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System Architecture

Product Pitch
Fluid simulation is a computer graphics problem uniquely suited for FPGA acceleration 
due to high workloads and high amounts of irregularity in computation. Our goal is to 
apply FPGA acceleration to a new approach in fluid simulation: position-based fluids. We 
want to provide at least a 10x speedup compared to a CPU implementation.

Using Scotty3D, a custom 3D graphics software package, we developed an FPGA-based 
fluid simulation system that outputs simulation log files which can be played back in 
Scotty3D offline. We were able to generate visually and mathematically accurate fluids 
with a speedup of 50x over the CPU implementation.

This product is suitable for 3D animation artists who would like to simulate a lot of different 
fluid simulation scenes very quickly.

System Description

System Evaluation (Accuracy)

Conclusions & Additional Information

http://course.ece.cmu.edu/~ece5
00/projects/s22-teame1/

Scan to get read project 
details on our website.

Our system operates both on the CPU and fabric (reconfigurable logic portion) of the 
FPGA board. The CPU takes care of managing the file IO and managing user scenes. It 
then sends instructions to the FPGA to begin the fluid simulation by transferring data via 
the highly efficient AXI Burst protocol (commonly used on many modern SoCs). 
The output is sent back to the CPU from the FPGA.

Overall we were able to meet our goals by a wide margin, which 
we are very proud of. We focused mainly on the technical 
aspects of the project, and put a lot of effort into getting a good 
speedup. It would be nicer in the future to create a more 
polished interface and allow for a larger set of inputs to be 
processed.

Our project combined the disciplines of software systems and 
signal processing for the actual implementation of the fluid 
simulation algorithm, and hardware systems for the FPGA 
optimizations. We were able to separately work on individual 
optimizations and porting the algorithm to the FPGA, but 
needed to work together for how different portions of the 
algorithm communicate together and general design strategies.

CPU & FPGA 
SoC

(On other side)

System Evaluation (Performance)

Figure 2: Animation Output from FPGA system

In our system users prepare inputs off-board and are able to upload them via SCP. 
Then, the accelerated fluid simulation kernel is able to run on these inputs and 
produces an output file that can be viewed/post-processed by the user offline.

Chamfer Distance (m) Particle Diameter (m) Ratio (CD/PD)

Ours 0.26 0.125 0.48

Reference 0.03 0.05 0.6Optimization Description
Pipelining Increase hardware utilization by having different sets of 

inputs executing different stages of the algorithm 
concurrently, rather than waiting for one input to finish 

all steps

Unrolling Create more hardware in order to execute independent 
loop iterations in parallel so execution time decreases.

Fixed-Point Numbers Increase speed of mathematical operations and use 
less space to store numbers with a tradeoff of lower 

precision

Bounded 3D voxel 
space

Ensure O(1) lookup time for neighboring particles (a 
very frequent operation)

Changes
Latency 
(Cycles)

Cycle Time 
(ns)

Kernel Runtime 
(ms)*

Timed 
(ms)

Baseline CPU - - - 15000
Baseline 4,552,408,073 10 4,552.41 603**
Unrolling 4,550,196,233 10 4,550.20 602.612
Pipelining 264,654,053 10 264.65 273.729

Both 200,889,533 10 200.89 250**

Our system supports up to 512 
particles per simulation and supports 
a density of 8194 voxels cubed. The 
number of particles is a standard size 
for Scotty3D’s simulation size, and 
the voxel count was chosen based 
on the limited hardware resources of 
the Ultra96.

Table 1: Optimizations Summary

Table 2: Algorithm Accuracy for Benchmark Scene

Table 3: Performance increases from optimizations
* As reported by Vitis HLS when estimating variable loop counts

** Estimated
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Figure 1: System Block Diagram

Observing the table below, as we apply the optimizations described in the System 
Architecture section, we see a decrease in the worst case runtime of our kernel. From 
our results, we determined that enabling pipelining was the most effective optimization 
we made. Still, we can see that even without any micro-optimizations, we can still 
achieve a 25x speedup over the original CPU implementation. Still, the spectre of 
Amdahl’s Law still looms over us, as our optimizations were eventually bottlenecked by 
data transfer bandwidth limitations. 

We used the Chamfer Distance metric to compare the output of 
the FPGA simulation with the CPU simulation (treating fluid 
simulation traces as point clouds). We compared our Chamfer 
distances to a reference fluid simulation paper’s via ratio of 
Chamfer distance to particle diameter. We found that our 
optimized fluid simulation output is sufficiently accurate.

Figure 3 (left): Visualization of Fluid Simulations as Point Clouds
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Furthermore, as we apply more of our 
speedups, we use more of the on-board 
resources. Broadly speaking, the FPGA 
has “storage” resources (Flip Flops and 
BRAMs) and “compute” resources 
(Lookup Tables and Digital Signal 
Processors), and as we hit lower and 
lower runtimes, we use up more of these 
resources. Still, unlike traditional 
accelerators, FPGA resources solely exist 
for us to use, so we do not make as 
significant of an area tradeoff when we 
use up more of the board.

Chart 1: Runtime vs. Resource Utilization
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