
18-500 Design Review Report Template - 18 January 2022 Page 1 of 12

To the 60’s and Back
Authors: Christopher Bernard, Jae Woong Choi, Donovan Gionis

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of computing and dis-
playing calculations in the original Apollo Guidance
Computer Architecture in displays for educational pur-
poses. Our project will be part of an exhibit that
displays the wonders of the Apollo mission while con-
veying modern improvements in technology. While the
current education displays will use something more like
the original computer which is 70 pounds and runs at
1.1Mhz, our implementation uses modern technology,
as an open-source-able FPGA core, and will weigh 3.5
pounds and run at 50 Mhz. This will make our imple-
mentation run faster and be more portable than the
original unit, and therefore more available to the gen-
eral public.

Index Terms—Computer Architecure, Digital De-
sign, Education

1 INTRODUCTION

The Apollo space missions are among the most impor-
tant accomplishments in human history. To this day, the
influence of these missions can still be tangibly seen. In
the words of word-renown tech entrepreneur, Elon Musk, ”
I think Apollo 11 was one of the most inspiring things in all
of human history. Arguably the most inspiring thing. And
one of the most universally good things in history. The
level of inspiration that provided to the people of Earth
was incredible. And it certainly inspired me. I’m not sure
SpaceX would exist if not for Apollo 11.” [5]. Similarly, Jeff
Bezos built his company, Amazon, so that he could even-
tually travel to space, having been inspired by the Apollo
missions [6]. We aim to capture Apollo’s historical signifi-
cance and ongoing influence in a portable educational and
museum display of the Apollo Guidance Computer (AGC)
and its DSKY interface.

As opposed to the previous Apollo Exhibit we aim to use
a modern SoC and custom PCB to decrease the weight of
the project from seventy to under five pounds. This weight
reduction will make our design an easy portable exhibit
that can be moved from smaller classrooms and exhibits
easily making our project accessible to all. Our modern
physical redesign also is advantageous over software simu-
lators because it brings the project into the real physical
world which is what museums are all about. The goal of
our project is to make a physical redesign of the AGC for
educational and inspirational purposes.

2 USE-CASE REQUIREMENTS

The use case requirements were mostly shaped around
the specifications of commonly available FPGA develop-
ment boards and concerned mostly on what was possible
to successfully implement during the semester (our mini-
mum viable product - MVP). This meant that our AGC
Architecture would be running on 50 Mhz clock, which is a
common clock speed on a lot of boards. This would allow
our designs to be able to run on various development boards
and be flexible as a distributable piece. Furthermore, for
the AGC architecture, we will have 33 instructions and 5
I/O channels. That is the MVP architecture of what is left
after we had de-scoped all the complicated and eccentric
qualities of the original Apollo guidance computer. This
was crucial in guaranteeing of having any chance of finish-
ing this project in time.

For the hardware side of the project, we will have
a DSKY-like display on a PCB, inspired by the original
Apollo DSYKY’s retro looks, therefore requirements were
dictated by original’s specifications. This consisted of 14
LED lamp indicators, 25 LED displays, and 19 key switches
with a distinct keyboard layout. The update of these dis-
plays and the scanning of keyboard switches will be around
100 Hz, which is just fast enough to appear smooth in re-
sponse, but not too fast that it will congest our I2C traffic
with the FPGA.

The weight and size will be kept at a minimum (around
1 by 2 feet at 5 pounds), for ease of transport. Furthermore,
we will require some protective measures (i.e. a plastic en-
closure) to prevent the destruction of our boards while on
display for the demonstration.

3 THEORY OF OPERATION
AND ARCHITECTURE

The user will interact with the system via our PCB-
based operator interface (see Figure 1), inspired heavily by
the original DSKY that was mounted in the instrumenta-
tion panel of the Apollo spacecraft. Utilizing the interface’s
keypad, status lamps, and alphanumeric displays, the user
is able to run and monitor the status of mission-oriented
programs, view simulated mission metrics, initiate a lamp
test, and perform simple arithmetic operations in ”Calcula-
tor Mode”. Under the hood is a small network of processing
cores, digital circuitry, serial communication, and discrete
I/O that make all of these things happen.



