point numbers use some of their bits to
store the position where the fractional portion of the num-
ber starts (The exponent portion of the top diagram in in
Fig. 5). This means when doing operations on two floats,
their floating points must be aligned, and this is expensive.
An alternative is to use fixed-point numbers, these num-
bers do not store where the fractional portion starts, and
instead the have a fixed number of bits for the integral part
and the fractional part. This can lead to numbers being less
accurate, but for our case we do not ever need more than 16
bits of fraction or integer. Fixed-point numbers are much
faster as they can just be represented as integers, so doing
many common operations are nearly as fast as, or exactly
as fast as doing computations on a normal integer.

Figure 5: Floating-Point vs Fixed-Point Numbers

6.4 FPGA Memories

6.4.1 DRAM

DRAM will be the main memory that our system is
working with. All of the non-accelerated parts of the al-
gorithm will be using their default DRAM configurations.

That is, we will simply of the operating system and the
C++ compiler handle all of the memory interfacing here.
However, in terms of the fluid simulation kernel itself, we
want to make sure that we make as few trips to main mem-
ory as possible. This is due to the fact that, compared to
the following two memory implementations, the DRAM la-
tency is hundreds to thousands of cycles longer. Since we do
not want to incur those penalties, we want to isolate our
interactions with DRAM to just getting the data at the
start of the computation and sending data back at the end.
We should note that aside from the control signals between
the FPGA and the CPU, DRAM will be the main point of
communication and data transfer for our acceleration task.

6.4.2 LUTRAM

The next memory of importance is the LUTRAM,
which is implemented using the multitudinous Lookup Ta-
bles (LUTS) scattered around in all of the combinational
logic blocks in the FPGA. Compared to DRAM, LU-
TRAMs typically take just a single clock cycle of latency.
However, they are typically better suited for storing small
collections of data, as these memories are not dense in terms
of bits/area. As such, they will better be suited for storing
constants such as gravity or any variable figures that we
might use in our calculation.

6.4.3 Block RAM

Block RAMs (BRAMs) are the major ace up our sleeve
in terms of acceleration on FPGAs. Like LUTRAMS,
BRAMs typically have just a single cycle of latency. They
are typically implemented as a collection of various SRAM
banks with some additional functionality (e.x. true double-
porting). Not only are BRAMs incredibly fast for their size,
they are also quite data-dense, and widely reconfigurable in
terms of their addressing modes and their access patterns.
For our project, we will be using the BRAMs to store the
fluid simulation particles. This is a natural fit, as we will
be dealing with hundreds of distinct particles, and editing
their attributes throughout the runtime.

6.5 C++ Dispatcher

Since we are only working on optimizing the heavy com-
putational part of the fluid simulation, the main dispatcher
of the algorithm will run in C++ on the CPU on the board.
This allows us to dynamically dispatch commands through
an AXI control interface to the compute kernels, so when
inputs are ready they can be sent to the fabric, and are
then sent to the next stage by the CPU.

As mentioned earlier, we did not have the time to fully
port the entire Scotty3D stack to the FPGA, so the C++
dispatcher does still exist, but in a more limited form than
we intended. Now we require using SCP for getting the
outputs from the board, and user experience is less friendly
than we had hoped.

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 7 of 10

6.6 Nearest Neighbor Lookup

For the fluid simulation kernel, one task that we will be
performing a lot is the nearest neighbor lookup. In the orig-
inal implementation, this was done with a hash-map that
used a quantized three-dimensional position to lookup an
array of neighboring particles. This provides a O(1) lookup
with an O(n) update. In order to keep this performance in
hardware, we needed to be a bit more creative.

We implemented the neighbor lookup by using a
bounded 3D voxel space of particles. The entire simulation
space is quantized into smaller cubes, and we can quickly
find which cube a particle is in based on its ID and po-
sition. Then, in order to find a particle’s neighbors, the
algorithm simply just looks at all of the neighboring voxels
to the voxel the particle is in, and any particles in those
voxels are counted as neighbors. Initially we set out to use a
”hardware hash map” to implement the neighbor lookups,
but we quickly realized that the 3D voxel space was both
simpler and more efficient to implement.

