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Abstract—A system capable of computing and dis-
playing calculations in the original Apollo Guidance
Computer Architecture in displays for educational pur-
poses. Our project will be part of an exhibit that
displays the wonders of the Apollo mission while con-
veying modern improvements in technology. While
the current education displays will use original com-
puter which is 70 pounds and runs at 1.1Mhz, our
implementation uses modern technology, including an
open-source-able FPGA core, and it weighs under 3.5
pounds and runs at 5 Mhz. Our implementation runs
faster and is more portable than the original display,
and therefore more available to the general public.

Index Terms—Computer Architecure, Digital De-
sign, Education

1 INTRODUCTION

The Apollo space missions are among the most impor-
tant accomplishments in human history. To this day, the
influence of these missions can still be tangibly seen. In
the words of word-renown tech entrepreneur, Elon Musk, ”
I think Apollo 11 was one of the most inspiring things in all
of human history. Arguably the most inspiring thing. And
one of the most universally good things in history. The level
of inspiration that provided to the people of Earth was in-
credible. And it certainly inspired me. I’m not sure SpaceX
would exist if not for Apollo 11.” [5]. Similarly, Jeff Bezos
built his company, Amazon, so that he could eventually
travel to space, having been inspired by the Apollo mis-
sions [6]. We capture Apollo’s historical significance and
ongoing influence in a portable educational and museum
display of the Apollo Guidance Computer (AGC) and its
DSKY interface.

As opposed to the previous Apollo Exhibit we use a
modern SoC and custom PCB to decrease the weight of
the project from seventy to under five pounds. This weight
reduction will make our design an easy portable exhibit
that can be moved from smaller classrooms and exhibits
easily making our project accessible to all. Our modern
physical redesign also is advantageous over software simu-
lators because it brings the project into the real physical
world which is what museums are all about. The goal of
our project is to make a physical redesign of the AGC for
educational and inspirational purposes.

2 USE-CASE REQUIREMENTS

We intend for our device to be used as an interac-
tive exhibition piece in a museum or as a teaching tool

in academia. Users should be able to learn about the role
played by the AGC in the Apollo program, get a feel for how
astronauts interacted with the computer, and understand
the influence its design had on subsequent developments in
computer engineering.

The Display-and-Keyboard interface (DSKY) is ar-
guably the most iconic original piece of the AGC system; it
allowed astronauts to issue commands and provide data
necessary for the computer to perform crucial guidance
calculations and pilot the spacecraft. Thus, we sought
to recreate the DSKY on a custom printed circuit board
(PCB) with the same set of illuminated displays and push
buttons as the original. This requires 14 LED lamp indica-
tors, 25 LED alphanumeric displays, and 19 key switches.

Given that the most high-profile Apollo missions
brought humans to the moon and back, it is crucial that
people can use our DSKY to run programs that make nec-
essary computations enabling a spacecraft to leave earth’s
orbit, attain the orbital radius of the moon around the
earth, and enter an orbital path around the moon. Space-
craft actuators, such as rocket boosters that burn fuel, are
out of scope given our timeline of development and the tar-
get application, but a simple external monitor can convey
the results of those calculations being used to change the
orbit of a simulated spacecraft relative to earth and the
moon. The simulation program must display the orbits of
the three bodies in real time, in a format that resembles a
mission control console.

In order to convey the AGC’s significance and impact in
the world of computing, a full software emulation is insuffi-
cient. We decided to write a program in the original AGC
assembly language that could respond to user commands
issued via the DSKY, read in simulated mission data, per-
form the pertinent calculations, and then provide results to
our DSKY and simulation display program. The assembly
program would be run on a processor of our own implemen-
tation that processes a subset of the original instruction set.
This requires support for 33 AGC instructions, 15 I/0 chan-
nels, one’s complement arithmetic, 15-bit word size, and 16
of the original CPU registers.

Our processor must be implemented using the hardware
description language (HDL) SystemVerilog, employ mod-
ern pipelining techniques in design, and be programmed
to a Cyclone V FPGA. Furthermore, our system must
integrate a modern PCB and serial communication over
UART. Using modern digital design tools and integration
techniques to implement this legacy architecture conveys
to users the sheer amount of progress that has been made
following, and in response to the deployment of the AGC.

The use of modern technology allows our device to be
smaller and lighter than the original, ensuring ease of trans-
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portation and installation. Excluding the monitor, the de-
vice must fit within a cubic foot, and weigh less than 5
lbs. A plastic enclosure is necessary to prevent destruc-
tion of hardware components through repeated use. The
device should also be able to function properly in ambient
temperatures around 25°C.

