
FPGA-Accelerated Fluid Simulation
Team E1: Jeremy Dropkin, Alice Lai, Ziyi Zuo

18-500 Capstone Design, Spring 2022
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Fluid simulation is a computer graphics problem uniquely suited for FPGA acceleration
due to high workloads and high amounts of irregularity in computation. Our goal is to
apply FPGA acceleration to a new approach in fluid simulation: position-based fluids. We
want to provide at least a 10x speedup compared to a CPU implementation.

Using Scotty3D, a custom 3D graphics software package, we developed an FPGA-based
fluid simulation system that outputs simulation log files which can be played back in
Scotty3D offline. We were able to generate visually and mathematically accurate fluids
with a speedup of 50x over the CPU implementation.

This product is suitable for 3D animation artists who would like to simulate a lot of different
fluid simulation scenes very quickly.

System Description

System Evaluation (Accuracy)

Conclusions & Additional Information

http://course.ece.cmu.edu/~ece5
00/projects/s22-teame1/

Scan to get read project
details on our website.

Our system operates both on the CPU and fabric (reconfigurable logic portion) of the
FPGA board. The CPU takes care of managing the file IO and managing user scenes. It
then sends instructions to the FPGA to begin the fluid simulation by transferring data via
the highly efficient AXI Burst protocol (commonly used on many modern SoCs).
The output is sent back to the CPU from the FPGA.

Overall we were able to meet our goals by a wide margin, which
we are very proud of. We focused mainly on the technical
aspects of the project, and put a lot of effort into getting a good
speedup. It would be nicer in the future to create a more
polished interface and allow for a larger set of inputs to be
processed.

Our project combined the disciplines of software systems and
signal processing for the actual implementation of the fluid
simulation algorithm, and hardware systems for the FPGA
optimizations. We were able to separately work on individual
optimizations and porting the algorithm to the FPGA, but
needed to work together for how different portions of the
algorithm communicate together and general design strategies.

CPU & FPGA
SoC

(On other side)

System Evaluation (Performance)

Figure 2: Animation Output from FPGA system

In our system users prepare inputs off-board and are able to upload them via SCP.
Then, the accelerated fluid simulation kernel is able to run on these inputs and
produces an output file that can be viewed/post-processed by the user offline.

Chamfer Distance (m) Particle Diameter (m) Ratio (CD/PD)

Ours 0.26 0.125 0.48

Reference 0.03 0.05 0.6Optimization Description
Pipelining Increase hardware utilization by having different sets of

inputs executing different stages of the algorithm
concurrently, rather than waiting for one input to finish

all steps

Unrolling Create more hardware in order to execute independent
loop iterations in parallel so execution time decreases.

Fixed-Point Numbers Increase speed of mathematical operations and use
less space to store numbers with a tradeoff of lower

precision

Bounded 3D voxel
space

Ensure O(1) lookup time for neighboring particles (a
very frequent operation)

Changes
Latency
(Cycles)

Cycle Time
(ns)

Kernel Runtime
(ms)*

Timed
(ms)

Baseline CPU - - - 15000
Baseline 4,552,408,073 10 4,552.41 603**
Unrolling 4,550,196,233 10 4,550.20 602.612
Pipelining 264,654,053 10 264.65 273.729

Both 200,889,533 10 200.89 250**

Our system supports up to 512
particles per simulation and supports
a density of 8194 voxels cubed. The
number of particles is a standard size
for Scotty3D’s simulation size, and
the voxel count was chosen based
on the limited hardware resources of
the Ultra96.

Table 1: Optimizations Summary

Table 2: Algorithm Accuracy for Benchmark Scene

Table 3: Performance increases from optimizations
* As reported by Vitis HLS when estimating variable loop counts

** Estimated

Fluid
Sim Host

FPGA
Control

Begin fluid
simulation

FPGA MEMORY:
BRAM, DSP, FF & LUT

Scene Data

AXI Burst transfer

Step 1
Pipeline

Steps 2 & 3
Pipeline

Fluid Simulation Kernel (Main Algorithm)

Updated Particles

AXI Burst transfer

Internal
Data Transfers

Figure 1: System Block Diagram

Observing the table below, as we apply the optimizations described in the System
Architecture section, we see a decrease in the worst case runtime of our kernel. From
our results, we determined that enabling pipelining was the most effective optimization
we made. Still, we can see that even without any micro-optimizations, we can still
achieve a 25x speedup over the original CPU implementation. Still, the spectre of
Amdahl’s Law still looms over us, as our optimizations were eventually bottlenecked by
data transfer bandwidth limitations.

We used the Chamfer Distance metric to compare the output of
the FPGA simulation with the CPU simulation (treating fluid
simulation traces as point clouds). We compared our Chamfer
distances to a reference fluid simulation paper’s via ratio of
Chamfer distance to particle diameter. We found that our
optimized fluid simulation output is sufficiently accurate.

Figure 3 (left): Visualization of Fluid Simulations as Point Clouds

Micro SD Card - Boot Drive

Furthermore, as we apply more of our
speedups, we use more of the on-board
resources. Broadly speaking, the FPGA
has “storage” resources (Flip Flops and
BRAMs) and “compute” resources
(Lookup Tables and Digital Signal
Processors), and as we hit lower and
lower runtimes, we use up more of these
resources. Still, unlike traditional
accelerators, FPGA resources solely exist
for us to use, so we do not make as
significant of an area tradeoff when we
use up more of the board.

Chart 1: Runtime vs. Resource Utilization

Step 4
Pipeline

Step 5
Pipeline