18-500 Design Review Report Template - 18 January 2022 Page 2 of 12

Figure 1: Design rendering of our DSKY (Display and Key-
board) user interface.

3.1 Nouns and Verbs: Establishing Con-
text

While interacting with the DSKY, astronauts of the
Apollo missions would issue commands and receive auto-
mated prompts in a so-called ”verb, noun” format, indicat-
ing an action (verb) to be performed by/upon a device/-
data (noun). All possible nouns and verbs were stored as
2-digit decimal numbers that could be entered via the key-
pad and displayed on the segments. For example, a verb 16
(continuous display - decimal) and noun 65 (mission time)
combination would result in a constantly updating display
of the seconds elapsed within the mission, in decimal form.
Other commands could lead to a flashing verb, noun dis-
play aimed at prompting the astronaut to manually enter
necessary data.

We devised a noticeably condensed list of nouns and
verbs that our users may enter to activate functions within
our device’s demonstration capabilities. Most of our com-
mands are verb-only, with the exception of that which runs
a mission-oriented program, where the user must also enter
a noun to indicate the particular program they wish to run

Figure 2: Table of pertinent verb, noun combinations.

3.2 Theory of Operation

Upon powering up the device, the user automatically
puts the system in ’Idle’ mode (Verb 00). It is now awaiting
the entry of a verb/noun command. The user must press
the ”VERB” key and then type the two digits of their de-
sired verb entry. The digits will fill in the ”VERB” field
on the display, and when ready, the user must press the
”ENTER” key to confirm their selection. Entering a noun
carries the same procedure, although it must begin with a
press of the ”NOUN” key. If the verb 37 (Jump to mission
program XY), has been confirmed, the user must also enter
a valid noun XY, corresponding with the mission-oriented
program they wish to run. Otherwise, a valid verb alone
will initiate the selected function program to run.

While the device is running a selected function program,
the user may enter a verb 00 to exit and return to ’Idle’
mode, or any other valid verb/noun command to exit the
current program and run something else. Some of the mis-
sion programs (for a verb 37 command) read simulated
sensor data at input ports connected to the Cyclone V’s
Arm core and write output data to the same Arm core.
The Arm core runs a program which will provide simu-
lated data, representing what would have been driven by
simple binary sensors or more complicated devices like in-
ertial measurement unit (IMU), to our AGC CPU which
will use this information in pertinent mission programs the
user chooses to run. This program will also read a subset of
the AGC CPU’s output channels, update an output status
display on an external computer monitor, and update the
simulated sensor data as a reaction to these outputs.

3.3 System Architecture

Making all of this happen is a system consisting of two
PCBs. The first is an Altera DE10-Standard Development
Board with a Cyclone V SOC that contains both a Cyclone
V FPGA and an Arm Core, on which we will be running
embedded Linux. The second board is of our own custom
design and consists of an ESP32 Microcontroller as well
as the array of keys and LED displays that make up our
user interface. These boards communicate with each other
via an I2C bus. (The following content refers to the block



18-500 Design Review Report Template - 18 January 2022 Page 3 of 12

diagram in Figure 3 on the next page.)

Within DE10-Standard’s Cyclone V SOC, the Arm
Core with Embedded Linux will run the simulated I/O data
program. Data will be exchanged between it and our FPGA
AGC CPU via an on-chip AXI bridge. This brings us to the
FPGA portion of the SOC, on which is implemented our
AGC CPU, and an I2C interface module containing logic of
our own design and some Intellectual Property from Open-
Cores. The CPU has a set of I/O channels divided between
the AXI bridge interface to the Arm Core and the I2C in-
terface module which transcieves serial data over a 2 wire
bus connected to GPIO pins on the DE10-Standard.

I2C is the serial communication medium we have se-
lected for data exchange between the AGC CPU and the
DSKY-inspired user interface. The first bus is between
the AGC CPU and the ESP32 microcontroller, located on
our custom PCB. The CPU’s display update commands
and the microcontroller’s keypad status data are exchanged
over this bus. The second bus is used by the microcontroller
to drive the individual LED displays, which are I2C slaves.
The keypad, on the other hand, employs a matrix format
using some of the microcontroller’s discrete inputs.