It’s worth noting that while our approach could sacrifice
some of the accuracy or scope of the simulation, we believe
it is worth doing so that we can avoid the incredible expen-
sive trips to DRAM. Another limitation of our approach is
that since the simulation space is bounded, if particles end
up moving too far they are required to be dropped from
the scene.

7 TEST & VALIDATION

7.1 Speedup Results

Figure 6: Performance increases from optimizations
(5 frames for CPU; 10 frames for FPGA)
*Reported by Vitis HLS

In the table above, we see the timing results of render-
ing 5 frames on the CPU and 10 frames on the FPGA.
Observing the table in Figure 6, as we apply the optimiza-
tions described in the System Architecture section, we see
a decrease in the worst case runtime of our kernel. From
our results, we determined that enabling pipelining was the
most effective optimization we made. Still, we can see that
even without any micro-optimizations, we can still achieve
a 50x speedup over the original CPU implementation. The
spectre of Amdahl’s Law (which discusses the performance
gain relative to what can be optimized) still looms over us,
as our optimizations were eventually bottlenecked by data
transfer bandwidth limitations.

Finally, observing the full runtime (which includes the
the time from actually running the kernel on a set of 512

points as well as exporting the results from the FPGA to
the Host CPU, we can see that With all optimizations ap-
plied, our speedup from the original CPU baseline is a 100x
speedup to render a single frame, which is much larger
than our initial goal of 10x. In order to fully reach this
speedup, we utilized nearly all of the resources available on
the FPGA. In fact we actually hit the largest possible ex-
tent in speedup, as we had maxed out our LUT utilization
at 99%.

7.2 Accuracy Results

Below are accuracy results for 3 different scenes. The
blue particles are the reference fluid particles, and the red
particles are the FPGA output fluid particles.

The first scene is without much motion since the fluid
and the sphere are already colliding, so the 3D fluid sim-
ulation traces are very similar and the Chamfer distance
is extremely small. In the 2nd and 3rd scenes, you can
see a lot more blue than red, which makes sense since we
drop the particles in our FPGA implementation outside of
a fixed voxel space. The Chamfer distances are still quite
reasonable.

Visually, the FPGA-generated fluid simulations in all
three scenes looked reasonable and fluid-like. All of the
scenes met the Chamfer distance requirement (less than
2.56). Therefore we have fully met our design requirements
for accuracy.

Figure 7: (top to bottom): Scene, Fluid Simulation Out-
put, Table of Particle Diameter to Chamfer Distance Ratios

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 8 of 10

7.3 Limitations

7.3.1 Scaling

One limitation of our project in terms of how we inves-
tigated the speedup is that we focused our speedup efforts
on a fixed number of particles. In common literature, we
focused on investigating the effects of strong scaling, which
refers to the effects of accelerating a tasked without also
scaling up the amount of input data. Typically, for this
context, we analyze the results from the viewpoint of Am-
dahl’S Law, which we saw above.

However, some potential future work for this project
could be to consider the effects of speedup when we also
consider increasing the number of particles. In the current
iteration of the project, we did not pursue this task due
to time limitations, but we are confident enough in the re-
sults of the algorithm to provide analysis as to what should
happen (and why we would expect our FPGA implemen-
tation to benefit more from weak scaling than the CPU
implementation).

For the compute side of scaling, we can expect that the
number of computations performed in both the CPU and
the FPGA version of the algorithm will scale equally. Al-
though it should be noted that the FPGA would continue
to have the benefit of concurrency over the CPU, ensuring
it some degree of linear speedup over the CPU.

