
18-500 Final Project Report: Team D3 05/07/2022 
 

1 

 
Abstract—A digital flute input device (flute controller) that 

mimics the functionality of a real flute, accompanied by an 
application that allows beginners to learn flute in a cheap and 
effective way. The controller and app allow the user to learn 
fingerings, breath control, and posture while also learning scales, 
notes, and basic music theory with the web application that 
communicates wirelessly with the controller and gives live 
feedback.  
 

Index Terms—Arduino, Bluetooth Packet, Breath Detection, 
Django, Music, Python, Raspberry Pi, Sonic Pi, Web Application 
 

I. INTRODUCTION 
earning an instrument can be daunting, inconvenient, and 
expensive for beginners. It can easily cost thousands to gain 

access to a good quality instrument and consistent high-quality 
lessons. This can be a discouraging aspect of learning how to 
play a new instrument, especially if the user simply wants to try 
out the craft or is not sure about committing for a long period 
of time. 

To help solve this problem, we invented WoodwindMania, a 
digital way to learn flute that is more cost-effective and easier 
to use for beginners. This product allows beginners to interact 
with a flute controller that is similar to an actual flute. 
Additionally, it allows for a seamless transition to a real flute in 
the case that the user decides that they would like to pursue the 
instrument more seriously after mastering the basic skills. 

The flute controller has the same dimensions as a real flute, 
with buttons located where they normally are. In addition, the 
user has to blow into the device using the correct technique to 
create a sound. Lastly, the device tracks its position, so the user 
must be holding it correctly. This ensures that the user starts to 
learn the correct skills associated with playing the flute outside 
of playing the correct notes. 

The application displays feedback to the user and allows 
them to learn the correct fingerings of notes from E4 to Db6. 
The application also teaches the user nine scales and tests the 
user on them. There is also a free play mode in which the user 
can play without feedback. 

In terms of competing technologies, there are no direct 
products that are aimed at beginners. There are electronic wind 
controllers that output Musical Instrument Digital Interface 
(MIDI) that are aimed at musicians who want to add wind 
instruments to their projects, but they do not teach the user 
anything about the instrument or give feedback to the user about 
what is being played. 

 
The main goal of this project is a budget-friendly system that 

allows beginners to learn how to play flute in a comprehensive 
way. Users are able to learn this new instrument conveniently 
and at their own pace. 

II. USE-CASE REQUIREMENTS 

A. Accuracy 
The user is looking to use the flute controller to replace a 

traditional instrument. Therefore, we expect the accuracy of our 
system to be reasonably high. The accuracy of feedback for 
fingerings, breath control, and orientation must be greater than 
90%.  

B. Speed 
The input from the user is sent wirelessly from the Arduino 

Nano on the flute controller to a Raspberry Pi that processes the 
user input and hosts the web app locally. The combined latency 
of Arduino processing, Bluetooth communication, and RPi 
processing between the user input and displaying feedback in 
the application must not be longer than 500 milliseconds on 
average. This corresponds to a playing speed of 120 beats per 
minute, which is the upper-end speed of what we expect a 
beginner would like to play. 

For the same reasons, we also require that the latency 
between user input and audio feedback on the RPi is no longer 
than 500 milliseconds on average. 

C. User Experience 
The dimensions of the flute controller must be as close to a 

real flute as possible. This means it must measure 26 inches in 
length and have a 1-inch diameter. It also must be around 1.13 
pounds. The controller should also be wireless.  

Secondly, user satisfaction (collected in the form of a survey) 
must be greater than an average score of 4/5, or 80%, as 
between 75% and 85% user satisfaction is generally considered 
a good rate [9]. Additionally, the device and application should 
be very beginner-friendly, with no assumed knowledge of the 
flute or how to play one expected from the users of the device. 

