Team E1 - FPGA Accelerated Fluid Simulation

Jeremy Dropkin, Alice Lai, Ziyi Zuo

Add your 12 slides after this slide... [remember, 12 min talk + 3 min Q/A]

Motivation

e Scotty3D 1is a 3D graphics software package that
runs only as a multithreaded CPU Program

e Fluid Simulation Library runs poorly on CPU,
throttling the FPS to fractional values

e Our goal 1is to create an FPGA-based application
that can accelerate Scotty3D’s Fluid Simulation Scotty3D Interface
Library

Performance Requirements

Timing Breakdown of Fluid Simulation Update Iteration

e Baseline 2
o ~3 second render time (per 5 i
frame) on an i7-8665U @ 1.90 Gt
15
x 8 8 1095637975 11.3735658
g 10
g
e Our goal 1s to make at leas 5
0.1543772979 0.1250714789
a 10x speedup 0 —— —— . ‘
Initialize Next ~ Get Newton's Particle Position Update Particle Create New Grid
o ~300ms to ren C| er p er .': rame Positions MethggctS;allng Correction Positions Structure

OPERATION

Data Communication Requirements

e Data transfer between CPU and fabric atatatal; (aEaEaEa skl xR s EaE
should not bottleneck the actual wton Y
g awsize 77 avyes Y 7 o
rendering task W 50—
g amvauo _ __f /
| AWREADY I\ I i
5[W 22727777770 "% Nen\eresi 77
g WVALID)Q(\ [
. e . . . 5| waeoy [\
e Minimize interpretation overhead L e I [
?’,' sresr 0 N _or YO,
between CPU and FPGA format s i T
o CPU/Fabric communication use AXI +interface £

AXI Interface Waveform Diagram

Use Case Requirements

e Accelerated implementation does not add to overhead or

complications to the user experience

o We will collect user feedback through user testing to ensure there is
no additional overhead

e Perform computation within a 10W TBP envelope

o Ensure low-power compute
o Desktops typically run between 50W and 100W

Solution Approach

e Accelerate Fluid Simulation Algorithm on the FPGA fabric
CPU handles the rest of the Scotty3D rendering stack

Poh reavest 4 oo
rocessed baa|

Solution Platform - Motivation

Why FPGA?

e CPU multithreading is not enough to take advantage of
high thread-level parallelism

e GPUs are capable of exploiting thread-level
parallelism using vectorized operators

e FPGA!
o Extract high thread-level parallelism

o Handle 1irregular code by instantiating extra
control structures
o Highly flexible memory architectures

committed:
- data type
- operations

ASIC) Efficiency
A (“good” per “cost”)
- exploitable

parallelism)

Ease ~ ; Versatility
‘/ \\N |

From 18643 course slides

Solution Platform

e Xilinx Vivado Design Suite

o Development and synthesis platform for Xilinx
FPGA platforms

ANVAN =)

e Vitis HLS
o High Level Synthesis
m Generate hardware from C/C++ code
m Control structures through use of pragmas

and compiler directives
m Result 1is transpiled to HDL W XILINX

[J X-i-l.-inx U-l.tra96 FPGA A VITISH

o Arm Core + Reconfigurable Fabric

Solution Approach - Algorithm e

1
2 apply forces v; <= v; + Arf,., (x;)
3: predict position X <= X; +Arv;
4: end for

5: for all particles i do

6: find neighboring particles N;j(x])
7: end for

8: while irer < solverlterations do

9 for all particles i do

e Exploit thread-level parallelism

o Unroll loops and 1instantiate multiple

. . 10: calculate A;
computational units 11: end for
12: for all particles i do
13: calculate Ap;
14: perform collision detection and response
e Exploit FPGA BRAMS I o S
. . . 16: for all particles i do
o Block RAM - high speed versatile memories 17: update position X! <= X +Ap;
. . 18: end for
o Large BRAM capacity means we can make multiple g endwhile
cop‘ies of data 20: for all panicle.s:i do :
21: update velocity v; <= 5 (X] —X;

o Use this to accelerate neighbor-finding tasks 22 apply vorticity confinement and XSPH viscosity
23: update position X; <= X;
24: end for

Technical Challenges

e Computation Irregularity
o Computing collisions with neighboring particles is
a task with a high level of -drregularity

e Software/Hardware interfacing
o Communication needs to happen over a seamless
interface to minimize data serialization/unpacking

Computationally Irregular Structure

Testing & Verification

e Quantitative evaluation:
o Time for each code chunk
o Time for each frame to render
o Comparison of resulting data
against a golden result

e Qualitative evaluation:
o Visual inspection to ensure
rendered animations still
retain “fluid-1like” quality

Demo of fluid simulation

Tasks and Division of Labor

Alice

Jeremy

Ziyi

- Introduce new intuitive UI

- Refactor algorithm in a
straightforward manner for
FPGA translation

- Organize data transfer for
new UI

Manage data transfer
between FPGA and CPU

Set up HDMI Interface for
Visualization

Optimize fluid simulation
algorithm on FPGA

Implement Request
scheduler

- Analyze computational
kernel for exploitable
parallelism and
acceleration opportunities

- Set up Vitis HLS workspace
and build configurations

- Optimize fluid simulation
algorithm on FPGA

Schedule

e WEEK 13
TASK TITLE OWNER

Platform

Initial Workflow Setup All

Figure out memory transfer Ziyi

Figure out HDMI Jeremy —

Integrate data in / data out Jeremy

Identify code chunks that complicate FPGA

synthesis All

Redesign C++ code to reduce complexity | Alice

Reimplement C++ code for complexity Alice/Ziyi

Slack All

FPGA

Analyze Hardware Resources Ziyi

Set up Performance Benchmarking Ziyi

Get data from interface Jeremy/Ziyi

Run base kernel on FPGA Ziyi

Integration Jeremy/Ziyi

Analyze Performance of first iteration Ziyi

Slack

Acceleration

Initialize Next Positions All

Get Newton's Method Scaling Factors All

Get Particle Position Corrections All

Update Particle Positions All

Reconstruct Grid Structure All

Slack All

CPU

Set up Performance Benchmarking Jeremy

Command-Line Interface Alice

Data out from interface

Alice/leremy

Request Scheduler Jeremy
Request Deployment Jeremy
Slack All
Misc

Final Presentation Slides All
Slack All