On the memory side of scaling, as stated above, previous
analysis of the CPU version of the kernel indicated that it
was heavily memory bound, where a large majority of the
time spent in the kernel was spent updating the nearest
neighbor hashmaps. As such, as we increase the simula-
tion size, the sizes of the arrays that the hashmap point to
must also increase as well, which could incur some heavy
costs, given how C++ implements arrays and hashmaps.
Any any sense, growing the sizes of these data structures
while abiding by their structural laws will incur a superlin-
ear performance degradation. On the other hand, for the
FPGA side, whenever we build a kernel for a maximum
neighbor size, we have already committed to supporting
more particles and more particle storage. So, there is little
additional overhead to supporting more particles aside for
a 1) linear increase in the writeback buffer for the kernel
and 2) a Scale Factor

of V oxels increase in the length of the nieghbor
arrays for the various entries in the voxel space.

In the end, while the compute scaling will likely be the
same for the CPU and the FPGA when it comes to weak
scaling, the CPU will be more significantly bottlenecked
by the scaling of the working set due to the structure of
its memory hierarchy. As such, we expect the FPGA to
still outperform the CPU when it comes to scaling up the
number of particles.

7.3.2 Data Transfer

For our project, we needed a method to transfer the
simulation results from the FPGA board to the client ma-
chine. As the focus of our project was to accelerate the
fluid simulation kernel, we just decided that we would stick

with just using SCP to copy the fluid simulation text from
the board. However, if we were to scale up this project,
we would quickly find that SCP would not be able to keep
up with the data transfer rates we would require. If we
observe the following table, we may see the SCP times for
transferring 1, 10, 100, and 1000 frames of data at a time

From the graph, we can see that there is little difference
between 1 and 10 frames at a time; a small increase from
10 to 100 frames at a time, and a large increase from 100 to
1000 frames at a time. The reason 1 frame and 10 frames
have similar times is likely because these are a small number
of frames, so the runtime of both are likely just dominated
by the overhead costs of setting up the SCP transaction
in the first place. The difference between 10 and 100 just
seems to be a fairly regular linear increase. However, the
jump from 100 to 1000 frames is fairly significant. We be-
lieve that this is likely due to the fact that the jump in
packet size between 100 and 1000 frames (1.2MB vs 12MB,
respectively) likely crosses some boundary in the memory
hierarchy. For instance, perhaps 1000 frames happens to
be larger than the size of any of the cache boundaries of the
core on the chip. As such, the 1000 frame transfer might
have to incur many expensive trips to DRAM than the 100
frame transfer.

Either way, transferring 1000 frames of simulation at a
time is a fairly significant task. Ideally, such a transaction
would be bursted into many different batches, rather than
a single batch. Nevertheless, this still demonstrates a po-
tential downfall of our approach, and a potential boundary
in which it would be more performant to just perform all
of the computations on the CPU.

8 PROJECT MANAGEMENT

8.1 Schedule

See last page for our Gantt chart of responsibilities.

8.2 Team Member Responsibilities

Initially Alice and Ziyi were assigned to work on the
acceleration of the core algorithm, and Jeremy would help
with auxiliary features and issues and benchmarking. How-
ever, we realized that it would be better if Alice and Jeremy
swapped, since we realized benchmarking relied on adding

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 9 of 10

new features to Scotty3D, which Alice was better suited for
given her prior experience with Scotty3D, and acceleration
of the core algorithm was better suited for someone with
good knowledge of hardware, which Jeremy had/

8.3 Bill of Materials and Budget

Because of the software and digital hardware oriented
nature of our project, we already have all the materials
necessary and will not be spending any money. The target
FPGA platform is an Ultra96 v2 borrowed from 18-643.

8.4 Risk Management

As mentioned earlier in the report, we were originally
going to support the entire Scotty3D stack on the FPGA
(i.e. rendering, UI, etc.) but during our initial set-up phase
we realized that this was too high of a workload for the
Ultra86, so we had to change our system architecture to
accommodate the FPGA being only a compute unit that
could pipeline with a host computer to run the rest of the
Scotty3D stack.