Illuminated displays and push buttons on our DSKY
must be updated and scanned, respectively, at rate of
around 100 Hz. This is fast enough to ensure users’ interac-
tion with the device is fluid and without lag, but also slow
enough that congestion of UART traffic with the FPGA
is avoided. 50 MHz, a common rate for FPGA develop-
ment boards, is the target clock rate for all modules on the
FPGA. It is significantly faster than the clock rate of the
original AGC, and aids in ensuring smooth interaction with
our device.

3 THEORY OF OPERATION
AND ARCHITECTURE

The final setup is shown in Figure 1. The user inter-
acts with the system via our custom PCB interface. Utiliz-
ing the interface’s keypad, status lamps, and alphanumeric
displays, the user is able to run and monitor the status
of mission-oriented programs, view the elapsed time since
power-up, or perform a lamp test. Under the hood is a
small network of processing cores, digital circuitry, serial
communication, and discrete I/O that make these things
happen.

Figure 1: Final Setup of the AGC FPGA, DSKY, and the
Demo Program

3.1 Nouns and Verbs: Establishing Con-
text

While interacting with the DSKY, astronauts of the
Apollo missions would issue commands and receive auto-
mated prompts in a so-called ”verb, noun” format, indicat-

ing an action (verb) to be performed by/upon a device/-
data (noun). All possible nouns and verbs were stored as
2-digit decimal numbers that could be entered via the key-
pad and displayed on the segments. For example, a verb 16
(continuous display - decimal) and noun 65 (mission time)
combination would result in a constantly updating display
of the seconds elapsed within the mission, in decimal form.
Other commands could lead to a flashing verb, noun dis-
play aimed at prompting the astronaut to manually enter
necessary data.

We devised a noticeably condensed list of nouns and
verbs that our users may enter to activate functions within
our device’s demonstration capabilities (see Figure 2).
Most of our commands are verb-only, with the exception
of that which runs a mission-oriented program, with which
the user must also enter a noun to indicate the particular
program they wish to run.

Figure 2: Table of pertinent verb, noun pairs

3.2 Theory of Operation

Upon powering up the device, the system enters ’lamp
test’ mode (Verb 06) by default. It is now awaiting the
entry of a verb/noun command. The user must press the
”VERB” key and then type the two digits of their desired
verb entry. The digits will fill in the ”VERB” field on the
display, and when ready, the user must press the ”ENTER”
key to confirm their selection. Entering a noun carries the
same procedure, although it must begin with a press of the
”NOUN” key. If the verb 39 (Run program XY), has been
confirmed, the user must enter a valid program number as
the noun. Otherwise, the noun 00 must be entered.

At any time, the user may enter a verb 07 and noun
00 to halt execution and enter an idle mode, or they may
enter any other valid verb/noun combination to run some-
thing else. As our CPU runs user-selected programs, the
illuminated displays on our DSKY are updated with per-
tinent information, and calculation results are fed to the
simulation display program, which uses those numbers as
parameters for the moving bodies on screen. Additionally,
the simulation display program provides simulated mission
data to our CPU that is necessary for completing the cal-
culations.
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3.3 System Architecture

Making all of this happen is an FPGA development
board, a PCB, and a personal computer. The development
board is an Altera DE10-Standard with a Cyclone V SOC
that contains both a Cyclone V FPGA and an ARM core.
Despite initial plans, our final system does not use the ARM
core, so any similar development board with a Cyclone V
FPGA could also be used. The PCB is of our own custom
design and consists of an ESP32 microcontroller as well
as the array of keys and LED displays that make up our
user interface. The FPGA communicates with the ESP32
via UART. Additionally, a personal computer is used to
run the simulation display program, and it exchanges data
with the ESP32 over Bluetooth. (The following content
refers to the block diagram in Figure 3 on the next page.)

The Cyclone V FPGA has multiple modules ”baked”
into it. Of course, there is our implementation of the AGC
CPU, which writes to and reads from the RAM, but it
must also read data and instructions from the ROM. Both
the RAM and the ROM are parameter-configured instances
of the Altera ’altsyncram’ IP megafunction. There’s also
an I/O unit consisting of input registers (output registers
being internal to the CPU) and a UART interface. The
UART interface contains logic for transmitting and receiv-
ing serial bytes of data, from the output registers and to
the input registers, respectively. Logic of our own design
transmits and receives this data at the byte level, inter-
facing to a bit-level transceiver that comes courtesy of Ben
Marshall on GitHub. This UART interface allows our CPU
to exchange data with the ESP32 on the DSKY PCB.

