
1
18-500 Final Project Report: Myflection 05/07/2022

My-Flection
Members: Ramzi Hamdalla, Wonho Kang, Jeremy Ryu, and Yun Lee

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—My-Flection is a smart mirror aiming to help
students increase their productivity by helping them start their
morning on the right foot through outfit recommendations. We
aim to provide a smooth and efficient experience for the user by
analyzing their torso and recommending an appropriate outfit
based on what they are wearing. By analyzing the color of the
clothing, the current weather and availability of clothing in the
user’s wardrobe, the user can interact with our smart mirror
using an app to receive an appropriate outfit recommendation
smoothly and quickly.

Index Terms — Nvidia Jeston Xavier NX, OpenPose, Arducam,
OpenCV

I. INTRODUCTION

College students struggle with many challenges everyday.
From the numerous assignments and job search struggles to
meeting with friends and going to parties, there are many tasks
that keep college students constantly busy. Knowing this we
want to help students be more productive by helping them get
prepared for their day in the morning. The morning is one of
the busiest times of the day and there often are times when
people are rushing to leave home to get to class or a meeting.
We want to address this challenge by helping students choose
their outfits in the morning. People who especially struggle
with choosing the “right outfit” for themselves will benefit
most from this system as it allows them to smoothly get ready
in the morning and help make decisions.

We plan to achieve this by creating a smart mirror that
analyzes what the user is wearing on top and recommends
appropriate pieces of clothing that go with the top. The user
stands in front of the mirror wearing a certain color top and
the smart mirror will analyze the torso and detect the top color.
Based on the weather, available clothing in the user’s
wardrobe, and a standard outfit color palette, the smart mirror
will recommend an outfit that fits their current clothing.

We accomplish this by implementing computer vision
technology to do the analysis and using a user-driven database
to provide a more personalized user experience. These two
major pieces of technologies will allow the user to
comfortably and quickly choose an outfit to their liking.

An example of technology similar to this would be the LG
ThinQ Fit mirror, which fits clothing to you by analyzing the
body dimensions. Although this technology seemed innovative
and was presented at CES 2020, it does not necessarily help
with the productivity of the user and moreover makes them

feel uncomfortable by measuring body part dimensions. What
we aim to do with our smart mirror is the opposite of this as
we want to allow the experience to be user-centered so that
they feel the most comfortable and efficient when using our
product.

II. USE-CASE REQUIREMENTS

Our use-case requirements are driven by providing our
users with the most smooth and comfortable experience. We
plan to achieve this by focusing on areas the user would be
affected the most when interacting with our device. To
prioritize a smooth and enjoyable experience, our
requirements focus on convenience, time efficiency, and
accuracy of the device. We also identified potential areas
where our user’s experience may suffer in order to decide
which metrics are needed to guarantee an enjoyable
experience. As a result, our use case requirements are mainly
divided into four primary areas which include app response
time, outfit recommendation time, detection accuracies, and
storage capacity. Each area is essential in creating a smooth
experience for the user.

Requirement Predicted Value

Database Latency < 200 ms

Database Input Time < 1s

Outfit Recommendation < 5s

Torso Detection Accuracy > 99%

Color Detection Accuracy 100% (Within range)

Table 1. Use-case requirements

Table 1 is a chart of use-case requirements. We believe it is
important to create an application that will promptly respond
to the user so that they can have a comfortable experience.
The quantitative requirements we set for this area are the
database latency at under 200ms and the database input time at
under 1s. These are all reasonable delays that occur when
using the mirror as delay times on most applications strictly
fall under a second not to lose the user’s attention and
patience.

2
18-500 Final Project Report: Myflection 05/07/2022

The second area we focus on is outfit recommendation time.
We want the entire process of the outfit recommendation to
take less than 5 seconds. This metric was chosen as we
thought 5 seconds would be the upper limit for maintaining
someone’s attention as they are waiting.

Thirdly, in terms of detection accuracy, we wanted to set
specific requirements for torso detection and color detection.
First, we want torso detection accuracy to be above 99%. The
reason behind this is that our entire project is centered around
the device being able to detect the user’s torso and analyze the
piece of clothing. For color detection, we aim for a success
rate of around 100%, as even though we understand that there
may be some variables in lighting that can change color
shades and present issues with color detection, we have
implemented an LED system to normalize the lighting, and
hope to be able to consistently give the user accurate results.

