
Team E1 - FPGA Accelerated Fluid Simulation

Jeremy Dropkin, Alice Lai, Ziyi Zuo
Add your 12 slides after this slide… [remember, 12 min talk + 3 min Q/A]

Remember – Relevant figures 
(and tables) can be worth 

“a thousand words”!



Use Case

● Simulating fluids on the CPU is 
slow due to large number of 
computations and large number 
of particles

● We want to simulate fluids on 
the FPGA to take advantage of 
the FPGA’s parallelism and 
provide significant speedup 
with low power consumption

https://docs.google.com/file/d/1VQSgzBoXaKfp35rSZTa3VQ_zm4NvWBcJ/preview


Use Case - Quantitative Requirements

● Baseline
○ ~3 second render time (per frame) on an i7-8665U @ 1.90 GHz x 8

● Our goal is to make at least a 10x speedup for simulating a fluid 
of size 512 particles

○ Speedup Motivation:
■ Ultra96v2 Fabric Clock ~150MHz, ~13x slower than the i7-8665U
■ Much of the compute task is data movement

● Cache/DRAM -> 10s/1000s of cycles; SRAM -> 1s of cycles
■ Multiplying these factors together gets ~10x parallelism/speedup

○ Number of Particles Motivation:
■ 512 particles is the standard size for Scotty3D fluid simulations



Solution Approach
● Accelerate Fluid Simulation Algorithm on the FPGA fabric
● CPU handles the rest of the Scotty3D rendering stack

CPU

- User Interface
- Rendering

FPGA Fabric

Fluid Simulation 
Algorithm

Simulation Request & 
Scene Data

Processed Data



System Overview

Scotty3d
Core
(CPU)

FPGA
Fabric 

Controller

Signal 
start of 
simulation

FPGA MEMORY 
- BRAMs

Particles 
Scene Data

AXI Burst transfer
(from DRAM)

Step 1
Pipeline

Steps 2 & 3
Pipeline

Step 4
Pipeline

Step 5
Pipeline

Fluid Simulation Kernel (Main Algorithm)

Updated Particles 

AXI Burst transfer (to DRAM)

Internal
Data
Transfers



Fluid Simulation Kernel Optimizations

Step 1: 3-Level Hardware Map

● 3D Point Lookup
● Need an efficient implementation of 

hashmap for BRAM

Step 1

X BRAM
Y BRAM

Z BRAM



Fluid Simulation Kernel Optimizations

Steps 2 & 3: Pipelining 

● We can pipeline different chunks together 
if they are independent of each other!

Step 2

Step 3

Step 1



Steps 4 & 5: Use Block RAM (BRAM)

● We want to avoid contention of the memory 
devices where the particles are stored

○ Create copies of data
■ Increase accessibility

○ Modify BRAM arrays
■ Reshape - Widen ports

■ Partition - Split banks

Fluid Simulation Kernel Optimizations

Step 2

Step 3

Step 1

Step 4

Step 5



General Optimizations

● Unrolling
○ Instantiate more hardware to 

increase concurrency 
○ Run each iteration in parallel



General Optimizations

● Fixed point numbers instead of floating point
○ Floating point numbers requires lining up the floating point
○ Fixed point numbers are stored as ints - faster and more optimal



Implementation Plan
● Xilinx Ultra96 FPGA Platform

○ Vitis High Level Synthesis (HLS) → Generate 
hardware from C/C++ code

● Scotty3D codebase 

● Mini Display Port cable for Visualization 
(Purchase)



Testing & Verification

● Quantitative evaluation:
○ Reduce the aggregate runtime of 

steps 2 & 3 by 50%
○ Maintain pace with runtime of steps 

1 & 4 (relative to baseline)
○ Reduce runtime of step 5 by 20%
○ Comparison of resulting data against 

a golden result
■ Goal: 90% accuracy 

● Qualitative evaluation:
○ Visual inspection to ensure rendered 

animations still retain “fluid-like” 
quality 



Schedule & Division of Labor
Je

re
m

y
A

lic
e

Zi
yi

Te
am

Feb 26 Mar 5 Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23Apr 30 May 7 May 14

Infrastructure 
Setup

Software Rewrite

Data IO

In-Depth Acceleration

In-Depth Acceleration

Final Presentation

Integration

Performance 
Benchmarks

Request 
Scheduler

Algorithm 
Analysis

Integration

Slack

Data Transfer and Base 
Kernel Functionality

Data Transfer 
and Base Kernel 

Functionality