4 DESIGN REQUIREMENTS

We will need an assembler capable of processing AGC
source code and assembling it into binary code that can be
put on the FGPA chip. This is necessary because the code
must be ran on the FPGA in order for the calculations to
be made and displayed on our DSKY to our users.

At the core of the design is our version of the AGC CPU,
implemented in SystemVerilog, synthesized on a Cyclone-V
FPGA. The our system’s functionality requires a CPU im-
plementation that will support 33 of the 49 original AGC
instructions, and they are listed in table 1. The periph-
erals used to communicate to the CPU require at least 5
functioning I/O channels. This is needed in order to do
the calculation asked for by the DSKY operator and com-
municate them back to the DSKY display. Lastly, in or-
der to achieve smooth-running demonstrations and quality
user interaction with the system, we would like our CPU to
support a 50Mhz clock rate which will demand a sub-200
microsecond critical path.

The user interface in our system will include a custom-
designed printed circuit board (PCB). Inspired by the orig-
inal DSKY (Display and Keyboard) interface of the Apollo
missions, the PCB will contain 14 LED indicator lamps,
25 LED displays, and 19 mechanical key switches. Having
a physical DSKY will allow the user to interact with the
system, making our design more impactful and exciting, as
compared to a simple software simulation. This is crucial
in producing an effective exhibition piece.

Our design will also need to be well protected. Ide-
ally by transparent plastic so that the circuitry could be
displayed but not harmed by children at the museum.

5 DESIGN TRADE STUDIES

5.1 Instruction Set

One trade-off we have constantly considered is the sub-
set of the instruction. On a larger scale our choice is be-
tween implementing all or nearly all of the original AGC
instruction set or only a small fraction of the original in-
struction set.

The advantage of implementing the entire instruction
set is that it would make writing our demo code easier as
we could completely reuse much of the original Apollo code
and just tweak it to our preferences. However some of the
instructions that the original AGC used difficult to imple-
ment in RTL in general and not very useful. Although we
studied and debated every instruction in the instruction set
we will give a few example of ones that we chose to include
or not include and why we decided to do that below.

One instruction we decided to exclude is the CCS in-
struction that ”The Count, Compare, and Skip instruction
stores a variable from erasable memory into the accumu-
lator (which is decremented), and then performs one of
several jumps based on the original value of the variable.”
[3]. This instruction is difficult to implement because it is
doing a lot at once so it would require a lot of additional
hardware. It is also non-intuitive to use so we would likely
not use it much in programming. Thus we determined that
this instruction was not worth implementing.

Two instructions we decided to include after some de-
bate are multiply and divide. We initially were inclined
not to include these instructions in our instruction set be-
cause they would be difficult to implement (note that we
are using one’s complement arithmetic so SystemVerilog’s
default multiply and divide would not suffice). However
given the how much less efficient a software version of these
instructions are and how these operations are foundations
for any orbital mechanics calculations we decided to imple-
ment these two operations.

One problem this gave use is that the multiply instruc-
tion produced a two word product. This is a problem be-
cause we had initially opted not to add the double word
store instruction so we decided to give it another thought.
The RAM IP for the FPGA is dual ported. This means we
could not store two words while loading one word for an-
other instruction in the pipeline. This means that a double
word load would introduce resource contention that would
lead to more complexity, bugs, stalling, and a lower IPC.
Thus we decided not to implement this instruction and
rather do two single word stores after producing a double
word product.

Another set of instructions we decided to not imple-
ment is the interrupt related instructions. This is because
we decided to not implement interrupts. We will discuss
that decision next.

Our final list of instructions we are implementing will
be included in the another section.



18-500 Design Review Report Template - 18 January 2022 Page 4 of 12

Figure 3: High level system block diagram.