III. ARCHITECTURE AND PRINCIPLE OF OPERATION

A. Physical System

Fig. 1.System drawing of an overall physical system

The diagram of the physical system sketch which entails all
hardware components of the project is illustrated in Figure 1,
and Figure 2 is how our project turned out in the end. As
demonstrated in the diagram, an Arducam will be placed on
top of the two-way mirror along with a monitor, and a Jetson
Xavier NX placed behind the mirror. Arducam will take a
snapshot of a user standing in front of the mirror. The image
will be sent to Jetson which is in charge of necessary
computations including analyzing the user’s torso and top
color with relevant software. The analysis results will be fed to
the outfit recommendation algorithm which will output
recommendations based on a wardrobe database stored in an
cloud database and real-time weather information collected
from the internet. As a final step, the outfit recommendation
will be displayed through the monitor that the user can view.

Fig 2. Completed smart mirror

The Arducam 12MP and Jetson Xavier NX are off the shell
from the ECE inventory, and a 27-inch monitor and 36x24
2-way mirror have been purchased. The size of the mirror
reflects the expected size of the final product. The monitor has
been chosen to be smaller than the mirror but big enough for
the user to easily view the recommendation display.

B. Block Diagram - System Architecture
The block diagram in Figure 3 demonstrates the overall

system architecture. The project is done mainly in software,
and system architecture can be divided into three parts: user
interface, computer board, and internet. The user interface is
composed of a camera, application, and monitor, which will
communicate with the computer board through physical wire
connection, wifi connection, and physical wire connection,
respectively. While the camera only takes inputs from the user,
the monitor outputs display results, and the application will
both input and output basic signals and wardrobe information.

The application is used as a general controller of the entire
system, which has the most interactions with the user. The
main features of the application include 1) turning the mirror
on and off, and 2) adding and deleting items of the user's
wardrobe. Additionally, there are lighting controls on the side
of the frame of the mirror. When adding items to the user
wardrobe, users will take a picture of the item and fill in types
of clothing(e.g. shorts, jeans, t-shirt, long sleeve shirt) through
the itemization form. Then, the app will transmit the picture

3
18-500 Final Project Report: Myflection 05/07/2022

Fig. 3. Overall system block diagram

and form to Jetson, which will detect the item color and put
the item data into the user wardrobe database in CV format.
Users can delete items from their wardrobe when the items are
unavailable and they can also weigh items differently based on
their preferences using the application as well.

With the wardrobe database created, users can get outfit
recommendations by turning on the mirror and standing in
front of it for the mirror to recognize what the user is currently
wearing as their top. Based on the user inputs, the camera
image, and the wardrobe, Jetson 1) organizes the user
wardrobe database, 2) analyzes torso, 3) analyzes top color, 4)
collects real-time weather information, 5) recommends outfits,
and 6) creates a monitor display for the recommendation.

As mentioned above, the user wardrobe database will be in
CV format containing item color, type, availability, and
preference weight. Torso and color analysis will be done
through open-source APIs OpenPose and OpenCV,
respectively. The real-time weather information will be
collected through the internet from weatherapi.com which
provides weather forecasts based on geolocation information.
With the user top color data, weather information, and the user
wardrobe, the outfit recommendation algorithm will generate a
set of applicable outfits reflecting the weather and user
preferences. The basics of the algorithm will be color
coordinating charts that provide aesthetic color pairs for
outfits. The charts will be organized in CV format grouping
colors that match with one another and stored in an SD card.

A set of outfit recommendations will then be displayed to
the monitor. During this process, Jetson will pull out
corresponding clothing images and information stored in the
database. These will be calibrated and modified suitable for
the display. The user can get through the recommendations
and pick a recommendation or part of a recommendation that
they enjoy to wear for the day.

IV. DESIGN REQUIREMENTS

The use case requirements, as demonstrated in Table 1, can
be categorized into three main components: speed, accuracy,
and storage capacity.

A. Speed
Speed will all be tested as a timestamp upon a start of an

initial process subtracted to a timestamp upon completion of
the final process
- Database latency: The metrics will be measured for the

retrieval of data from the database in a cloud based
spreadsheet with data stored in CV format for outfit
recommendation and monitor display image calibration.
The following equation will be used:

(timestamp upon a successful data retrieval response)
- (timestamp time upon data retrieval request)

- Database input: The metrics will be measured for
modifying the CV format wardrobe database stored in a

4
18-500 Final Project Report: Myflection 05/07/2022

cloud database. Database input speed will be measured for
adding and deleting a piece of clothing from the database.
The following equation will be used:

(timestamp upon a successful modification of data
reflected in the database) - (timestamp for database
input request)

