To the 60's and Back

A modern take on the Apollo Guidance Computer (AGC)

Group E0: Donovan Gionis, Christopher Bernard and Jae Woong Choi

Use-Case and Quantitative Use-Case Requirements

Exhibition piece targeting science/history museum displays, classrooms

AGC Architecture Peripheral uC DSKY PCB Dimensions Operating Conditions 50Mhz, 33 instructions, 15 I/O Channels Keypress scans, LED updates, Bluetooth TX at 100 Hz 12 LED Lamps, 25 Displays, 19 Key switches Compact size of 7.5in by 6in by 1in Ambient temperature of 25°C. Protective Casing.

Complete Solution

RTL Correctness Verification

The AGC Architecture

- The registers state of our ISA matched a simulated AGC for **30** instruction specific tests
- Using the same agc file in both prongs we used the below process to test for correctness

Instructions per Cycle (IPC)

RTL Benchmark Verification

- 2271 < 110,000 lookup tables (LUT's)
- 590 > 200 nanoseconds
 - Did **not** meet constraint. Critical path was through the Altera generated RAM.
- .8095 >.5 Instructions per Cycle (IPC)

DSKY Verification

Max Temperature of around 40.8 degrees Celsius

I2C Bus Congestion: 31.8% Congestion (68.2% Idle) for 400kHz

UART Bus Congestion: 42.4% Congestion (56.6% Idle) for 115200 Baud

Software/Final Verification

Delta-V Calculation accuracy: Accurate to ± 0.001 m/s for normalized values

VERB	NOUN	Description	VERB	NOUN	Description
05	N/A	View mission time (05)	39	00	Escape Velocity Calculation (00)
			39	01	Hohmann/Orbital Transfer Calculation (01)
06	N/A	Test the displays (06) - Default on Reset	39	02	Translunar Injection Initial Change in Velocity Calculation (02)
07	N/A	Clear the displays	39	03	Translunar Injection Final Change in Velocity Calculation (03)
39	PROG	Run Program Number # PROG (NOUN)	39	04	Translunar Injection Angle Calculation (04)
		·/	39	05	Orbital Plane Change Calculation

Software/Final Verification

Delta-V Calculation accuracy: Accurate to ± 0.001 m/s for normalized values

* Using 15-bit single precision fixed point numbers

Calculation results in correct Orbital transfers and Translunar injections in the 3-body simulation (Runge-Kutta 4th order ODE solver) for step-size (dt) of 0.01

Celestial Mechanics Simulator - 3 Body Problem Solved Using Runge-Kutta 4

Project Management

Conclusion

Educational opportunities

- Demonstrate historic applications on modern equipment
 - Contrast with original AGC: How far we've come
- Interactivity appeals to young audience
 - Excitement about history and innovation

• Working examples of post-AGC innovation

• UART, FPGA, PCB, HDL