Table 1: Instruction Set

Instruction Description Instruction Description
AD K A = A+ [K] BZF K If A = 0;PC = [K]; Else PC = PC + 1
ADS K [K] = A+ [K]; A = A+ [K] BZMF K If A <= 0; PC = [K] Else PC = PC + 1
AUG K If [K] >= +0; [K] = [K] + 1; Else [K] = [K]− 1 RETURN PC = Q
COM A = Ã TC PC = K; Q = PC
CS K A = −[K] TCAA PC = A

SQUARE A = A ∗A TCF K PC = K
ZL L = 0 READ KC A = {KC};
ZQ Q = 0 WRITE KC {KC} = A

DIM K If [K] >= +0; [K] = [K] + 1; Else [K] = [K]− 1 RAND A = A&{KC}
DOUBLE A = A+A ROR A = A|{KC}
INCR K [K] = [K] + 1 RXOR A = A ∧ {KC}
MASK K A = A&[K] WOR A = A|{KC}; {KC} = A&{KC}
SU K A = A− [K] WAND A = A|{KC}; {KC} = A&{KC}
DV K (A,L) = (A,L)/[K] LXCH K [K] = L; L = [K]
NOOP Nothing QXCH K [K] = Q; Q = [K]

INDEX K Next instruction is executed differently TS K [K] = A
EXTEND Next instruction uses extra code to interpret CA K A = [K]
MP K (A,L) = A ∗ [K] XLQ L = Q; Q = L

XCH K A = [K]; K = [A]



18-500 Design Review Report Template - 18 January 2022 Page 5 of 12

5.2 Interrupts

As mentioned in the last section we decided not to im-
plement interrupts. Though interrupts would make writing
software easier it would make the RTL design effort much
more difficult.

The advantage of interrupts for our use case would first
and foremost be allowing for simple and quickly responsive
I/O. This would make the process of writing software more
simple the I/O channels would not have to be regularly
polled. It would also mean that we would not have to wait
for a respective channel to be polled to respond but when
the value was changed we could check instantly.

The disadvantage if interrupts for our case is that is
would increase the RTL design effort. In order to imple-
ment interrupts we would have to devise an interrupt sys-
tem that would respond to different IO channels and do dif-
ferent things based on which interrupt occurred. Though
in theory this does not sound too difficult nobody in our
group have designed such a system before and this we can
only assume that implementing it will take much more time
and be much more difficult than we would think. In addi-
tion to that polling often does not increase response time
and often decreases it. Lastly we determined that given the
amount of I/O channels we are implementing polling them
would not be that difficult and therefore we decided that
it would easier to poll than to implement interrupts.

5.3 Code Assembly

How to go about assembling our code was another de-
sign decision. The three options we looked into were writing
our own assembler, taking the output of the yaYUL [4] as-
sembler and fitting it to out needs using a custom python
script, and editing the source code of the yaYUL assembler
such that it meets our needs. We were solely looking at
which option we thought would be easiest to implement.

Writing our own assembler would be time consuming.
We would have to right nearly all our code from scratch.
However the benefit of this is we could write the script in
the language of our choice and we would not have to read
someone else poorly documented code.

Taking the output of the yaYUL assembler and fitting
to our needs could also be time consuming. One difficulty
would be reading a binary file and mapping the memory
map they used to our memory map based on that informa-
tion. We would also need a good understanding of how the
yaYUL stored data in the binary to make sure we would
be doing the right thing with the data. The benefit to this
is that we would not have to write a whole assembler and
that we could use a language of our choice for our script.

Out last option is editing the yaYUL assembler such
that it produces the output in the MIF format required by
the FPGA. The benefits to this is that it would likely re-
quire writing the least amount of code. On the other hand
we would have to understand the poorly documented as-
sembler most to take this approach and write some string
code in c to produce our final output.

Our choice for now is to edit the yaYUL assembler such
that it produces the output in the correct file format. How-
ever if that becomes more difficult than it looks we may
change to one of the other methods.