Lastly, the device should save the user money. This means 
the total price of the device and web application should be less 
than the expected $500 for a beginner flute plus a month of 
lessons. 
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Fig. 1: System Overview 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
There are three main systems in the design of 

WoodwindMania: the physical controller, the wireless 
communication, and the web application. The block diagram in 
Fig. 1 represents the overall system architecture. The controller 
captures the user input of the fingerings, orientation, and breath 
control and then sends this data wirelessly to a Raspberry Pi 
using BLE communication. The RPi receives this data and 
plays the corresponding note based on the fingering and breath 
control amplitude. It then sends the data to the web application 
where it displays the data for feedback. 

 

 
Fig. 2: Physical controller 

A. Physical Controller 
Our physical controller, shown in Fig. 2, consists of a 

collection of sensors encased in a PVC pipe. We have nine 
tactile push buttons mounted in the position of the keys on a 
flute, a breath control sensor, our Arduino Nano that also 
contains an accelerometer for orientation reading, and a nine-
volt battery. The buttons determine the note fingering the user 
is playing. The accelerometer in the Arduino determines the 
angle at which the user is holding the device. The breath sensor 
determines whether the user is providing enough airflow to 
produce the note and indicates note onset and offset time. The 
Arduino mounted at the end of the controller processes all of 
these sensor readings and constructs a packet to be sent to the 
RPi via Bluetooth.  

Since the design report, the design of the physical controller 
has only been modified slightly. We decided to use the Inertial 
Measurement Unit (IMU) mounted on the Arduino Nano 33  

 
 
 
BLE to limit the number of wires needed, and we decided to use 
an accelerometer reading instead of a gyroscope reading. We 
found that the accelerometer was more appropriate in 
determining angle changes from the horizontal, as it measures 
acceleration instead of velocity. We also decided to mount the 
Arduino and battery outside the controller on a breadboard. 
This ensures that the Arduino is always flat with respect to the 
controller (which makes the angle reading more accurate), it 
ensures that we can easily change wires if any of our 
connections break, and it allows us to easily upload code 
changes to the Arduino.  

B. Communication 
Using BLE, the Arduino Nano sends packets to the RPi using 

characteristics for each type of data. This packet includes the 
buttons pressed, angle difference from the horizontal, and 
breath sensor reading. Once the RPi receives the data, it does 
some data processing, plays the corresponding note through 
Sonic Pi, and writes to a text file for the web application. 

No changes have been made to our communication design 
since the design report. 

C. User Interface 
The web application reads the sensor data from this text file 

and displays feedback depending on the mode the user chooses 
to interact with. This sensor data is processed in the three modes 
on the website: Learn, Test, and Free Play. In the Learn mode, 
the web app provides the user with information about various 
notes and scales and teaches the user how to play them. In the 
Test mode, the user is prompted to play scales without 
assistance. Lastly, in the Free Play mode, the user can simply 
just play various notes and see what note they are playing.  
 The web application also includes a Simple mode, where 
the user can choose to opt-out of breath control feedback for 
any of the three modes. This allows users to test out our 
product without placing their mouths on our device, which is 
essential for our public demo. 
 The only main change to the web application since the 
design report was the addition of the Simple mode.   



18-500 Final Project Report: Team D3 05/07/2022 
 

3 

IV. DESIGN REQUIREMENTS 

A. Accuracy 
Our use-case requires that the feedback the user receives 

from the project is 90% accurate. This can be broken down into 
the accuracy of our sensors and the accuracy of our wireless 
communication. 

Our data must be sent wirelessly via Bluetooth with 95% 
accuracy. This is to compensate for any inaccuracies in our 
sensor readings. We can calculate the accuracy we have in our 
Bluetooth communication with the following equation: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"!#$	&#'()!*	*)+!,-."&&)-	&#'()!*
!"!#$	&#'()!*	*)+!

   (1) 
We need this accuracy to hold from a reasonable distance 
between the controller and the RPi. To be comfortable for the 
user, we need this accuracy in wireless communication to hold 
within a distance of five feet between the controller and the RPi.  