- Outfit recommendation: The metrics will be measured for
the entire period of the outfit recommendations from
starting torso detection to outputting recommendation
results to the monitor. The equation is as follow:

(timestamp of recommendation results display) -
(timestamp for torso detection start)

B. Accuracy
- Torso detection: The metrics will measure the capability

of identifying the user torso standing in front of the mirror
in a stable position within a distance range of 1m~2m,
assuming the proper lighting. It will use mAP(mean
average precision in percentage) for object detection. The
equation is as follow:

𝑚𝐴𝑃(%) = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 · 100

- Color detection: The metrics will measure the capability
of identifying RGB values of a piece of outfit for user top
detection and adding an item to the wardrobe. Assuming
the use of the same LED lighting environment, the RGB
value of a dominant color of a piece of clothing will be
measured. The equation is as follow:

𝐶𝑜𝑙𝑜𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑜𝑟 𝑎 𝑣𝑎𝑙𝑢𝑒 = 1 − 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑎𝑐𝑡𝑢𝑎𝑙 ()

𝐶𝑜𝑙𝑜𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
1
3 · 𝑅 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐺 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐵 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦() · 100

V. DESIGN TRADE STUDIES

Design tradeoffs were considered for most of our hardware
components of our smart mirror and the user interface. Most
of our choices, if not all, were driven by our use-case and the
use-case requirements.

A. Computation Hardware - Jetson Xavier NX
The most important aspect of our project is to provide a

fulfilling and smooth user experience with our smart mirror. In
order to achieve this, it is crucial that the single-board
computer we use is able to process live video feeds efficiently.
The two options we were considering were the Jetson series

and the Raspberry Pi. The Jetson series, specifically the Jetson
Nano and Jetson Xavier NX, were designed for AI/ML
applications because of their incredible GPU capabilities that
significantly outperform the Raspberry Pi. However, the price
tag attached to the Jetsons were on the pricier end in
comparison to the Raspberry Pi. On the other hand, the
Raspberry Pi has been around for a longer time than the Jetson
Nano and Xavier which could potentially benefit us more in
terms of better documentation and demo projects. After
weighing the tradeoffs between using the Jetson Nano/Xavier
vs. Raspberry Pi, it was apparent that using the Jetson Xavier
would be the best design choice. One of the stretch goals of
our project is to apply AI/ML models to our smart mirror
which would allow it to analyze, recognize, and learn user’s
outfits without the need to create key tags in the wardrobe
database. Also, our torso detection software, OpenPose,
requires NVIDIA GPU compatibility for a smooth experience.
Therefore, the NVIDIA Jetson Xavier NX would be the best
choice for achieving all our use-case and design requirements.

B. Communication - Wifi
Though the Jetson Xavier NX may boast its incredible

computation capabilities, our project will be ineffective if the
method of communication to and from the single-board
computer is buggy. There were three main options we took
under consideration when deciding upon a method of
communication between the components of our project and
the Jetson Xavier NX: bluetooth, wifi, and wires. The option
of using wires was crossed out early because although it is the
easiest to set up, our project places a huge emphasis on user
experience, so the potential trouble of dealing with messy
wires behind or around the smart mirror is highly undesirable.
As shown in the block diagram in Section III. Architecture,
there are several components of our project that require
communication with the Jetson Xavier. Most importantly, the
National Weather Service API exists on the Internet which can
only be accessed via a wifi compatible chip on the computer
board. Another thing to note is that bluetooth is only effective
at close distances. If a user were to have a separate wardrobe
in another room and the mirror in his/her bedroom, then it
would be an annoyance to bring all the clothes to the bedroom
and then take photos of them to upload to the database.
Therefore, using a wifi chip would significantly decrease this
trouble as wifi allows for communication over large distances.
Finally, we realized that setting up bluetooth or wifi
communication would not be difficult for either as the Jetson
Xavier NX we received from the 18-500 inventory already had
a WIFI/BT card that came with it.