5.4 PCB and Components Selection
Trade-offs

To safely and effectively design our PCB, it was imper-
ative that the design and components choices must be re-
liable and verified, while meeting our design requirements.
This meant that our highest priority when deciding compo-
nents were the ones of which we had prior experience with,
or have extensive online documentation. Therefore, some
trade-offs had to be made in the aesthetics of the design:
the key switches are common computer keyboard switches
and the LED displays are matrix-ed alphanumeric displays.
The final 3D render (refer to Figure 1) does indeed show
some discrepancies from the original Apollo DSKY. How-
ever, we considered these aesthetic deviations as accept-
able, since we had to maximize the probability that our
PCB will work within the remaining 2 months. This was
a better design decision than choosing highly custom and
non-documented components which will be much riskier
and have a higher chance being nonfunctional. More de-
tails on the components BOM will be discussed in Section
8.3.

6 SYSTEM IMPLEMENTATION

There should be a subsection for each of the subsystems
as shown below.

6.1 Program Assembly and Loading

As discussed previously our plan is to make edits to
the existing yaYUL assembler to fit our needs. Our plan
for memory is to use the IP blocks that Intel’s Quartus
can produce for use for ROM and RAM. Those ROM and
RAM blocks are meant to be used so that the FPGA knows
exactly what to use to give the user the demanded func-
tionality. In addition to this the ROM and RAM block IP
block can be used in simulation. In order, to put data in
the RAM and ROM IP the block require us to write to a
.mif file and then reference that in the verilog file in the IP
block. Thus we will need to change the assembler such that
instead of writing a binary file representing memory we will
need to write to two different .mif files, one for RAM and
one for ROM.

What will these changes entail? At a high level we need
to change 3 things. One we will be writing to two different
files depending on the address. Two we will be changing
the memory map such that the memory matches our pro-
posed memory map. Lastly, we will change the format.
The .mif files at a high level have a line that corresponds
to one address space in memory with one value noting the
address in octal separated by a colon by the value at that



18-500 Design Review Report Template - 18 January 2022 Page 6 of 12

Figure 4: Assembler block diagram

Figure 5: Pipeline Diagram



18-500 Design Review Report Template - 18 January 2022 Page 7 of 12

Figure 6: Memory Map



18-500 Design Review Report Template - 18 January 2022 Page 8 of 12

address in octal. This means we will have to convert the bi-
nary values to the ASCII string octal representation figure
4 demonstrates this process.

6.2 RTL design

The RTL design is a core component of our AGC imple-
mentation. Our pipeline will be a four stage pipeline (Fetch
Decode Execute Writeback). It will be a 4 stage pipeline
because we will be able to read from memory in decode
stage and write to memory in writeback stage (therefore
we do not need the memory stage of your typical 5 stage
pipeline). Our pipeline implementation is shown in more
detail in Figure 5. Our memory map has a 12 bit address
space that is split into RAM and ROM. Additionally we
will be using banked memory similar to the original design
of the AGC. A visual representation of this is in Figure
6. Our RAM and ROM will be implemented using Intel’s
custom IP for their FPGAs and address translation will be
done in our RTL.

6.3 PCB Design

The DSKY PCB, developed using Altium Designer 16,
was designed such that the PCB itself would act as the front
facing panel of the DSKY. By doing so, we can utilize the
full manufacturing capabilities of our PCB manufacturer
and use silkscreen/solder-mask to print high quality labels
and designs. This can be seen in the 3-D render in Figure
1. The end product is an professional looking DSKY panel
at minimal cost, while still retaining the classic qualities of
the original DSKY.

The portions of the schematics are shown in the ap-
pendix Figure 9 and a screenshot of the layout is shown in
Figure 10. Every two LTP-305G LED displays are handled
by an IS31FL3730 I2C display driver, which takes care of all
the process for lighting up the multiplexed LED segments
with brightness control. The R50RED-F-0160 LED lamps
on the left are also controlled by the same driver. They are
all connected to a common I2C bus, which is handled by
the ESP32 micro-controller acting as the I2C master. The
Cherry MX keyboard switches are multiplexed and con-
nected directly to the ESP32, which will conduct periodic
scanning of the keys to detect key presses. Diodes are at-
tached to the inputs of each keys to prevent ”ghosting,”
which occurs when two key switches on the same row are
pressed and cause a third ”ghost” switch to be registered.
Finally, two I2C bus pins from the ESP32 are broken out to
the connectors so that they can be connected to the FPGA
and used for communication.