The ESP32 runs a program that handles key press scan-
ning, LED display drivers, interfacing to the UART con-
nection with the CPU, and interfacing to the BlueTooth
connection with the PC running the simulation display
program. I2C is used as the communication medium be-
tween the ESP32 and the DSKY’s LED displays, whereas
the keypad is a matrix wired to discrete I/O. Bluetooth
allows the ESP32 to send commands and data to the sim-
ulation display program, some of the data being forwarded
are computation results from the AGC CPU’s output reg-
isters. Pertinent simulation data is also forwarded to the
AGC CPU by the ESP32 to be used in computation.

4 DESIGN REQUIREMENTS

We have an assembler capable of processing AGC source
code and assembling it into binary code that can be stored
within the ROM on the FGPA, enabling our CPU to pro-
cess programs that perform calculations and respond to
user commands.

At the core of the design is our version of the AGC CPU;
implemented in SystemVerilog, synthesized and placed onto
the Cyclone V FPGA using Intel Quartus software. The
system’s functionality requires a CPU implementation that
supports 33 of the 49 original AGC instructions, and they
are listed in figure 4. The peripherals used to communicate

to the CPU require at 5 functioning I/O channels. This
is needed in order to do the calculation asked for by the
DSKY operator and communicate them back to the DSKY
display. Lastly, in order to achieve smooth-running demon-
strations and quality user interaction with the system, we
would like our CPU to support a 50Mhz clock rate which
will demand a sub-200 nanosecond critical path.

The user interface in our system includes a custom-
designed printed circuit board (PCB). Inspired by the orig-
inal DSKY (Display and Keyboard) interface of the Apollo
missions, the PCB contains 14 LED indicator lamps, 25
LED displays, and 19 mechanical key switches. Because
of this we use a micro controller to communicate to these
using I2C. This communicates with the AGC over UART,
the DKSY user interface over I2C and the mission display
monitor over serial Bluetooth.

Lastly our mission simulation display program is a
python script running on an external PC. It communicates
with the ESP32 over Bluetooth. The script models the
three body problem and displays it on the screen. It sends
information that would be captured by instruments on the
original Apollo missions, and receives info related to the
commanded movement of the simulated spacecraft, then
updates the monitor accordingly.

Our design needs to be well protected. Ideally by trans-
parent plastic so that the circuitry could be displayed but
not harmed by children at the museum.

5 DESIGN TRADE STUDIES

5.1 Instruction Set

One trade-off we have constantly considered is the sub-
set of the instructions that we are implementing. On a
larger scale our choice is between implementing all or nearly
all of the original AGC instruction set or only a small frac-
tion of the original instruction set.

The advantage of implementing the entire instruction
set is that it would make writing our demo code easier as
we could completely reuse much of the original Apollo code
and just tweak it to our preferences. However some of the
instructions that the original AGC used difficult to imple-
ment in RTL in general and not very useful. Although we
studied and debated every instruction in the instruction set
we will give a few example of ones that we chose to include
or not include and why we decided to do that below.

One instruction we decided to exclude is the CCS in-
struction that ”The Count, Compare, and Skip instruction
stores a variable from erasable memory into the accumu-
lator (which is decremented), and then performs one of
several jumps based on the original value of the variable.”
[3]. This instruction is difficult to implement because it is
doing a lot at once so it would require a lot of additional
hardware. It is also non-intuitive to use so we would likely
not use it much in programming. Thus we determined that
this instruction was not worth implementing.

Two instructions we decided to include after some de-
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Figure 3: High level system block diagram

bate are multiply and divide. We initially were inclined
not to include these instructions in our instruction set be-
cause they would be difficult to implement (note that we
are using one’s complement arithmetic so SystemVerilog’s
default multiply and divide would not suffice). However
given the how much less efficient a software version of these
instructions are and how these operations are foundations
for any orbital mechanics calculations we decided to imple-
ment these two operations. We implemented multiply. But
after some failed attempts to implement divide we decided
to fall back on our back up plan and instead used inverse
multiplies in the AGC code.

One problem this gave use is that the multiply instruc-
tion produced a two word product. This is a problem be-
cause we had initially opted not to add the double word
store instruction so we decided to give it another thought.
The RAM IP for the FPGA is dual ported. This means we
could not store two words while loading one word for an-
other instruction in the pipeline. This means that a double
word load would introduce resource contention that would
lead to more complexity, bugs, stalling, and a lower IPC.
Thus we decided not to implement this instruction and
rather do two single word stores after producing a double
word product.

Another set of instructions we decided to not implement
are those related to interrupts, which are out of scope given
our timeline of development.

5.2 Interrupts

Though interrupts would make writing software easier
it would make the RTL design effort much more difficult.

