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Use Case

e Simulating fluids on the CPU 1s
slow due to large number of
computations and large number
of particles

e We want to simulate fluids on
the FPGA to take advantage of
the FPGA’s parallelism and
provide significant speedup
with low power consumption



https://docs.google.com/file/d/1VQSgzBoXaKfp35rSZTa3VQ_zm4NvWBcJ/preview

Use Case - Quantitative Requirements

e Baseline
o ~3 second render time (per frame) on an i7-8665U @ 1.90 GHz x 8

e Our goal is to make at least a 10x speedup for simulating a fluid

of size 512 particles
o Speedup Motivation:
m Ultra96v2 Fabric Clock ~150MHz, ~13x slower than the i17-8665U
m Much of the compute task is data movement
e Cache/DRAM -> 10s/1000s of cycles; SRAM -> 1s of cycles
m Multiplying these factors together gets ~10x parallelism/speedup

o Number of Particles Motivation:
m 512 particles 1is the standard size for Scotty3D fluid simulations



Solution Approach

e Accelerate Fluid Simulation Algorithm on the FPGA fabric
CPU handles the rest of the Scotty3D rendering stack
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System Overview
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Fluid Simulation Kernel Optimizations

Step 1: 3-Level Hardware Map

e 3D Point Lookup
e Need an efficient implementation of
hashmap for BRAM

\~
X BRAM \h

Y BRAM

Z BRAM

Algorithm 1 Simulation Loop

1: for all particles i do
2 apply forces v; <= v; + Arf,., (x;)
3 predict position x] < X; +Arv;
4: end for
5: for all particles i do
6:  find neighboring particles N;(x;) Step 1
7: end for
8: while irer < solverlterations do
9 for all particles i do
10: calculate 4;
11:  end for
12:  for all particles i do
13: calculate Ap;
14: perform collision detection and response
15:  end for
16:  for all particlesi do
17: update position X; <= x! +Ap;
18:  end for
19: end while
20: for all particles i do
21: update velocity v; <= & (x,-' — x,')
22:  apply vorticity confinement and XSPH viscosity
23:  update position X; <= X}
24: end for




Fluid Simulation Kernel Optimizations

Algorithm 1 Simulation Loop

1: for all particles i do
2 apply forces v; <= v; + Arf,., (x;)
3 predict position x] < X; +Arv;
. . . 4: end for

e We can pipeline different chunks together s forall particlesi do
6'
7
8

Steps 2 & 3: Pipelining

. . . find neighboring particles N;(x}) Step 1
if they are independent of each other! Sl "

- while irer < solverlterations do

9:  for all particlesi do
10: calculate 2; Step 2

11:  end for

12:  for all particles i do

13: calculate Ap; Step 3

14: perform collision detection and response
‘ 15:  end for

16:  for all particlesi do

17: update position X; <= x! +Ap;

18:  end for

19: end while

20: for all particles i do

21:  update velocity v; < Z\rl‘ (x] —x;)

22:  apply vorticity confinement and XSPH viscosity
23:  update position X; <= X}

24: end for




Fluid Simulation Kernel Optimizations

Algorithm 1 Simulation Loop

Steps 4 & 5: Use Block RAM (BRAM)

1: for all particles i do
2 apply forces v; <= v; + Arf,., (Xx;)
3 predict position x] < X; +Arv;
e We want to avoid contention of the memory e SO
5: for all particles i do
devices where the particles are stored 6:  find neighboring particles N;(x;)
7
8
9

. : end for
o Create copies of data
for all particles i do

- while iter < solverlterations do
m Increase accessibility 10:  calculate A,
. 11:  end for
o MOd-Ify BRAM arrays 12:  for all particlesi do
m Reshape - Widen ports S e .
14: perform collision detection and response

15: _ end for
16:  for all particlesi do
17: update position X} <= X +Ap; Step 4

18: end for

m Partition - Spl'lt banks 20: for all particles i do Sten 5
21:  update velocity v; < 31 (xf —x;) &
22:  apply vorticity confinement and XSPH viscosity
23:  update position X; <= X;

24: end for




General Optimizations

e Unrolling
o Instantiate more hardware to
increase concurrency
© Run each diteration in parallel
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General Optimizations

e Fixed point numbers instead of floating point

o Floating point numbers requires lining up the floating point
o Fixed point numbers are stored as ints - faster and more optimal

sign < exponent — mantissa >
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Floating-Point Format

sign 4————— integer part
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Fixed-Point Format
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Implementation Plan

e Xilinx Ultra96e FPGA Platform
o Vitis High Level Synthesis (HLS) »> Generate
hardware from C/C++ code

ANVAN = )

e Scotty3D codebase

e Mini Display Port cable for Visualization

(Purchase) W XILINX

a VITIS.



Testing & Verification

e Quantitative evaluation:

o Reduce the aggregate runtime of
steps 2 & 3 by 50%

o Maintain pace with runtime of steps
1 & 4 (relative to baseline)

o Reduce runtime of step 5 by 20%

o Comparison of resulting data against
a golden result

m Goal: 90% accuracy

e Qualitative evaluation:
o Visual inspection to ensure rendered
animations still retain “fluid-like”
quality
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Schedule & Division of Labor
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