6.4 Peripheral Controller Software

The Peripheral Controller is the ESP32 microcontroller,
which will primarily handle detecting key presses and dis-
playing the LED display segments through appropriate
I2C commands to the display drivers. Note, although the
ESP32 microcontroller is a WIFI/Bluetooth module, which

is not required for this device, it was still chosen for its
ease of use, low cost, being modular, and having a mature
toolchain (Xtensa GCC).

There are three major program flows, as shown in Fig-
ure 7. There are two interrupt service routine (ISR) flows
which govern the handling of displaying the LED segments
and the keyboard scanning. For the first ISR, an I2C
interrupt will be triggered upon receiving display values
from the FPGA. The ISR will parse the I2C packets and
then send appropriate I2C commands to all the IS31FL3730
LED drivers, which in turn will drive the 25 LED displays
and 14 lamps. The second ISR will be triggered around ev-
ery 100Hz using a timer, and it will periodically scan each
4 rows to determine if any key switches have been pressed.
If any key switches are pressed, the main program will con-
struct a VERB/NOUN pair and send an appropriate com-
mand back to the FPGA to be parsed. The ESP32 will also
be responsible for error handling (i.e. invalid key presses),
of which appropriate warning lamps will be indicated and
the packets will be thrown out.

6.5 Demo Software on Linux SoC and the
AGC

The programs running on the AGC will primarily re-
volve performing calculations required for basic orbital me-
chanics. This will require math functions, such as sine,
cosine, and square root. Implementing these functions in
Assembly will be very challenging, but we can re-purpose
the original Apollo’s implementations of these math func-
tions. Apollo missions such as Comanche 055 (Command
module programs used for Apollo 11) and Aurora 12 (Test
vehicle) already have implemented these functions in AGC
assembly, which are simple enough to be executable on our
architecture [2]. The basic orbital mechanics functions and
time-keeping programs to be implemented are listed below.

• 00 Monitor Mission Time

• 02 Orbital Plane Transfer

• 04 Calculate Escape Velocity

• 01 Hohmann Orbit Transfer

• 16 Conduct Lunar Insertion

• 05 Calculator Demonstration

The orbital mechanics calculations primarily revolve
around using Orbital Plane/Phase Transfers to calculate
delta-v:

∆vi =
2 sin(∆i

2 )
√
1− e2 cos(ω + f)na

(1 + e cos(f))
(1)

where e is the orbital eccentricity, ω, is the argument of pe-
riapsis, f is the true anomaly, n = 1/P is the mean motion
(orbital period frequency), and a is the semi-major axis.
Also Hohmann Orbital Transfer equations will be used for



18-500 Design Review Report Template - 18 January 2022 Page 9 of 12

Figure 7: High level FSM of the Peripheral Controller



18-500 Design Review Report Template - 18 January 2022 Page 10 of 12

orbital mechanics involving increasing/decreasing orbits or
performing lunar injection:

∆v1 =

√
µ

r1

(√
2r2

r1 + r2
− 1

)
∆v2 =

√
µ

r2

(
1−

√
2r1

r1 + r2

) (2)

where ∆v1 is the first burn required and ∆v2 is the second
burn required for changing orbitals from orbital radius r1
to r2, with µ = GM being the standard gravitational pa-
rameter. More extensive documentation can be found at
the referenced website [1].

7 TEST & VALIDATION

7.1 Tests for Verifying our RTL meets the
ISA

In order to meet the architectural specification we will
first focus on making sure our RTL meets the spec in simu-
lation. To do this we will write a test case for each instruc-
tion we are implementing, which will make it 33 tests. We
will have a infrastructure in SystemVerilog that will display
the register values of each register at the end of the test.
We will then compare that to the simulation results of an
online simulator of the AGC in order to make sure we are
hitting the architectural specification.