5
18-500 Final Project Report: Myflection 05/07/2022

C. User Interaction - Mobile App
Three alternatives were discussed when working on our

design choices for how the user would interact with the smart
mirror. This interaction includes turning on and off the mirror,
controlling the LED lighting around the mirror, and inputting
the user’s wardrobe into the database. Initially, we wanted our
smart mirror to be touch-compatible. This seemed like the
most intuitive choice as “smart” in “smart-mirror” indicates
the presence of a touch screen. However, this idea was quickly
scrapped when we realized that buying an IR sensor for the
entire smart mirror display was too expensive and unnecessary
as the user wouldn’t need to touch all parts of the smart mirror
and swiping motions on the screen were not a part of our user
interaction. Understanding that the smart mirror would only
need touch compatibility on specific points on the display, we
then considered adding capacitive touch sensors to these
specific parts of the smart mirror display. However, this would
add more wires and circuitry to the smart mirror that may end
up becoming a mess. Furthermore, having the user constantly
walk up to the mirror, touch the mirror screen, and then walk
back into the camera’s field of view would be far too
inconvenient and defeats the main goal of our smart mirror’s
smooth user experience. Therefore, after weighing out all
these tradeoffs, it made the most sense to create a very simple
mobile app that would allow the user to perform all
interactions with the mirror in one collective place. This app
would allow the user to turn on and off the mirror as well as
control the LED lighting at any distance which prevents the
issue of having to walk back and forth to and away from the
mirror. Better yet, inputting the user’s wardrobe through an
app is the simplest method. The user takes a photo on his/her
phone, uploads the photos to the app, and the app sends this
data to the backend database via API calls. For our final demo,
we also added a feature where upon pressing a button on our
app, the outfit recommendation process would automatically
begin. This feature is a crucial component of our product
because it ensures that the user would be able to stand still in
front of the mirror, click a button on his/her mobile phone, and
get an outfit recommendation without needing to do any other
work.

D. Database - Wardrobe Itemization Form
Two possibilities were brought up when our team was

discussing how exactly the computer would obtain the correct
outfit from the wardrobe database and what information the
database would contain. Our team’s initial approach was to
implement or use existing image analysis algorithms/models
that would analyze the pictures of the clothing that the user
inputted and match it with the outfit recommendation output.
One potential problem with this design approach is that it
requires even more computation which would increase the

time it takes for the user to receive an outfit recommendation
output on the smart mirror display. We found that this increase
in output time would be more undesirable in comparison to the
user spending a little more time when inputting his/her clothes
into the database. With this in mind, our team decided to place
our efforts on creating a wardrobe itemization form that the
user would essentially fill out. This form would prompt the
user to provide information about the type of the clothing, the
color, the season, and a photo of the piece of clothing. Hence,
when the outfit recommendation says it wants, for example, a
black shirt, then it would query the database by applying the
filters, for example, color = black and type = shirt. This
entirely gets rid of the hassle when it comes to heavy
computations and the error-prone nature of solely analyzing
the picture of the clothing. This wardrobe itemization form is a
Google Spreadsheet that exists in our team’s capstone Google
folder. We decided to use Google sheets because the Restful
API for sending POST and GET requests was relatively
simple and had solid documentation.

E. Database - Media Library
Besides the wardrobe itemization form, the user is

responsible for uploading photos to our database. There were
no solutions online that allowed us to input the raw image data
into the Google spreadsheet cell, so some design tradeoffs
were made here as well. Our first solution was to create a local
database that would exist on the server side, such as a
localhost, and use existing React Native libraries that would
be able to store raw images or image data. One potential
disadvantage of this approach that we quickly discovered was
that the server would have to be running on our Jetson as well
as downloading image files from the request body that would
be sent from the client side. This would significantly increase
computational costs. Therefore, we decided to use a free cloud
service called Cloudinary that supports an API which the user
can use to upload photos to a media library and receive as a
response the image url for the uploaded image. This image url
was then inputted into the database.

F. OpenCV - C++
OpenCV is used to analyze the snapshot of the user’s torso

in real-time. It is already well-known that OpenCV is
compatible with the Jetson Xavier NX, so the only choice we
had to make was what language we would use to implement
the image processing and analysis. Our team was more
familiar with Python, so we initially decided to stick to a
language that we were more comfortable and familiar with.
However, after receiving feedback from our proposal
presentation, we realized that there could be a severe
bottleneck that would obstruct our use-case requirements if we
used an interpreted language (Python) over a compiled

6
18-500 Final Project Report: Myflection 05/07/2022

language like C++. C++ is well-known to be very fast and is
used as the primary language in most trading firms due to its
speed. Therefore, we decided to use a C++ implementation
over a Python one because it is much more important to
reduce the risk of long computation times as this would
worsen the user’s experience.

G. Camera - Arducam
The option of choosing a camera that would provide a live

video feed for torso analysis was dependent on whether we
valued exceptional quality or ease of setup. The former would
have been a professional photography camera. The reason we
chose to go with the Arducam is because it was already in the
18-500 inventory and its quality was good enough for image
processing and analysis. Also, as mentioned earlier, it is
relatively easier to set up with the Jetson Xavier NX.