The advantage of interrupts for our use case would first
and foremost be allowing for simple and quickly responsive
I/O. This would make the process of writing software more
simple the I/O channels would not have to be regularly
polled. It would also mean that we would not have to wait
for a respective channel to be polled to respond but when
the value was changed we could check instantly.

The disadvantage if interrupts for our case is that is
would increase the RTL design effort. In order to imple-
ment interrupts we would have to devise an interrupt sys-
tem that would respond to different IO channels and do dif-
ferent things based on which interrupt occurred. Though
in theory this does not sound too difficult nobody in our
group have designed such a system before and this we can
only assume that implementing it will take much more time
and be much more difficult than we would think. In addi-
tion to that polling often does not increase response time
and often decreases it. Lastly we determined that given the
amount of I/O channels we are implementing polling them
would not be that difficult and therefore we decided that
it would easier to poll than to implement interrupts.

5.3 Code Assembly

How to go about assembling our code was another de-
sign decision. We needed to change the assembler in order
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Figure 4: Our Instruction Set
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to update the memory map and change the file type. More
details about our changes will be included in the system im-
plementation. The three options we looked into were writ-
ing our own assembler, taking the output of the yaYUL [4]
assembler and fitting it to out needs using a custom python
script, and editing the source code of the yaYUL assembler
such that it meets our needs. We were solely looking at
which option we thought would be easiest to implement.

Writing our own assembler would be time consuming.
We would have to right nearly all our code from scratch.
However the benefit of this is we could write the script in
the language of our choice and we would not have to read
someone else poorly documented code.

Taking the output of the yaYUL assembler and fitting
to our needs could also be time consuming. One difficulty
would be reading a binary file and mapping the memory
map they used to our memory map based on that informa-
tion. We would also need a good understanding of how the
yaYUL stored data in the binary to make sure we would
be doing the right thing with the data. The benefit to this
is that we would not have to write a whole assembler and
that we could use a language of our choice for our script.

Out last option is editing the yaYUL assembler such
that it produces the output in the MIF format required by
the FPGA. The benefits to this is that it would likely re-
quire writing the least amount of code. On the other hand
we would have to understand the poorly documented as-
sembler most to take this approach and write some string
code in C to produce our final output.

Our final choice was to edit the yaYUL assembler such
that it produces the output in the correct file format. We
implemented this and it worked.

5.4 PCB and Components Selection
Trade-offs

To safely and effectively design our PCB, it was imper-
ative that the design and components choices must be re-
liable and verified, while meeting our design requirements.
This meant that our highest priority when deciding compo-
nents were the ones of which we had prior experience with,
or have extensive online documentation. Therefore, some
trade-offs had to be made in the aesthetics of the design:
the key switches are common computer keyboard switches
and the LED displays are matrix-ed alphanumeric displays.
The final 3D render (refer to Figure 5) does indeed show
some discrepancies from the original Apollo DSKY. How-
ever, we considered these aesthetic deviations as accept-
able, since we had to maximize the probability that our
PCB will work within the remaining 2 months. This was
a better design decision than choosing highly custom and
non-documented components which will be much riskier
and have a higher chance being nonfunctional. More de-
tails on the components BOM will be discussed in Section
8.3.

Figure 5: Design rendering of our DSKY (Display and Key-
board) user interface.

6 SYSTEM IMPLEMENTATION

6.1 Program Assembly and Loading

As discussed previously we made edits to the existing
yaYUL assembler to fit our needs. For memory we used
the IP blocks that Intel’s Quartus produces for ROM and
RAM. Those ROM and RAM blocks are meant to be used
so that the FPGA knows exactly what to use to give the
user the demanded functionality. In addition to this the
ROM and RAM block IP block was used in simulation. In
order, to put data in the RAM and ROM, the IP blocks
require us to write to a .mif file and then reference that
in the verilog file in the IP block. Thus we will needed
to change the assembler such that instead of writing a bi-
nary file representing memory we will need to write to two
different .mif files, one for RAM and one for ROM.