7.2 PCB Manufacture and Verification

The design review verification consisted of using Al-
tium Designer 16’s Electrical Rule Check (ERC) and De-
sign Rule Check (DRC). The only errors encountered were
minor silkscreen overlap. The PCB will be built and tested
at Techspark PCB Labs at Ansys Hall, Carnegie Mellon
University. For the surface mount components, solder will
be dispensed using the Protoprint ZeliFlex QR MT Sol-
der Paste Printer, the components placed using the aid of
ProtoPlace S pick-and-place machine, and reflowed in the
ProtoFlow S Reflow oven. Through hole components will
be manually soldered by hand using a soldering pen. The
final piece will be verified for correct soldering of the com-
ponents using the TruView X-ray analyzer and also checked
via microscope inspection. The correctness of voltages and
the I2C packets will be validated using a 4-channel oscil-
loscopes and protocol analyzers. Finally, the temperature
of the components will be checked using an IR thermome-
ter/camera to prevent overheating of components.

7.3 Software Calculations

The verification of the software relies primarily on
checking the correctness of the software calculations.
Therefore, the final results must match within 0.1% of the
predicted results to prevent rounding errors that can im-
pact our simulation demo.

8 PROJECT MANAGEMENT

8.1 Schedule

The general break down of our schedule is that we will
be working on the PCB while working on this document.
We will then work on setting up the test infrastructure
and writing and debugging the RTL. Next we will write
the software while synthesizing our project on the FPGA.
Then finally we will integrate. Our complete schedule is
included in the back as figure 8.

8.2 Team Member Responsibilities

Christopher Bernard: Primarily responsible for the as-
sembler and RTL testing infrastructure and co-responsible
with Donovan on making sure the RTL works. Secondarily
responsible for making sure the assembly works on the final
project.

Donovan Gionis: Primarily responsible for making the
sub-modules and co-responsible with Christopher on mak-
ing sure the RTL works. Secondarily responsible for making
sure the assembly works on the final project.

Jae Choi: Primarily responsible for making the PCB of
the DSKY and the peripheral interface and for writing the
assembly code.

8.3 Bill of Materials and Budget

The bills of materials for the components (excluding
the PCB cost) for building 2 and a half pieces are shown
in Table 2. The cost of building the PCB and the solder
stencil comes to 186.24 USD for 5 boards. Therefore, the
total cost is 287.07 + 185.24 = 473.31 USD, and with ship-
ping costs included the total amounts to around 500 USD.
Therefore, we are well below the allocated budget of 600
USD and have plenty of spare components for repairs.

8.4 Risk Management

One key risk we had is the PCB not arriving on time.
In order to manage that risk Jae is working on it now at
the cost of having others pick up his slack on the report.
Another risk is that none of us have written an assembler
before. To manage that risk Christopher has started work-
ing on the assembler earlier than initially planned. Another
risk we have is that generally our project contains a lot of
work so if anything takes longer than necessary our whole
project may not finish.

To mitigate this plan we have several things we can cut
out and still have a project. We could write less assembly
code (have less programs for demo) and we could simplify
our pipeline design while relaxing our frequency and IPC
constraints. If the PCB has errors, bodge wires will be
used to discretely fix the traces. If the worst happens and
the PCB goes up in flames, then we will opt for a software
DSKY demo. If our critical path is longer than 200ms, we
will weigh the cost/benefits of spending more time optimiz-
ing or opting for a slower clock. If some of non-essential



18-500 Design Review Report Template - 18 January 2022 Page 11 of 12

Table 2: Bill of materials (Components)

Description Quantity Manufacturer Part Number Unit Price Total Price
LED RED CLEAR T/H 26 R50RED-F-0160 1.21 31.46
SWITCH PUSH SPST-NO 0.01A 12V 40 MX1A-E1NW 0.9076 36.30
IC INTERFACE SPECIALIZED 24SSOP 3 PCA9548ADB 1.61 4.83
LED MATRIX 5X7 0.3” GREEN 50 LTP-305G 2.246 112.30
IC MATRIX LED DRIVER AUDIO 24QFN 27 IS31FL3730-QFLS2-TR 1.2168 32.85
CONN HEADER SMD R/A 6POS 2.54MM 3 M20-8890645 0.83 2.49
RES 10K OHM 1% 1/10W 0603 10 RC0603FR-0710KL 0.024 0.24
CAP CER 0.1UF 50V X7R 0603 50 CC0603KRX7R9BB104 0.0324 1.62
SOLDER PASTE NO-CLEAN 63/37 5CC 1 SMD291AX 14.99 14.99
RX TXRX MOD WIFI TRACE ANT SMD 3 ESP32-WROOM-32E-N16 3.6 10.80
RES 4.7K OHM 1% 1/10W 0603 100 RC0603FR-074K7L 0.0097 0.97
DIODE GEN PURP 75V 150MA SOD323 40 1N4148WS-HE3-18 0.212 8.48
KEY CAPS FOR CHERRY MX SWITCHES 1 PBT KEYCAPS 29.74 29.74
DE10 FPGA SOC ALTERA DEV BOARD 1 DE10-STANDARD 0 0

