To the 60's and Back

A modern take on the Apollo Guidance Computer (AGC)

Group E0: Christopher Bernard, Donovan Gionis and Jae Woong Choi

Use Case

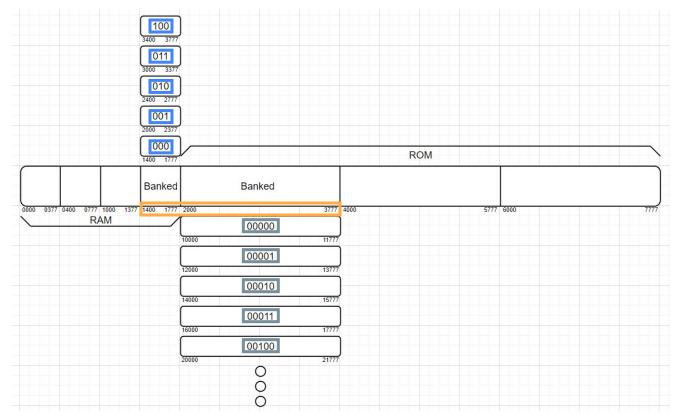
The Customer requires a device to control and handle their rocket. They want:

- An *efficient*, *improved* flight computer to calculate the future spacecraft trajectory (basic Newtonian orbital mechanics).
- A computer that keeps track of spacecraft status and sensors, such as *mission time elapsed, battery power level, current power usage, warning*, etc.
- A compact reliable display and keyboard interface (DSKY) to interact with the computer
- To use an I/O focused ISA that is proven to have work for manned space travel

Areas covered: Hardware Systems, Software Systems

Use Case Requirements

- Given our mission time we should be able to calculate and write to the given I/O register for current battery level, distance from earth and moon within **1ms**. It should also be able to be accessed through DSKY.
- The DSKY will contain **compact LED displays** (capable of displaying seven segment) and **control lights** to display important information. A **tactile keypad** will be provided for input
- Improved Frequency 1.1Mhz->50Mhz. Condensed ISA 37->21 instructions, Decreased Weight/size 70lbs-> 3.5lbs.
- Each instruction we implement will pass a specialized test for that instruction in simulation


Technical Challenges: Verification, Assembler, Reduced ISA

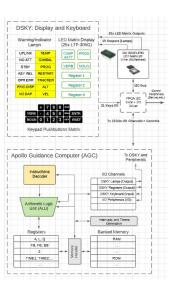
- How will we **verify** that our processor meets the **requirements**?
- How will we set up an infrastructure that is capable of testing our processor?
- An **assembler** is needed to run **test/demo** programs.
- How can we simplify the original ISA while retaining its defining features?

Our ISA

Format	Operation	Format	Operation
ADD K	A = A + [K]	BZF K	If A = 0; PC = [K] Else PC = PC + 1
ADS K	[K] = A + [K] A = A + [K]	BZMF K	If A <= 0; PC = [K] Else PC = PC + 1
AUG K	If [K} >= +0; [K] = [K] + 1 Else; [K] = [K] - 1	RETURN	PC = Q
СОМ	A = ~A	READ KC	A = {KC}; Note {} means read from I/O channel
CS K	A = -[K]	WRITE KC	{KC} = A
DIM K	If [K} >= +0; [K] = [K] + 1 Else; [K] = [K] - 1	NOOP	Nothing
DOUBLE	A = A + A	INDEX K	Next instruction in memory is executed differently
INCR K	[K] = [K] + 1	EXTEND	Next instruction uses extra code to interpret
MASK K	A = A & [K]	NOOP	Nothing
SUK	A = A - [K]	TS K	[K] = A
		CA K	A = [K]

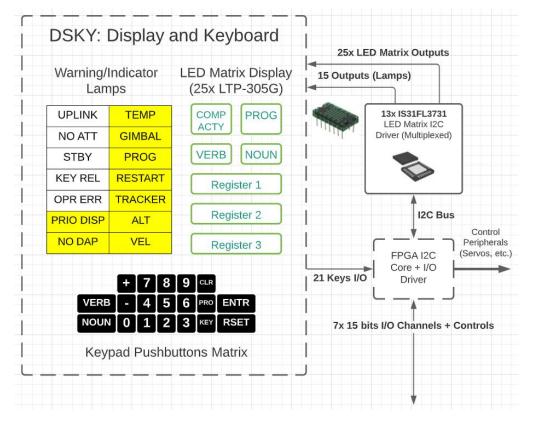
Memory Map

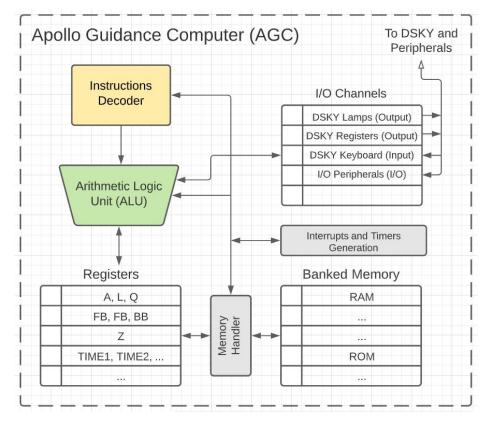
These addresses must be translated prior to memory access.