H. Torso Detection - OpenPose
No trade offs were considered for the torso detection

software we would use. The reason for this is because
previous projects in past semesters had used OpenPose for
torso detection and it proved to be very successful with high
detection accuracy. Moreover, it accomplishes our design
requirements of being able to recognize and analyze fixed
points on a user’s torso which allows for smoother and
well-rounded testing as well.

I. Color Detection - OpenCV/ Matplot Library
No trade offs were considered for color detection. We

originally considered our original design of using an
open-source API called ColorThief. This API turned out to be
not compatible with our system in the integration process so
we ended up using an OpenCV library and sk-learning
software module that would help us determine the dominant
color of an image. This algorithm was found to be extremely
accurate as well as having similar runtime as the ColorThief
API that we had previously planned on using thus it did not
affect the overall runtime of the outfit recommendation.

VI. SYSTEM IMPLEMENTATION

SOFTWARE SPECIFICATIONS

A. OpenPose
OpenPose is a real-time multi-person system to jointly

detect human body, hand, facial, and foot keypoints (in total
135 keypoints) on single images. The main feature of
OpenPose our project uses is its ability to take in a webcam as
an input and a basic image with keypoint displays as a PNG

output. This can be achieved either through the command-line
demo provided in the repository or using the API. We will
connect the software to our hardware (Jetson Xavier NX) and
use Linux for our OS to run the API.

B. OpenCV / Matplot Color Detection
We had to pivot from our original idea of using the Color

Thief API for dominant color detection due to compatibility
issues that were brought up during the integration process. We
ended up using an OpenCV / Matplot library that uses the
k-means algorithm to determine the dominant color of an
image. It uses k-means clustering to extract the colors of the
pixel clusters from the flattened image. This algorithm was
found as an open source online and proved to be accurate and
fast when we tested it.

C. WeatherAPI.com
We plan to use the current live weather condition as well as

the temperature to differentiate between an outfit
recommendation of short pants vs. long pants and later on shirt
vs. jacket. We want to receive live, correct data on what the
current weather conditions are like in the user’s current
location. WeatherAPI.com is a powerful fully managed free
weather and geolocation API provider that provides extensive
APIs that range from the real time and weather forecast,
historical weather, Air Quality Data, IP lookup, and astronomy
through to sports, time zone, and geolocation. We have created
a unique API key that will be used to make GET requests. An
example of a response body is shown in Figure 4. We will
extract the temperature, precipitation, and condition fields in
the response body.

Fig. 4. Part of response body with HTTP request
http://api.weatherapi.com/v1/current.json?key=68227f9c42464760a68131452

22802&q=15213&aqi=yes

7
18-500 Final Project Report: Myflection 05/07/2022

D. Mobile Application
We used React Native to create our mobile application that

allows the user to interact with the smart mirror. The mobile
application has four screens: home screen (inputting tags),
choose/upload photo screen, choose formality screen, and start
outfit recommendation screen. The mobile application was
built with Expo Go which was also very efficient for testing
purposes. There was a Node backend server running in the
background of the Jetson as a background process and was
responsible for being the middleware when it came to running
the local automation script file. The app also sends posts
requests to the Google Sheets API for the tags and image url
and the Cloudinary API for the actual photo file. Screenshots
of the app are shown below. The leftmost image shows the
user inputting tags based on options in a dropdown menu. The
middle image shows the screen after a user has chosen a photo
in his/her gallery thereafter pressing upload photo. The
rightmost image shows the button the user should press when
attempting to start the outfit recommendation process.

Fig. 5. Application User Wardrobe Input Form

HARDWARE SPECIFICATIONS

E. NVIDIA Jetson Xavier NX
As mentioned in our design requirements and design

tradeoffs, we are using the NVIDIA Jetson Xavier NX as our
single board computer that will handle all the processing
power necessary for live video capture from our Arducam
which will then be fed into OpenPose as well as computation
of outfit recommendations. The 16GB NVIDIA Jetson Xavier
NX module we have has a 384-core NVIDIA Volta™ GPU
with 48 Tensor Cores, 6-core NVIDIA Carmel ARM®v8.2
64-bit CPU, 6 GB 128-bit LPDDR4x, and a WIFI/Bluetooth
chip.

F. Arducam B0250
We are using the Arcudam B0250 for the smart mirror

camera that will take in a live video feed of the user standing
in front of the mirror. This video feed will be used for analysis

with OpenPose. The frame rate of the camera is 1920×1080 @
60fps 4032×3040 @ 30fps. Resolution is 4056(H) x 3040(V)
12.3MP. A field of view (FOV) of 65° (H). The camera comes
with a customized metal enclosure, a tripod stand, and a set
extension adapter for the Jetson Xaver NX.

