
Team E1 - FPGA Accelerated Fluid Simulation

Jeremy Dropkin, Alice Lai, Ziyi Zuo
Add your 12 slides after this slide… [remember, 12 min talk + 3 min Q/A]

Remember – Relevant figures 
(and tables) can be worth 

“a thousand words”!



Motivation

● Scotty3D is a 3D graphics software package that 
runs only as a multithreaded CPU Program

● Fluid Simulation Library runs poorly on CPU, 
throttling the FPS to fractional values

● Our goal is to create an FPGA-based application 
that can accelerate Scotty3D’s Fluid Simulation 
Library

Scotty3D Interface



Performance Requirements

● Baseline
○ ~3 second render time (per 

frame) on an i7-8665U @ 1.90 GHz 
x 8

● Our goal is to make at least 
a 10x speedup

○ ~300ms to render per frame



Data Communication Requirements

● Data transfer between CPU and fabric 
should not bottleneck the actual 
rendering task

● Minimize interpretation overhead 
between CPU and FPGA format

○ CPU/Fabric communication use AXI interface
AXI Interface Waveform Diagram



Use Case Requirements

● Accelerated implementation does not add to overhead or 
complications to the user experience

○ We will collect user feedback through user testing to ensure there is 
no additional overhead

● Perform computation within a 10W TBP envelope
○ Ensure low-power compute
○ Desktops typically run between 50W and 100W



Solution Approach
● Accelerate Fluid Simulation Algorithm on the FPGA fabric
● CPU handles the rest of the Scotty3D rendering stack

CPU

User Interface
Rendering

FPGA

Fluid Simulation 
Algorithm

FSA Request & Data

Processed Data



Solution Platform - Motivation
Why FPGA?

● CPU multithreading is not enough to take advantage of 
high thread-level parallelism

● GPUs are capable of exploiting thread-level 
parallelism using vectorized operators

● FPGA!
○ Extract high thread-level parallelism
○ Handle irregular code by instantiating extra 

control structures
○ Highly flexible memory architectures

From 18643 course slides



Solution Platform
● Xilinx Vivado Design Suite

○ Development and synthesis platform for Xilinx 
FPGA platforms

● Vitis HLS
○ High Level Synthesis

■ Generate hardware from C/C++ code
■ Control structures through use of pragmas 

and compiler directives
■ Result is transpiled to HDL

● Xilinx Ultra96 FPGA
○ Arm Core + Reconfigurable Fabric



Solution Approach - Algorithm

● Exploit thread-level parallelism

○ Unroll loops and instantiate multiple 
computational units

● Exploit FPGA BRAMS
○ Block RAM - high speed versatile memories 
○ Large BRAM capacity means we can make multiple 

copies of data
○ Use this to accelerate neighbor-finding tasks



Technical Challenges

● Computation Irregularity
○ Computing collisions with neighboring particles is 

a task with a high level of irregularity

● Software/Hardware interfacing
○ Communication needs to happen over a seamless 

interface to minimize data serialization/unpacking

Computationally Irregular Structure



Testing & Verification

● Quantitative evaluation:
○ Time for each code chunk
○ Time for each frame to render
○ Comparison of resulting data 

against a golden result

● Qualitative evaluation:
○ Visual inspection to ensure 

rendered animations still 
retain “fluid-like” quality 

Demo of fluid simulation



Tasks and Division of Labor

- Introduce new intuitive UI

- Refactor algorithm in a 
straightforward manner for 
FPGA translation

- Organize data transfer for 
new UI

- Manage data transfer 
between FPGA and CPU

- Set up HDMI Interface for 
Visualization

- Optimize fluid simulation 
algorithm on FPGA

- Implement Request 
scheduler

- Analyze computational 
kernel for exploitable 
parallelism and 
acceleration opportunities

 
- Set up Vitis HLS workspace 
and build configurations 

- Optimize fluid simulation 
algorithm on FPGA

Alice Jeremy Ziyi



Schedule

TASK 
TITLE

TASK 
OWN
ER

WEEK 4 WEEK 5 WEEK 6 WEEK 7 WEEK 8 WEEK 9 WEEK 10 WEEK 11 WEEK 12 WEEK 13 WEEK 14

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

Platfo
rm

Initial 
Workfl
ow 
Setup All

Figure 
out 
memo
ry 
transf
er Ziyi

Figure 
out 
HDMI

Jerem
y

Integr
ate 
data 
in / 
data 
out

Jerem
y

Identif
y 
code 
chunk
s that 
compl
icate 
FPGA 
synth
esis All

Rede
sign 
C++ 
code 
to 
reduc
e 
compl
exity Alice

Reim
pleme
nt 
C++ 
code 
for 
compl
exity

Alice/
Ziyi

Slack All

FPGA

Analy
ze 
Hard
ware 
Reso
urces Ziyi

Set 
up 
Perfor
manc
e 
Bench
marki
ng Ziyi

Get 
data 
from 
interfa
ce

Jerem
y/Ziyi

Run 
base 
kernel 
on 
FPGA Ziyi

Integr
ation

Jerem
y/Ziyi

Analy
ze 
Perfor
manc
e of 
first 
iterati
on Ziyi

Slack

Accel
eratio
n

Initiali
ze 
Next 
Positi
ons All

Get 
Newto
n's 
Metho
d 
Scalin
g 
Factor
s All

Get 
Particl
e 
Positi
on 
Corre
ctions All

Updat
e 
Particl
e 
Positi
ons All

Reco
nstruc
t Grid 
Struct
ure All

Slack All

CPU

Set 
up 
Perfor
manc
e 
Bench
marki
ng

Jerem
y

Com
mand-
Line 
Interfa
ce Alice

Data 
out 
from 
interfa
ce

Alice/
Jerem
y

Requ
est 
Sched
uler

Jerem
y

Requ
est 
Deplo
yment

Jerem
y

Slack All

Misc

Final 
Prese
ntatio
n 
Slides All

Slack All


