Team E1 - FPGA Accelerated Fluid Simulation

Jeremy Dropkin, Alice Lai, Ziyi Zuo

Add your 12 slides after this slide... [remember, 12 min talk + 3 min Q/A]

Use Case

e Simulating fluids on the CPU 1s
slow due to large number of
computations and large number
of particles

e We want to simulate fluids on
the FPGA to take advantage of
the FPGA’s parallelism and
provide significant speedup
with low power consumption

https://docs.google.com/file/d/1VQSgzBoXaKfp35rSZTa3VQ_zm4NvWBcJ/preview

Use Case - Quantitative Requirements

e Baseline
o ~3 second render time (per frame) on an i7-8665U @ 1.90 GHz x 8

e Our goal is to make at least a 10x speedup for simulating a fluid

of size 512 particles
o Speedup Motivation:
m Ultra96v2 Fabric Clock ~150MHz, ~13x slower than the i17-8665U
m Much of the compute task is data movement
e Cache/DRAM -> 10s/1000s of cycles; SRAM -> 1s of cycles
m Multiplying these factors together gets ~10x parallelism/speedup

o Number of Particles Motivation:
m 512 particles 1is the standard size for Scotty3D fluid simulations

Solution Approach

e Accelerate Fluid Simulation Algorithm on the FPGA fabric
CPU handles the rest of the Scotty3D rendering stack

rocessed baa|

System Overview

Updated Particles

AXI Burst transfer (to DRAM)

Particles
Scene Data

AXI Burst transfer
(from DRAM)

Internal
Signal Data
start of Transfers

simulation

F1u1d Simulation Kernel (Main Algorithm)

Fluid Simulation Kernel Optimizations

Step 1: 3-Level Hardware Map

e 3D Point Lookup
e Need an efficient implementation of
hashmap for BRAM

\~
X BRAM \h

Y BRAM

Z BRAM

Algorithm 1 Simulation Loop

1: for all particles i do
2 apply forces v; <= v; + Arf,., (x;)
3 predict position x] < X; +Arv;
4: end for
5: for all particles i do
6: find neighboring particles N;(x;) Step 1
7: end for
8: while irer < solverlterations do
9 for all particles i do
10: calculate 4;
11: end for
12: for all particles i do
13: calculate Ap;
14: perform collision detection and response
15: end for
16: for all particlesi do
17: update position X; <= x! +Ap;
18: end for
19: end while
20: for all particles i do
21: update velocity v; <= & (x,-' — x,')
22: apply vorticity confinement and XSPH viscosity
23: update position X; <= X}
24: end for

Fluid Simulation Kernel Optimizations

Algorithm 1 Simulation Loop

1: for all particles i do
2 apply forces v; <= v; + Arf,., (x;)
3 predict position x] < X; +Arv;
. . . 4: end for

e We can pipeline different chunks together s forall particlesi do
6'
7
8

Steps 2 & 3: Pipelining

. . . find neighboring particles N;(x}) Step 1
if they are independent of each other! Sl "

- while irer < solverlterations do

9: for all particlesi do
10: calculate 2; Step 2

11: end for

12: for all particles i do

13: calculate Ap; Step 3

14: perform collision detection and response
‘ 15: end for

16: for all particlesi do

17: update position X; <= x! +Ap;

18: end for

19: end while

20: for all particles i do

21: update velocity v; < Z\rl‘ (x] —x;)

22: apply vorticity confinement and XSPH viscosity
23: update position X; <= X}

24: end for

Fluid Simulation Kernel Optimizations

Algorithm 1 Simulation Loop

Steps 4 & 5: Use Block RAM (BRAM)

1: for all particles i do
2 apply forces v; <= v; + Arf,., (Xx;)
3 predict position x] < X; +Arv;
e We want to avoid contention of the memory e SO
5: for all particles i do
devices where the particles are stored 6: find neighboring particles N;(x;)
7
8
9

. : end for
o Create copies of data
for all particles i do

- while iter < solverlterations do
m Increase accessibility 10: calculate A,
. 11: end for
o MOd-Ify BRAM arrays 12: for all particlesi do
m Reshape - Widen ports S e .
14: perform collision detection and response

15: _ end for
16: for all particlesi do
17: update position X} <= X +Ap; Step 4

18: end for

m Partition - Spl'lt banks 20: for all particles i do Sten 5
21: update velocity v; < 31 (xf —x;) &
22: apply vorticity confinement and XSPH viscosity
23: update position X; <= X;

24: end for

General Optimizations

e Unrolling
o Instantiate more hardware to
increase concurrency
© Run each diteration in parallel

4 iter

({1

2 iter

(unroll
by2)

fully unrolled

General Optimizations

e Fixed point numbers instead of floating point

o Floating point numbers requires lining up the floating point
o Fixed point numbers are stored as ints - faster and more optimal

sign < exponent — mantissa >

III € ‘@1‘%*"“"'“"'“"'""“""""“ dp.1

Floating-Point Format

sign 4————— integer part

III%M ¢%+¢,...“.“....“.-...¢n

Fixed-Point Format

Jfractional part ———»

Implementation Plan

e Xilinx Ultra96e FPGA Platform
o Vitis High Level Synthesis (HLS) »> Generate
hardware from C/C++ code

ANVAN =)

e Scotty3D codebase

e Mini Display Port cable for Visualization

(Purchase) W XILINX

a VITIS.

Testing & Verification

e Quantitative evaluation:

o Reduce the aggregate runtime of
steps 2 & 3 by 50%

o Maintain pace with runtime of steps
1 & 4 (relative to baseline)

o Reduce runtime of step 5 by 20%

o Comparison of resulting data against
a golden result

m Goal: 90% accuracy

e Qualitative evaluation:
o Visual inspection to ensure rendered
animations still retain “fluid-like”
quality

Milliseconds

Timing Breakdown of Fluid Simulation Update lteration

25
20.42554551

20

10.95637975 11.3735658

0.1543772979 0.1250714789

Get Newton's Particle Position Update Particle Create New Grid

Initialize Next

Positions Structure

Method Scaling Correction Positions

Factor

OPERATION

Schedule & Division of Labor

Feb 26 Mar 5 Mar 12 Mar 19 Mar 26 Apr2 Apr9 Apr16 Apr30 Apr23 May 7 May 14
- N
e Data Transfer
o and Base Kernel Data 10 Request Performance
o Functionality Scheduler Benchmarks
J
4 4 N
q) . . .
% Software Rewrite In-Depth Acceleration Integration
& (S J
4 Y 4 N
= Data Transfer and B q :
= Kome! Functionality In-Depth Acceleration Integration
o AN o J
) e R
Infrastructure Final Presentation
Setup
A — > <
2
Algorithm
Analysis Sl
@@ - J