Getting the base kernel to work also took much longer
than we expected, and we had to use up a lot of our slack
in the project schedule and get rid of nice-to-have features
(such as a request scheduler) that we wanted to include
towards the end.

We were going to extend our implementation to be able
to support arbitrary meshes as well, but we quickly realized
that that necessitated compiling OpenGL on the Ultra96.
That alone took a couple days just to try to get it installed
on the Ultra96, but in the end we were not able to make
much progress, and so we scaled back to only supporting
sphere primitives.

9 ETHICAL ISSUES

Our project likely has two use cases, one is computer
animation, and the other would be for scientific computa-
tion. There are different ethical dilemmas that can stem
from both areas, with some being more significant than
others. For scientific computation, if there is a calculation
that relies on the results of a fluid simulation in order to
make a judgement, for example how thick to make a dam,
an inaccurate simulation could end up causing catastrophic
consequences. Or even if it is something less drastic, being
able to run more simulations in a given time frame would
allow for more results to be produced, and therefore poten-
tially make scientific contributions in a shorter time span.

For animation there are more monetary concerns than
those of danger - if a fluid simulation is able to run faster,
it is possible to produce a product in less time. So either a
better quality final product can be made, or the quantity
of output can be grater, and depending on the goals of who
is using the fluid simulator, both of these possibilities have
large monetary implications, and how money is allocated
comes with a whole heap of ethical concerns of its own.

10 RELATED WORK

There exist a plethora of FPGA-accelerated fluid simu-
lation papers, which adapt and optimize kernels that per-
form traditional fluid simulation functions such as advec-
tion, approximation of divergence and curl, etc. The dif-
ference between our project and the rest is that no others
(to our knowledge) target position-based fluid simulations.

11 SUMMARY

Our system was able to meet our design requirements.
We are able to achieve a 100x speedup, where our require-
ment was to have a 10x speedup. The system is limited
in that it cannot perform fluid simulation outside of the
bounding voxel space, but that unfortunately is tied to the
resources available on the FPGA platform.

11.1 Future Work

Because we wanted to preserve fast neighbor lookups,
we were forced to constrain the voxel space to a small 4 x
4 x 8 unit cube. In the future, we would like to explore
using a larger FPGA platform that could allow for a larger
voxel space, and explore alternative approaches and data
structures for keeping track of neighboring particles.

11.2 Lessons Learned

It’s important to understand which tasks are cross-
disciplinary and which tasks can be accomplished individ-
ually. When working with other people with different tech-
nical backgrounds, it’s also important to be overly explicit
with terminology to make sure everyone is on the same
page.

Glossary of Acronyms

• ASIC - Application-specific Integrated Circuit

• BRAM - Block Random Access Memory

• CLB - Configurable Logic Block

• CPU - Central Processing Unit

• DRAM - Dynamic Random Access Memory

• FPGA – Field Programmable Gate Array

• GPU - Graphics Processing Unit

• HLS – High Level Synthesis

• LUTRAM - Lookup Table Random Access Memory

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 10 of 10

References

[1] M.Kroes Optimizing Memory Mapping for Dataflow
Inference Accelerators: Efficient Memory Utilization
on FPGAs. Delft University of Technology, 2020.

[2] M.Macklin and M. Müller. Position Based Fluids.
ACM Transactions on Graphics, 2013.

[3] M.Martel Enhancing the implementation of mathe-
matical formulas for fixed-point and floating-point
arithmetics. Form Methods Syst Des 35, 265–278
(2009). https://doi.org/10.1007/s10703-009-0068-y

[4] H.Su 3D Deep Learning on Point Cloud Representa-
tion (Analysis). Stanford CS468-17-Spring, 2017.

18-500 Design Project Report: FPGA Accelerated Fluid Simulation - May 7, 2022 Page 11 of 10

F
ig
u
re

8
:
G
a
n
tt

C
h
a
rt