Translation based on...

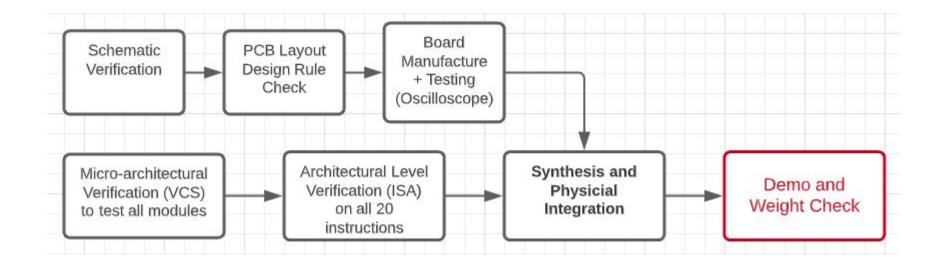
3 Erasable Bank (EB) selection bits for banked RAM

5 Fixed Bank (FB) selection bits for banked ROM

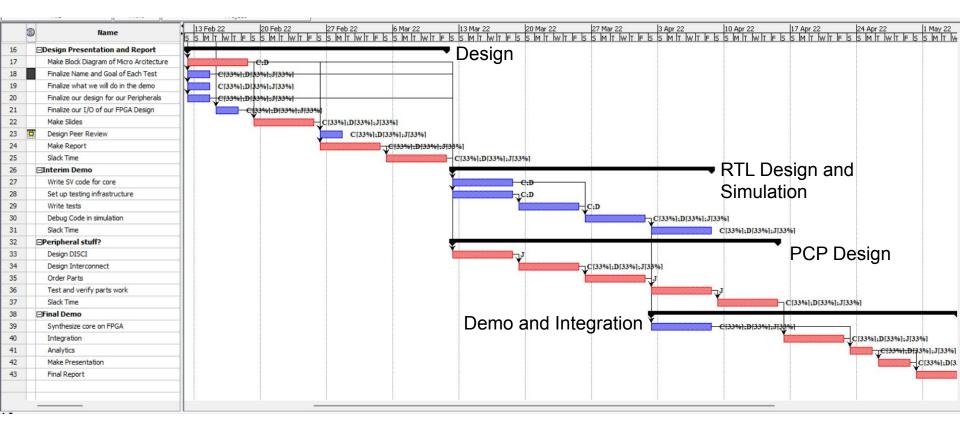

Technical Challenges Hardware Development & Integration


- How do we design a DSKY PCB to meet our requirements? Which components?
- Development of the DSKY interface will require a customized PCB: requires *component selection*, *schematic design*, *PCB layout*, and *PCB assembly*.
- Take into account component **shortage**, PCB board shipments, etc. to minimize **risk**.
- **Time allotment**: Hardware development, DE10 board setup will need to happen **parallel** with architecture development for time.

Solution Approach (System)


- DSKY is the primary user interface for the AGC
- Design a custom PCB containing LED indicators, LED matrix displays, and keypad
- FPGA will be interfacing the displays/indicators through an I2C bus for minimal I/O usage
- The board will be assembled manually using TechSpark equipment
- All parts chosen are confirmed in stock in Digikey/Amazon (500+ stock)

Solution Approach (CPU)



- The AGC architecture will be implemented with Intel (Altera)
 FPGA in SystemVerilog. Current candidate is **DE10 with SoC**.
- With the help of SoC, the AGC will have accessed to simulated mission data
- Custom AGC assembly routines based on Apollo Luminary 99 programs will be written and run on our hardware to demo functionality

Testing and Verification Metrics

Schedule and Division of Labour

Conclusion

- AGC Architecture
 - Purpose-built for **space travel**
- Modern Redesign
 - Use EDA, synthesis tools, miniaturized IC form factor
 - Vastly **smaller** package, **faster** performance
- Target Commercial Space Travel
 - Recent **surge** in national interest
 - Efforts to reach Mars

