Team E1 - FPGA Accelerated Fluid Simulation

Jeremy Dropkin, Alice Lai, Ziyi Zuo

Add your 12 slides after this slide... [remember, 12 min talk + 3 min Q/A]

Use Case

• Simulating fluids on the CPU is slow due to large number of computations and large number of particles

• We want to simulate fluids on the FPGA to take advantage of the FPGA's parallelism and provide significant speedup with low power consumption

Use Case - Quantitative Requirements

- Baseline
 - \circ ~3 second render time (per frame) on an i7-8665U @ 1.90 GHz x 8
- Our goal is to make at least a **10x speedup** for simulating a fluid of size **512 particles**
 - Speedup Motivation:
 - Ultra96v2 Fabric Clock ~150MHz, ~13x slower than the i7-8665U
 - Much of the compute task is data movement
 - Cache/DRAM -> 10s/1000s of cycles; SRAM -> 1s of cycles
 - Multiplying these factors together gets ~10x parallelism/speedup
 - Number of Particles Motivation:
 - 512 particles is the standard size for Scotty3D fluid simulations

Solution Approach

- Accelerate Fluid Simulation Algorithm on the FPGA fabric
- CPU handles the rest of the Scotty3D rendering stack

System Overview

Fluid Simulation Kernel Optimizations

Step 1: 3-Level Hardware Map

- 3D Point Lookup
- Need an efficient implementation of hashmap for BRAM

Algorithm 1 Simulation Loop				
1:	for all particles i do			
2:	apply forces $\mathbf{v}_i \Leftarrow \mathbf{v}_i + \Delta t \mathbf{f}_{ext}(\mathbf{x}_i)$			
3:	predict position $\mathbf{x}_i^* \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$			
4:	end for			
5:	for all particles i do			
6:	find neighboring particles $N_i(\mathbf{x}_i^*)$ Step 1			
7:	end for			
8:	while iter < solverIterations do			
9:	for all particles i do			
10:	calculate λ_i			
11:	end for			
12:	for all particles i do			
13:	calculate $\Delta \mathbf{p}_i$			
14:	perform collision detection and response			
15:	end for			
16:	for all particles i do			
17:	update position $\mathbf{x}_i^* \Leftarrow \mathbf{x}_i^* + \Delta \mathbf{p}_i$			
18:	end for			
19:	end while			
20:	for all particles i do			
21:	update velocity $\mathbf{v}_i \Leftarrow \frac{1}{\lambda_i} (\mathbf{x}_i^* - \mathbf{x}_i)$			
22:	apply vorticity confinement and XSPH viscosity			
23:	update position $\mathbf{x}_i \Leftarrow \mathbf{x}_i^*$			
24:	end for			

Fluid Simulation Kernel Optimizations

Steps 2 & 3: Pipelining

• We can pipeline different chunks together if they are independent of each other!

Alg	orithm 1 Simulation Loop	
1:	for all particles i do	
2:	apply forces $\mathbf{v}_i \Leftarrow \mathbf{v}_i + \Delta t \mathbf{f}_{ext}(\mathbf{x}_i)$	
3:	predict position $\mathbf{x}_i^* \Leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$	
4:	end for	
5:	for all particles i do	0. 4
6:	find neighboring particles $N_i(\mathbf{x}_i^*)$	Step 1
7:	end for	
8:	while iter < solverIterations do	
9:	for all particles i do	010
10:	calculate λ_i	Step Z
11:	end for	
12:	for all particles i do	Stan 3
13:	calculate $\Delta \mathbf{p}_i$	oreh o
14:	perform collision detection and respo	onse
15:	end for	
16:	for all particles i do	
17:	update position $\mathbf{x}_i^* \Leftarrow \mathbf{x}_i^* + \Delta \mathbf{p}_i$	
18:	end for	
19:	end while	
20:	for all particles i do	
21:	update velocity $\mathbf{v}_i \leftarrow \frac{1}{\Lambda i} (\mathbf{x}_i^* - \mathbf{x}_i)$	
22:	apply vorticity confinement and XSPH	viscosity
23:	update position $\mathbf{x}_i \leftarrow \mathbf{x}_i^*$	
24:	end for	

Fluid Simulation Kernel Optimizations

Steps 4 & 5: Use Block RAM (BRAM)

- We want to avoid contention of the memory devices where the particles are stored
 - Create copies of data
 - Increase accessibility
 - \circ Modify BRAM arrays
 - Reshape Widen ports

Partition - Split banks

1:	for all particles i do	
2:	apply forces $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \mathbf{f}_{ext}(\mathbf{x}_i)$	
3:	predict position $\mathbf{x}_i^* \Leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$	
4:	end for	
5:	for all particles i do	
6:	find neighboring particles $N_i(\mathbf{x}_i^*)$	Step 1
7:	end for	
8:	while iter < solverIterations do	
9:	for all particles i do	01 0
10:	calculate λ_i	Step 2
11:	end for	
12:	for all particles i do	Stop 2
13:	calculate $\Delta \mathbf{p}_i$	oteh o
14:	perform collision detection and res	ponse
15:	end for	
16:	for all particles i do	Stop /
17:	update position $\mathbf{x}_i^* \Leftarrow \mathbf{x}_i^* + \Delta \mathbf{p}_i$	Step 4
18:	end for	
19:	end while	
20:	for all particles i do	Stop 5
21:	update velocity $\mathbf{v}_i \leftarrow \frac{1}{\Delta t} (\mathbf{x}_i^* - \mathbf{x}_i)$	Step 0
22:	apply vorticity confinement and XSPI	H viscosity
23:	update position $\mathbf{x}_i \leftarrow \mathbf{x}_i^*$	
~ .	1.0	

General Optimizations

- Unrolling
 - Instantiate more hardware to increase concurrency
 - \circ Run each iteration in parallel

General Optimizations

- Fixed point numbers instead of floating point
 - Floating point numbers requires lining up the floating point
 - \circ $\,$ Fixed point numbers are stored as ints faster and more optimal $\,$

Implementation Plan

- Xilinx Ultra96 FPGA Platform
 - Vitis High Level Synthesis (HLS) → Generate hardware from C/C++ code
- Scotty3D codebase
- Mini Display Port cable for Visualization (Purchase)

Testing & Verification

• Quantitative evaluation:

- Reduce the aggregate runtime of steps 2 & 3 by 50%
- Maintain pace with runtime of steps
 1 & 4 (relative to baseline)
- \circ $\;$ Reduce runtime of step 5 by 20% $\;$
- Comparison of resulting data against
 - a golden result
 - Goal: 90% accuracy

Timing Breakdown of Fluid Simulation Update Iteration

OPERATION

- Qualitative evaluation:
 - Visual inspection to ensure rendered animations still retain "fluid-like" quality

Schedule & Division of Labor