What will these changes entail? At a high level we need
to changed 3 things. One, we wrote to two different files
depending on the address. Two, we changed the memory
map such that the memory matches our proposed memory
map. Lastly, we changed the format. The .mif files at a
high level have a line that corresponds to one address space
in memory with one value noting the address in octal sepa-
rated by a colon by the value at that address in octal. Thus
we converted the binary values to the ASCII string octal
representation. Figure 6 demonstrates this process.
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Figure 6: Assembler block diagram

6.2 RTL design

The RTL design is a core component of our AGC im-
plementation. Our pipeline is a four stage pipeline (Fetch
Decode Execute Writeback). It is a 4 stage pipeline be-
cause we are able to read from memory in decode stage
and write to memory in writeback stage (therefore we do
not need the memory stage of your typical 5 stage pipeline).
Our pipeline implementation is shown in more detail in Fig-
ure 7. Our memory map has a 12 bit address space that
is split into RAM and ROM. Additionally we use banked
memory similar to the original design of the AGC. A visual
representation of this is in Figure 8. Our RAM and ROM
are implemented using Intel’s custom IP for their FPGAs
and address translation will be done in our RTL. One thing
to note is we did not end up implementing the DV instruc-
tion due to difficulties in getting the exact divide behaviour
expected by the AGC. Our work around was to use inverse
multiplies in the AGC code instead of divides.

6.3 PCB Design

The DSKY PCB, developed using Altium Designer 16,
was designed tp provide a professional looking device for
display and exhibition purposes. By doing so, we can uti-
lize the full manufacturing capabilities of our PCB manu-
facturer and use silkscreen/solder-mask to print high qual-
ity labels and designs. This can be seen in the 3-D render
in Figure 5. The end product also will have a laser cut
acrylic front panel, thereby displaying the classic qualities
of the original DSKY.

The portions of the schematics are shown in the ap-
pendix Figure 14 and a screenshot of the layout is shown
in Figure 15. Every two LTP-305G LED displays are han-
dled by an IS31FL3730 I2C display driver, which takes care
of all the process for lighting up the multiplexed LED seg-
ments with brightness control. The R50RED-F-0160 LED
lamps on the left are also controlled by the same driver.
They are all connected to a common I2C bus, which is
handled by the ESP32 micro-controller acting as the I2C
master. The Cherry MX keyboard switches are multiplexed

and connected directly to the ESP32, which will conduct
periodic scanning of the keys to detect key presses. Diodes
are attached to the inputs of each keys to prevent ”ghost-
ing,” which occurs when two key switches on the same row
are pressed and cause a third ”ghost” switch to be regis-
tered. Finally, two I2C bus pins from the ESP32 are broken
out to the connectors so that they can be connected to the
FPGA and used for communication.

6.4 Peripheral Controller Software

The Peripheral Controller is the ESP32 microcontroller,
which primarily handle detecting key presses and displaying
the LED display segments through appropriate I2C com-
mands to the display drivers. The ESP32 microcontroller
is a WIFI/Bluetooth module, chosen for its ease of use,
low cost, being modular, and having a mature toolchain
(Xtensa GCC). The Bluetooth capabilities were used to
communicate simulate mission data and calculations to and
from the demo Python simulation software.

There are three major program flows, as shown in Fig-
ure 9. There are two interrupt service routine (ISR) flows
which govern the handling of displaying the LED segments
and the keyboard scanning. For the first ISR, an UART in-
terrupt will be triggered upon receiving display values from
the AGC FPGA. The ISR will parse the UART packets and
then send appropriate I2C commands to all the IS31FL3730
LED drivers, which in turn will drive the 25 LED displays
and 14 lamps. The second ISR will be triggered around ev-
ery 100Hz using a timer, and it will periodically scan each
4 rows to determine if any key switches have been pressed.
If any key switches are pressed, the main program will con-
struct a VERB/NOUN pair and send an appropriate com-
mand back to the FPGA to be parsed. The ESP32 will also
be responsible for error handling (i.e. invalid key presses),
of which appropriate warning lamps will be indicated and
the packets will be thrown out. A separate Bluetooth task
handles the receiving and the sending of mission data and
corresponding calculations.
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Figure 7: CPU Pipeline Diagram



18-500 Final Report, Team E0 - 7 May 2022 Page 9 of 15

Figure 8: Memory Map of our implementation
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Figure 9: High level FSM of the Peripheral Controller
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6.5 Python Demo Software and the AGC
Assembly Program

The programs running on the AGC, written in the
implemented ISA Assembly, will primarily revolve per-
forming calculations required for basic orbital mechanics.
This will require math functions, such as sine, cosine, and
square root. Implementing these functions in Assembly
will be very challenging, but we can re-purpose the original
Apollo’s implementations of these math functions. Apollo
missions such as Comanche 055 (Command module pro-
grams used for Apollo 11) and Aurora 12 (Test vehicle)
already have implemented these functions in AGC assem-
bly, which are simple enough to be executable on our ar-
chitecture [2]. The basic orbital mechanics functions and
time-keeping programs implemented are listed below.