G. Two-way mirror
We are using a two-way mirror for our smart mirror because

it allows for a monitor to be placed behind the mirror and
show a display to the user at the same time the user is
checking himself/herself in the mirror. The mirror is 36 x 24
inches.

H. Monitor Display
Behind the mirror is a monitor display that will show the

outfit recommendation photo to the user. This monitor is an
HD monitor with dimensions of 8.33 x 20.05 x 24.41 inches.
It weighs 11.49 pounds and has a resolution of 1920 x 1080.
The dimensions of the monitor were specifically chosen so
that it would have the same width as the mirror. This allows
for the monitor to cover more than the top half of the mirror.

VII. TEST, VERIFICATION AND VALIDATION

We have the following metrics that we wish to test and track
as design specifications for our project:

● Database Latency
● Database Input Time
● Torso Detection
● Color Detection
● Outfit Recommendation Time

Our design specifications were picked with the users
comfort and experience in mind. Ideally we want to improve
all of these metrics to a point where we believe the user will
be reasonably satisfied.

We have similar reasoning for testing our detection design
specifications, as well as similar tests. Additionally, we have
similar reasoning for testing various time metrics, and similar
tests for how to track and record the time it takes for those
various design specifications, resulting in repetitively similar
tests. Most of our detection system tests include inputting
varied inputs into our algorithms, and manually sorting the
successful tests from the failed tests. Our timed tests will
mostly rely on using computer code to get accurate and
precise results that we can use for definitive results.

A. Tests for Database Latency

8
18-500 Final Project Report: Myflection 05/07/2022

This test shows the time it takes for the mirror to receive a
response after clicking the button “Start outfit
recommendation” which would run the automation script. The
test trials show an average of around 3.33s.

Trial # Time Taken

1 3.2s

2 3.6s

3 2.9s

4 3.0s

5 3.5s

6 3.9s

7 3.3s

8 3.4s

9 3.3s

10 3.2s

Table 2. Latency

B. Tests for Database Input Time

These values show the time taken for a request to be sent
along with a response back to the client when uploading tags
and photos. This averages to around 1.1366s for uploading
tags to Google Sheets and 1.1669s for uploading photos to
Cloudinary.

Trial # Time Taken

1 1.794s

2 0.997s

3 1.037s

4 1.574s

5 0.881s

6 1.04s

7 1.159s

8 1.186s

9 0.868s

10 0.830s

Table 3. Latency for tags uploads

Trial # Time Taken

1 1.424s

2 1.502s

3 1.027s

4 0.735s

5 1.173s

6 0.881s

7 1.598s

8 1.373s

9 1.085s

10 0.871s

Table 4. Latency for image uploads

C. Tests for Torso Detection

These values show the accuracy of our trials when testing
the ability to spot the user’s torso 10 times in an environment
with a solid background without people and with controlled

9
18-500 Final Project Report: Myflection 05/07/2022

lighting.

Trial # Accuracy

1 100%

2 100%

3 100%

4 100%

5 100%

6 100%

7 100%

8 100%

9 100%

10 100%

Table 5. Torso Detection Trial Accuracy

D. Tests for Color Detection

These values show the accuracy of our trials when testing
the ability to decipher the user’s color in an environment with
a solid background without people and with controlled
lighting.

Trial # Accuracy

1 100%

2 100%

3 100%

4 100%

5 100%

6 100%

7 100%

8 100%

9 100%

10 100%

Table 6. Color Detection Trial Accuracy

E. Tests for Outfit Recommendation Time

This shows the recorded time it took for images to appear on
the mirror from the moment the start button was pressed on
the client application over 10 trials.

Trial # Time Taken

1 10.857s

2 12.988s

3 11.098s

4 9.735s

5 10.643s

6 9.881s

7 10.624s

8 9.512s

9 10.520s

10 11.085s

Table 7. Outfit Recommendation Trial Times

VIII. PROJECT MANAGEMENT

A. Schedule
As shown in Figure 6 in the appendix, we have provided a

fully detailed planned schedule split by days and weeks, with
the team responsibilities and our various plans organized at the
bottom of the figure.

B. Team Member Responsibilities
As a team, we have divided responsibilities depending on

the specialties of each member. Jeremey is specialized in
software, and as such his main responsibilities include
configuring our outfit analysis algorithms, our color analysis
algorithms, and our torso analysis algorithms.