To ensure that the device senses note fingerings with a 90% 
accuracy, our push buttons should be 99% accurate. We can 
calculate the accuracy of our push buttons with the following 
equation: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !)*!*	/0).)	&1*0	21!!"+	&.)**)*	/).)	-)!)'!)-
!"!#$	!)*!*

  (2) 
 
This should not be a difficult metric to achieve, as push buttons 
are mechanical devices that are rarely inaccurate. Combined 
with a 95% accuracy of wireless communication, our note 
fingering detection should hit our 90% accuracy requirement. 
 To ensure that our project senses correct playing posture with 
90% accuracy, our gyroscope should sense a change in 1° with 
respect to the horizontal. This corresponds to a 95% accuracy, 
which combined with the accuracy of the wireless 
communication, should yield an overall accuracy of 90%. 
 Our breath control sensor should also determine the octave 
of the note with 95% accuracy. The flute can produce notes 
from three octaves, but our project only supports notes from two 
out of those three octaves. This is because the very low and very 
high notes the flute can play are very difficult, and a beginner 
would be unlikely to play them on a real flute. Therefore, our 
breath sensor only needs to differentiate between two breath 
speeds for each note. Combined with the 95% accuracy of our 
wireless communication, our breath control feedback should be 
90% accurate. 

B. Speed 
The time between input change into our flute controller and 

receiving feedback from that change should be no longer than 
500 milliseconds. This means that our feedback will only feel 
significantly delayed if the user is playing at a speed faster than 
120 beats per minute, which we believe is the fastest reasonable 
pace for a beginner to play at. 

The longest contributor to our overall latency is the latency 
of the wireless communication between our Arduino and RPi. 
We wish to have a latency of Bluetooth communication of no 
longer than 400 milliseconds. This leaves the remaining 100 
milliseconds for processing data on the Arduino, processing 
data on the RPi, and sending updates to the web application. To 
split up these 100 milliseconds, we should have the latency of 
our Arduino and RPi signal processing be less than ten 
milliseconds each, and the latency of updates to the web 
application from the RPi (reading from a text file) should be 

less than 80 milliseconds. Combining all these latencies yields 
an overall latency of 500 milliseconds from a user input change 
to a feedback display.  

C. User Experience 
Our project should be easy to use and feel similar to a real 

flute. We break down our user experience requirements into 
dimensions and battery life. 

The length, width, and weight of the flute controller must be 
close to 26”, 1”, and 1.13 lbs. respectively. More specifically, 
the length of our controller should be between 25” and 27”, the 
width of our controller should be between 0.7” and 1.3”, and 
the weight of our controller should be between 1.0 lbs. and 1.2 
lbs. This is in order to best match the feel of a real flute. For the 
same reason, the buttons on the controller must feel similar to 
the buttons on a real flute. Our tactile buttons should be within 
10% of the diameter of the buttons on a real flute. Additionally, 
the position of the mouthpiece must be comparable to the actual 
instrument. The position of the mouthpiece should land within 
5% of the position of a real flute. These constraints for the 
controller are crucial in order to aid the user in transferring their 
learned skills to an actual flute and increase the efficacy of our 
device. 

The battery life of the flute controller should last at least three 
hours. We chose this timeframe as the upper bound of a 
continuous playing session for a beginner. Therefore, the user 
does not have to replace the battery in the middle of a practice 
session. 

No changes were made to our design requirements since the 
design report. 

V. DESIGN TRADE STUDIES 
 Throughout the design phase of our project, we had to make 
many design tradeoff decisions to best fit our use-case. These 
design decisions can be divided into three main categories: the 
choice of our breath detection sensor, the nature of our 
communication between our physical controller and web 
application, and the nature of our communication between the 
RPi and our web application. 