• 00 Calculate Escape Velocity

• 01 Hohmann Orbit Transfer

• 02 Calculate Initial Burn for Lunar Injection

• 03 Calculate Final Burn for Lunar Injection

• 04 Calculate Alignment Angle for Lunar Injection

• 01 Orbital Plane Transfer

Figure 10: Close up of the FPGA DE10 board connected to
the DSKY, currently running the Lunar Injection program

The orbital mechanics calculations primarily revolve
around using Orbital Plane/Phase Transfers to calculate
delta-v:

∆vi =
2 sin(∆i

2 )
√
1− e2 cos(ω + f)na

(1 + e cos(f))
(1)

where e is the orbital eccentricity, ω, is the argument of pe-
riapsis, f is the true anomaly, n = 1/P is the mean motion
(orbital period frequency), and a is the semi-major axis.
Also Hohmann Orbital Transfer equations will be used for

orbital mechanics involving increasing/decreasing orbits or
performing lunar injection:
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where ∆v1 is the first burn required and ∆v2 is the second
burn required for changing orbitals from orbital radius r1
to r2, with µ = GM being the standard gravitational pa-
rameter. More extensive documentation can be found at
the referenced website [1].

The demonstration program was written in Python, and
displays a physics simulation based on the 3-body problem.
This was achieved by solving the differential equations re-
lated to the gravitational forces between the three bodies
(the Earth, the Moon, and the spacecraft) using a 4th order
Runge-Kutta ODE solver. The results were plotted graph-
ically to demonstrate orbital mechanics and the calculation
results of the AGC. The full setup can be seen in Figure 1.
The clean and aesthetic graphics of the orbiting bodies are
crucial for exhibitions, as they serve primarily to visually
demonstrate the capabilities of the AGC.

7 TEST & VALIDATION

7.1 Tests for Verifying our RTL meets the
ISA

In order to meet the architectural specification we first
focused on making sure our RTL meets the specification in
simulation. To do this we wrote a test case for each in-
struction we implemented, which will make it 34 tests. We
wrote an infrastructure in SystemVerilog that displays the
register values of each register at the end of the test. We
then compared that to the simulation results of an software
simulator of the AGC in order to make sure we are hitting
the architectural specification. We passed the test for every
instruction we tested after debugging with the exception of
DV which we decided to remove from our design. Thus we
passed 34 of the 34 tests that we decided was necessary by
the end.

7.2 Verifying our RTL meets our thresh-
old for IPC

In order to verify our AGC processor had an IPC above
.5 we had to add some additional hardware to our system.
We added counters to count every cycle and count every
instruction that finished. Than we ran it on one of our
demo programs to retrieve the amount of instructions per
cycle. We had an IPC of .8095. This significantly exceeded
our target of .5 and exceeded our expectations. It exceeded
our expectations because the EXTEND instruction being
inserted between many instructions increased the distance
between read after write dependencies to be greater than
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the hazard distance. Because of that it stalled far less fre-
quently than expected.

7.3 Verifying our RTL meets our thresh-
old for our critical path/frequency

To clarify the frequency that the processor can run at
is the inverse of the critical path and thus we only needed
to verify one of them to check if we met our constraint for
both. When synthesizing a design on Quartus it can tell
us of the critical path of the design. It said our critical
path was 590 ns which is significantly longer than our 200
ns critical path goal. Because of this we decreased our fre-
quency and in order to make our clock scaling as simple
as possible we scaled it to 5 Mhz from our original goal of
50 Mhz. Quartus said our critical path was our writeback
from the register in writeback stage to the Intel generated
RAM. Thus the issue was that the Intel generated RAM
had too long of a critical path. However, once we were able
to measure this our system was nearly fully implemented
and it seemed to not affect the response time to the user in
a significant way. Thus we decided it best to relax our con-
straints for frequency and critical path because the original
constraint was tighter than necessary given our use case re-
quirement of having a smooth user experience.

7.4 Verifying our RTL meets our thresh-
old for the amount of LUTs used

Once again the amount of LUTs used is given by Quar-
tus once compilation was complete.The amount of LUTs is
2271 which is significantly less than out maximum target
of 110,000. Thus we meet the constraint. We expected
to meet our constraint as our constrain was necessary to
make sure our core could fit on the FPGA and did not re-
flect our expectations. Thus though 2271 was less LUTs
than expected but is certainly reasonable.