Ramzi is specialized more in hardware, as such his main
responsibilities will consist of configuring the hardware
implementation of the smart mirror, and the user interface.

Wonho is specialized in software with additional experience
in hardware, and his main responsibilities will consist of
working on the user interface and the hardware
implementation, as well as the outfit analysis, and combining
these differing aspects of the project.

Yun is also specialized in software, and as such her main
responsibilities additionally include configuring our outfit
analysis algorithms, our color analysis algorithms, and our
torso analysis algorithms.

10
18-500 Final Project Report: Myflection 05/07/2022

C. Bill of Materials and Budget

Our Bill of Materials is stated below in the appendix in
Table 2.

D. Risk Management

Many of the challenges that were presented to us throughout
the course of this project were tied with compatibility issues.
First and foremost, the early stages of our project were
difficult in that all of us were unfamiliar with the Linux OS
that came with the Jetson Xavier NX and the learning curve
was steep. Setting up OpenPose and OpenCV to work on the
Jetson system was also challenging as there were many errors
linked with the installation of different libraries and packages.
At one point, we mitigated these issues by resorting to our
plan B alternatives which were using trt-pose instead of
OpenPose and switching out our Arducam to ensure hardware
compatibility. Fortunately enough, we were able to get
OpenPose running with the Arducam after long sessions of
debugging and re-mounting the Jetson Xavier.

Another challenge that posed potential risks was integrating
the app with the mirror. React Native doesn’t allow bash
scripts or commands to be run directly on the client side as it
supposedly results in security issues. We successfully
mitigated this potential risk by creating a middleman server
with localhost that would listen on port 3000 for any GET
requests and if so, then it itself runs the local automation.sh
script. The button click on our app sends this GET request to
the localhost server.

The mirror UI we built initially was built using Electron.
However, we ran into a huge problem where Electron would
not build on the Jetson. We had two alternative approaches to
resolving this problem. First, we tried building Electron so it
could be used as a webapp instead of a built distribution. This
ended up conflicting with the Jetson’s environment again so
we ended up using a very simple mirror GUI using Python
tkinter. This alternative was a lot easier to debug and present
because the outfit recommendation script was in Python so all
we had to do was add a bit of code to render a display using
tkinter within the same file.

IX. ETHICAL ISSUES

There can be a few ethical concerns with our project which
can be divided into three big categories: camera, user
wardrobe, and the nature of outfit recommendations. There
are security concerns due to the use of a camera when
detecting the user's torso and analyzing top colors. The camera
is always powered on, connected to the Jetson, and the Jetson
hosts a local server available for the mobile app. These

connections of camera-Jetson and Jetson-localhost can cause
potential security issues. However, we are not too concerned
about it as all connections and activities are done locally
within the Jetson. Although the camera is always powered on,
it cannot operate without running a specific command line,
and the local server runs within the Jetson as well. Unless the
Jetson gets hijacked from external sources, which we believe
to be unlikely and out of our control, there is no significant
risk to security.

Besides the use of a camera, processing the user's wardrobe
can cause security issues as well. Due to compatibility issues
with the react-native mobile app, which is a controller for the
user wardrobes, we had no choice but to use the internet
connection to upload the user wardrobe information and
clothing pictures. The wardrobe information and clothing
pictures are stored in cloud-based platforms—Google
Spreadsheet and Cloudinary, respectively. As these platforms
are running on their servers, not locally, but we load user
personal information on them, this may cause security issues.
We decided to use these platforms as we trust their security
protocols; however, if their servers get hijacked, our user
information may be at risk as well.

In terms of the nature of outfit recommendations, the
purpose of our project is to assist users with fast and
convenient outfit recommendations so that they can dress
according to the weather and popular color schemes. However,
these standards can hinder users’ tastes and individuality.
Although we tried to have extensive combinations of color
schemes, some users’ characters may not be reflected in the
standards we provide. On top of that, because we provide “top
combinations”, if the user wants to dress up otherwise, it may
make them doubt their choices and hinder their individuality.
Providing a “widely-conceived” best outfit may benefit the
majority of users, but it is also important to respect the user's
tastes and characters. To improve this issue, if we are given
future opportunities to enhance our project, we would like to
add more procedures that can assist with reflecting user
individuality in outfit recommendations.