A. Breath Detection 
Beginners learning to play the flute often feel that learning 

the correct breath control is the most difficult aspect. As a 
result, it is important for our project that our breath control 
sensor is accurate for learning breath control on a real flute. 
Throughout our ideation process, we determined three 
important requirements for our breath control sensor; accuracy, 
ability to fit inside the controller, and ease of connection to the 
Arduino. We examined these three requirements for each breath 
control sensor we considered. 
1) Microphone 

The first sensor we considered was a microphone mounted 
inside the controller. To use this sensor, we would need to 
convert the microphone reading to a breath speed measurement. 
This would involve filtering out noise and mapping the volume 
measurement to the blow speed. This approach would require 
signal processing, which no one in our group has much 
experience in. We would also need to distinguish between 
correct and incorrect blowing forms. We would need to ignore 
readings where the user is talking or shouting, as well as 
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readings when the user is blowing across or near the 
microphone without blowing down into the device. 

Due to these complications, we predicted that the microphone 
would be the least accurate sensor for breath control. To 
determine whether the user was blowing instead of talking or 
shouting, our hardware would have to analyze the microphone 
signal in the frequency domain and determine if the sound 
spectrum matches that typically formed by a user blowing 
instead of talking. Since blowing would look similar to noise in 
the frequency domain, we would be looking for an equal band 
of high amplitude at many frequencies. However, we might not 
have a way to determine whether the user was blowing 
downward into the device or simply blowing nearby. If we used 
the volume reading from the microphone to determine the 
distance to the controller, we might inaccurately ignore breath 
control readings where the user is blowing softly into the 
mouthpiece.  

Our second consideration for this sensor is the ability to fit 
inside our controller. We plan on using a PVC pipe with a 1” 
internal diameter to contain all our sensors. Therefore, the width 
and height of the sensor we use should be less than 1”. Table 1 
gives a breakdown of the dimensions of the sensors we 
considered using for breath control. Both the width and height 
of the microphone we considered using are less than an inch, so 
we would be able to comfortably fit this sensor inside our 
controller. 

 
TABLE 1: BREATH SENSOR DIMENSIONS, SOURCE [3], [4] 

Sensor 
Dimensions (in) 

Width Height Length 

Microphone 0.62 0.18 0.95 

Physical Fan 1.06 1.06 1 

LED + Photodiode 0.38 0.23 0.23 

 Our final consideration is the ease that the sensor connects to 
the Arduino, which is the microcontroller we are using to 
process our sensor data and send it to the RPi. The connection 
between the microphone and Arduino is simple, as the 
microphone only has pins for power, ground, and analog out. 
Therefore, the microphone would only take up one pin on the 
Arduino in addition to powering the sensor. 
2) Physical Fan 

The second sensor we considered was a physical fan the user 
blew on. This fan would be mounted on top of the mouthpiece 
of the controller and would rotate when the user blew 
downwards on it. To sense the airspeed, the Arduino would 
connect to an IR diode and receiver mounted on each side of the 
fan. Blowing on the fan would break the beam between the IR 
diode and receiver, and we could convert the rate at which the 
beam is interrupted to the speed the user is blowing. 

This sensor would have better accuracy than the microphone, 
as no signal processing is necessary to convert the signal to a 
speed reading. The user would not be able to move the fan when 
talking or shouting, but they might be able to move the fan when 
blowing at an incorrect angle (such as across the mouthpiece 
instead of down). To determine the speed the user is blowing, 
we would be able to use a more accurate reading from the 

interruption of the IR beam, instead of using the volume reading 
from the microphone. 

The difficulty with this sensor is the size. If we created a 
paper windmill out of a small piece of paper (0.75” x 0.75”), 
the pinwheel would be 1.06” in diameter, which is larger than 
what would fit on the inside of the PVC pipe. We could shrink 
the paper fan more, but it would be hard to work with a piece of 
paper smaller than 0.75” x 0.75”. 