7.5 PCB Manufacture and Verification

The design review verification consisted of using Al-
tium Designer 16’s Electrical Rule Check (ERC) and De-
sign Rule Check (DRC). The only errors encountered were
minor silkscreen overlap. The PCB was built and tested
at Techspark PCB Labs at Ansys Hall, Carnegie Mellon
University. The components were placed using the aid of
ProtoPlace S pick-and-place machine, and reflowed in the
ProtoFlow S Reflow oven. Through hole components were
manually soldered by hand using a soldering pen. The fi-
nal piece was verified for soldering via microscope inspec-
tion. The correctness of voltages and the I2C packets were
validated using a 4-channel oscilloscopes and protocol an-
alyzers (Figure 12). Also, the temperature of the compo-
nents were verified using an FLIR thermal imaging camera
to check for overheating of components. The verification
results are as follows: Maximum temperature of around
40.8 degrees Celsius, well within the +85 degrees Celcius
maximum; I2C Bus Congestion: 31.8% Congestion (68.2%

Idle) for 400kHz bus, well below 100% congestion; UART
Bus Congestion: 42.4% Congestion (56.6% Idle) for 115200
Baudrate, again well below 100% congestion.

Figure 11: Thermal image of the DSKY PCB LED Drivers

Figure 12: Functional verification of the I2C bus using an
Oscilloscope

7.6 Software Calculations

The verification of the software relies primarily on
checking the correctness of the software calculations, espe-
cially due to rounding errors and the fact that our AGC is
using 15-bit single precision fixed floating point. The final
results were verified to be within +/-0.5% of the predicted
results for Escape velocity, Hohmann Transfer, and Lunar
Injection calculations. These results were also functionally
verified to produce correct orbital injections and transfers
in the physics simulation.
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8 PROJECT MANAGEMENT

8.1 Schedule

In general the main changes between our planned sched-
ule and our final schedule is that we have more detail for
tasks that were at the end of the project. For example we
added a task for the final video and poster. Our gantt chart
is included in the references in the back figure 13.

8.2 Team Member Responsibilities

Christopher Bernard: Primarily responsible for the as-
sembler, the RTL testing infrastructure, RTL testing and
the RTL coding with the exception of the ALU, address
translate unit, register file, and UART receiving unit. Sec-
ondarily responsible for making sure the assembly works on
the final project by helping debug others code.

Donovan Gionis: Primarily responsible for making the
ALU, Address translate unit, register file, and UART re-
cieving unit.

Jae Choi: Primarily responsible for making the PCB
of the DSKY, the ESP32 coding, and the display monitor,
and for writing the assembly code.

8.3 Bill of Materials and Budget

The bills of materials for the components (excluding
the PCB cost) for building 2 and a half pieces are shown
in Table 1. The cost of building the PCB and the solder
stencil comes to 186.24 USD for 5 boards. Therefore, the
total cost is 317.07 + 185.24 = 503.31 USD, and with ship-
ping costs included the total amounts to around 530 USD.
Therefore, we are well below the allocated budget of 600
USD and have plenty of spare components for repairs.

8.4 Risk Management

One key risk we had is the PCB not arriving on time.
In order to manage that risk Jae started work on the PCB
shortly after the semester started. Another risk is that
none of us have written an assembler before. To manage
that risk Christopher has started working on the assembler
earlier than initially planned. One risk we had to mitigate
is after our divider in our ALU failed to work. Another
risk we have is that generally our project contains a lot of
work so if anything takes longer than necessary our whole
project may not finish.

To mitigate the largest risk (just not having enough
time for everything) we worked ahead of schedule. We were
able to do this by putting massive amount of time on spring
break into the project to get a couple weeks ahead. Then
worked to stay ahead. We ended up finishing the technical
part of our project before the final presentation. One large
risk we had to mitigate was the RTL design we synthe-
sized on the FPGA does not work (and would therefore be
very hard to debug). To manage this risk we spent consid-
erable amount of time setting up a testing infrastructure

using VCS in simulation and debugged it in simulation.
And when we put it on the FPGA it only had a couple
minor bugs.To mitigate the risk of the PCB not working
Jae ordered enough parts to make two separate boards just
in case he failed with the first one. To mitigate the risk
for the divider not working our work around was to not
implement it and use inverse multiply instead. We also
mitigated the risk of having the I2C bus not work between
the AGC and the ESP32 by switching to UART because it
is a simpler protocol. Another thing we had to manage was
that we could not hit our frequency/critical path constraint
so we had to loosen our constraints. Beyond that because
we started early we were able to get through our project
according to plan.

9 ETHICAL ISSUES

Ultimately, we want our device to convey the AGC’s
historic role and significance to its users. Thus, it is cru-
cial that the system functions as designed for every user.
Our lengthy verification process ensures the reliability of
our device once deployed. However, in its role as a mu-
seum exhibition piece, the repeated use of the device opens
it up to risk of physical damage and malicious tampering.
The plastic enclosure around our DSKY should theoreti-
cally prevent physical damage and attempts at changing
the code on the ESP32, but it is up to the exhibiting mu-
seum to ensure that the FPGA development board and sim-
ulation display program PC are behind a barrier to prevent
changes to the logic.