X. RELATED WORK

Our project was initially inspired by DIY smart mirrors that
are made using Raspberry Pis. However, they only displayed
simple information such as weather and your daily schedule
and did not have much new content showing on the screen.
Also, these types of smart mirrors do not do that much
computing within the mirror itself or actively interact with the
user. There are other smart mirrors such as the LG ThinQ
smart mirror that tailors the outfit to your body as well as the
ECE capstone project from spring 2021 that presents a smart
mirror that warps the clothing to fit the user. However, there is

11
18-500 Final Project Report: Myflection 05/07/2022

no smart mirror on the market that necessarily gives outfit
recommendations based on what you are currently wearing.

The biggest difference between common DIY smart mirrors
and our project is the interaction between the user and mirror
as well as the computing process that goes in the mirror. Our
goal is to allow the user to easily and efficiently access this
process information, in the form of outfit recommendations,
and provide the smoothest experience for the user.

XI. SUMMARY

Our smart mirror is a device aimed at improving the
mornings of college students, who often lack the time or
mental power to make careful decisions about their outfit in
the early morning. By absorbing the user’s wardrobe, and
analyzing a little data on what they want to wear for the day,
we can provide them with a full recommendation on how to
complete their outfit in little to no time at all.

Although it may be slightly pricey, the mirror has a huge
impact on how the student starts their morning, and helps them
stay fashionable without needing to divert attention away from
their studies and how they are spending their time.

We struggled with many challenges during the creation of
our smart mirror. Primarily among them, we struggled to put
together a mirror UI that was simple and satisfying for the
user. Additionally, we struggled with providing a low
recommendation time due to the large amount of
algorithmically complex information we had to compute to
analyze what the user was currently wearing. As a result we
struggled to make some of our use-case requirements that we
had set out for ourselves as we worked on our project.

Additionally, our project was heavily constrained by the
time constraints placed on each of us individually, and as a
group, as we keep up with regular presentations, and external
factors. This meant that we didn’t have the time to include a
lot of features that we had originally envisioned as part of the
smart mirror.

Despite all of these factors, we believe we were able to
provide a viable smart mirror that displayed our concept
properly, and satisfied many of its users as we demod it with
its functionality as a quality of life, time saving home
improvement for your average college student.

We learned a lot about how to utilize other modules in order
to quickly and efficiently implement the features we desire in
the way we envision them, and we all learned a lot about how
to manage time so that we can work productively as a team to
put together the parts and pieces of our project.

Looking back, if there was something we could have done
differently, we would have looked into the mirror UI much

earlier, as well as having paid more attention to the
compatibility of certain modules and hardware components.
These were both issues that came up later in the project, and
that cost us a lot of time to figure out how to deal with the
barriers they represented when trying to get our mirror to work
smoothly.

We have several ideas for possible future works that would
improve upon our mirror. The first idea we have is to
implement functionality with the mirror so that it can also
analyze the user’s legs to provide the user with
recommendations. Our mirror currently provides its
recommendations purely off of the user’s torso, but we believe
that adding this function would be a great addition for users
who may already have bottom in mind, but want a top as a
recommendation instead. Additionally, we believe that
expanding our mirror to be able to provide recommendations
for accessories, such as suit pieces, hats, umbrellas, and etc.,
would be beneficial to the user.

We also hoped that we may be able to simplify the input
form for the user’s wardrobe. By providing a system that can
analyze the user’s clothes just from a picture, we hope that our
users will be able to more conveniently input their wardrobe to
our database. Lastly, we thought that it would be nice to create
a system that rates how much the user likes certain clothing,
and improves the recommendations it provides over time. By
implementing a user rating system for the clothing, or by using
an algorithm that pays attention to multiple users to find trends
and improves its sense of fashion over time, we believe that
we could make better recommendations to the user.

GLOSSARY OF ACRONYMS

LED - Light Emitting Diode
UI - User Interface

REFERENCES

[1] CNET, CNET: David Priest, Accessed on Mar 3, 2022, [Online].
Available:
https://www.cnet.com/home/smart-home/smart-mirrors-just-make-you-h
ate-yourself/

[2] https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/
index.html

[3] https://lokeshdhakar.com/projects/color-thief/
[4] https://www.weatherapi.com/

APPENDIX

https://www.cnet.com/home/smart-home/smart-mirrors-just-make-you-hate-yourself/
https://www.cnet.com/home/smart-home/smart-mirrors-just-make-you-hate-yourself/
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/index.html
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/index.html
https://lokeshdhakar.com/projects/color-thief/
https://www.weatherapi.com/

12
18-500 Final Project Report: Myflection 05/07/2022

Fig. 6. Schedule with milestones and team responsibilities

13
18-500 Final Project Report: Myflection 05/07/2022

Table 7. Bill of Materials and Budget

Table 8. Costs and Budget Available