287.07 USD

instructions are costing us too much time/effort, we will
descope them if necessary. Finally, if we are running out of
time, we will focus on creating a simple but compact demo
that demonstrates the absolute key features of the DSKY.

9 RELATED WORK

Our two main competitors are the official Apollo mis-
sion display and a yaAGC simulator. The Apollo mission
display has the full original Apollo computer and the com-
mand capsule. The benefit ours has over this is that ours is
smaller and more portable and can be mass produced. The
yaAGC software simulator is only a simulator can be put
on any computer but does not have any physical hardware
to be displayed at the museum.

10 SUMMARY

Our project uses a DE-10 SOC and a custom DKSY
PCB. Our design takes a modern approach on an inspira-
tional mission reflecting both the past but also how much
more is possible in the future. Our modern design also
makes our project smaller and more portable. Our modern
take on the AGC would prove to be an interesting museum
exhibit and it’s small size would make it easy to move. It
could even tour schools.

Our upcoming challenges will include getting all of the
parts of our project to work together in one. Each compo-
nent of what we are working on will be time consuming so
time management will be key for us to finishing everything
on time in order to have a finished display for people to
interact with.

Glossary of Terms

• AGC – Apollo Guidence Computer

• CPU - Central Processing Unit

• DSKY - Display and Keyboard

• FPGA - Field Programmable Gate Array

• IMU - Inertial Measurement Unit

• IPC - Instruction Per Cycle

• PCB - Printed Circuit Board

• RAM – Random Access Memory

• ROM – Read Only Memory

• RTL - Register Transfer Level

• SOC - System on Chip

• .mif file - Intel’s file format for their FPGA Memory.

• .agc file - File format of AGC assembly code

• .sv files - File for SystemVerilog code.

References

[1] Robert A. Braeunig. Orbital Mechanics. 2013. url:
http://www.braeunig.us/space/orbmech.htm.

[2] Ronald Burkey. Comanche 055 Single Precision
Routines.AGC. 2009. url: https : / / github .

com / chrislgarry / Apollo - 11 / blob / master /

Comanche055/SINGLE_PRECISION_SUBROUTINES.agc.

[3] Ronald Burkey. Virtual AGC — AGS — LVDC —
Gemini Programmer’s Manual Block 2 AGC Assem-
bly Language. 2021. url: https : / / www . ibiblio .
org/apollo/assembly_language_manual.html.

[4] Ronald Burkey. virtualagc. 2022. url: https : / /

github.com/virtualagc/virtualagc.



18-500 Design Review Report Template - 18 January 2022 Page 12 of 12

[5] Jeffrey Kluger. Elon Musk Told Us Why He Thinks
We Can Land on the Moon in ‘Less Than 2 Years.
Aug. 2019.

[6] Annie Palmer. Jeff Bezos looks to life beyond Ama-
zon after historic space ride. 2021. url: https : / /
www.cnbc.com/2021/07/20/jeff-bezos-looks-

to-life-beyond-amazon-after-historic-space-

ride.html.



18-500 Design Review Report Template - 18 January 2022 Page 13 of 12

F
ig
u
re

8
:
O
u
r
fu
ll
g
a
n
tt

ch
a
rt
.



18-500 Design Review Report Template - 18 January 2022 Page 14 of 12

Figure 9: DSKY Schematics for the portion of the LED Lamps and Display



18-500 Design Review Report Template - 18 January 2022 Page 15 of 12

Figure 10: DSKY PCB Layout as seen from the bottom