An educational piece isn’t worth much unless it may
be readily used by the masses. We feel that our design
keeps the overall unit cost at a minimum, and the use of
an external computer and development board means that if
a potential customer already owns such items, they could
simply purchase the software intellectual property neces-
sary to configure those devices for use in the overall system.
We believe these features would permit even financially dis-
advantaged students to have access to our device and the
knowledge it shares.

10 RELATED WORK

Our two main competitors are the official Apollo mis-
sion display and a yaAGC simulator. The Apollo mission
display has the full original Apollo computer and the com-
mand capsule. The benefit ours has over this is that ours is
smaller and more portable and can be mass produced. The
yaAGC software simulator is only a simulator can be put
on any computer but does not have any physical hardware
to be displayed at the museum.

11 SUMMARY

Our design takes a modern approach on an inspirational
mission reflecting both the past but also how much more is
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Table 1: Bill of materials (Components)

Description Quantity Manufacturer Part Number Unit Price Total Price
LED RED CLEAR T/H 26 R50RED-F-0160 1.21 31.46
SWITCH PUSH SPST-NO 0.01A 12V 40 MX1A-E1NW 0.9076 36.30
IC INTERFACE SPECIALIZED 24SSOP 3 PCA9548ADB 1.61 4.83
LED MATRIX 5X7 0.3” GREEN 50 LTP-305G 2.246 112.30
IC MATRIX LED DRIVER AUDIO 24QFN 27 IS31FL3730-QFLS2-TR 1.2168 32.85
CONN HEADER SMD R/A 6POS 2.54MM 3 M20-8890645 0.83 2.49
RES 10K OHM 1% 1/10W 0603 10 RC0603FR-0710KL 0.024 0.24
CAP CER 0.1UF 50V X7R 0603 50 CC0603KRX7R9BB104 0.0324 1.62
SOLDER PASTE NO-CLEAN 63/37 5CC 1 SMD291AX 14.99 14.99
RX TXRX MOD WIFI TRACE ANT SMD 3 ESP32-WROOM-32E-N16 3.6 10.80
RES 4.7K OHM 1% 1/10W 0603 100 RC0603FR-074K7L 0.0097 0.97
DIODE GEN PURP 75V 150MA SOD323 40 1N4148WS-HE3-18 0.212 8.48
KEY CAPS FOR CHERRY MX SWITCHES 1 PBT KEYCAPS 29.74 29.74
3.3V POWER SUPPLY 1 DE10-STANDARD 30 30
DE10 FPGA SOC ALTERA DEV BOARD 1 DE10-STANDARD 0 0

317.07 USD

possible in the future. Our modern design also makes our
project smaller and more portable. Our modern take on
the AGC would prove to be an interesting museum exhibit
and it’s small size would make it easy to move. It could
even tour schools.

11.1 Future Work

Given that only a small percentage of logical elements
on the Cyclone V FPGA were used, logic handled by the
ESP32 could be moved over to hardware for the sake of im-
proving performance in a further iteration. Hardware offers
more opportunities at parallelism than software. With less
work performed by the program on the ESP32, perhaps a
lower-power, more affordable processor could be used in its
place.

11.2 Lessons Learned

Though our project was a success there were somethings
we now know that could have made it better if we had
known to begin with. One would be synthesizing as soon
as you can so you can know the critical path of you system
before it is too late to fix it. Another thing we learned
was to have very clear communications between the peo-
ple working on different levels of the stack about how each
part will function. Lastly it is very important to plan every
part of the project before implementing it. We did this for
almost every part so it went smoothly. But the parts in
which we did not plan previously went far less smoothly
because we did not plan them.

Glossary of Terms

• AGC – Apollo Guidence Computer

• CPU - Central Processing Unit

• DSKY - Display and Keyboard

• FPGA - Field Programmable Gate Array

• IMU - Inertial Measurement Unit

• IPC - Instruction Per Cycle

• PC - Personal Computer

• PCB - Printed Circuit Board

• RAM – Random Access Memory

• ROM – Read Only Memory

• RTL - Register Transfer Level

• SOC - System on Chip

• .mif file - Intel’s file format for their FPGA Memory.

• .agc file - File format of AGC assembly code

• .sv files - File for SystemVerilog code.
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Figure 14: DSKY Schematics for the portion of the LED Lamps and Display
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Figure 15: DSKY PCB Layout as seen from the bottom