Similar to the microphone, the IR sensor would only require 
an analog input pin on the Arduino, as well as power and 
ground. The circuit required would be a bit more complicated 
than the microphone, because both the IR LED and the IR 
sensor need to be connected to resistors to ensure the correct 
current is being drawn. 
3) LED and Photodiode 

The final sensor we considered, and the sensor we plan to use 
in our project, combines the small, portable size of the 
microphone and the accuracy of a physical fan. This sensor 
consists of an LED and a photodiode mounted across from each 
other on different sides of the mouthpiece. A latex barrier is 
mounted overtop of the LED. When the user blows downward, 
the latex barrier blocks the beam of light between the LED and 
the photodiode, allowing the controller to sense the airspeed of 
the blow. 

This sensor would be of similar accuracy to the physical fan. 
The user would not be able to trigger the sensor while talking 
or shouting. The user also would not be able to blow incorrectly 
into the sensor to trigger it, as the latex barrier is mounted 
horizontally and would need airflow downwards to break the 
beam. We did a proof of concept with an LED and a 
photoresistor, and we found it to be able to differentiate 
between blowing softly into the mouthpiece and blowing 
harder. 

The LED and photodiode required for this sensor are both 
quite small and would be able to fit inside a mouthpiece-sized 
hole inside the PVC pipe. Table 1 gives the dimensions of this 
sensor. 

Finally, the connection to the Arduino would be simple. The 
LED requires a connection to digital output and ground, and the 
photodiode requires a connection to analog input and ground. 
This would only take an additional two pins off the Arduino. 

B. Bluetooth vs. Wired vs. Wi-Fi Communication 
There are many factors to consider when looking at how to 

facilitate the communication between the flute controller and 
the RPi. There were many options available to us, each with its 
own pros and cons, which we will discuss here. In order for the 
flute controller to feel the most natural and allow the most range 
of motion for the user, we initially only looked at wireless 
options. 

Bluetooth and Wi-Fi communication were both feasible 
options for this project, as the Arduino platform is compatible 
with many external modules that enable these types of 
communication. Additionally, there are Arduino boards with 
built-in BLE and Wi-Fi as well.  
1) BLE 

When looking specifically at BLE, we see that it fulfills many 
of our requirements. One, it is very energy efficient, especially 
compared to regular Bluetooth. This is achieved via a 
combination of longer sleep times and shorter transmission 
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bursts (from seconds/minutes to milliseconds). This helps us 
achieve our goal of a 3-hour battery life on a single 9V battery. 
Since we are not constantly streaming large amounts of data 
(such as music), the data transmission rate for BLE –which 
maxes out around 1 Mbit/s—satisfies the design requirements, 
as we are only sending a couple of bytes twenty times or so a 
second. The BLE connection is also a direct wireless 
connection to the RPi. 

For cons, there is always a chance of dropped packets or lost 
data in wireless communication, which could be better managed 
by recommending the user stay within five feet of the RPi for 
the smoothest experience.  
2) Wi-Fi  

We also considered using a Wi-Fi connection and ended up 
not choosing it as our preferred wireless option. For one, this 
would require the user to connect the flute controller to their 
local Wi-Fi connection and depend on that network to transmit 
data to the RPi. We felt that this was not necessary especially 
since we are currently planning on hosting the application 
locally on the RPi. Additionally, more power and data would 
have to be used/sent compared to BLE, which would send 12 
bytes at a time. 
3) Wired Connection 

We are also considering a wired connection between the flute 
controller and the RPi as our mitigation for not getting either of 
the wireless connections working, and this has its own pros and 
cons to consider. The biggest downside of this option is the 
potential to affect the use-case for the feel of the controller, as 
the user’s motion would potentially be greatly inhibited by the 
presence of a cable attached to the end of the flute controller. 
However, this could be slightly improved by using a longer 
cable that is a couple of feet long.  

In terms of the pros, a wired connection would be the most 
stable and fastest communication option since it would be the 
most direct connection to the RPi. This would ensure that our 
accuracy and latency goals were met in our mitigation case. 

After looking at these three options, we decided to go with 
BLE communication between the flute controller and RPi for 
the energy benefits and direct connection, with the wired being 
our backup for reliability. 

C. Communication between RPi and Web Application 
Sensor data from the controller is first communicated to the 

RPi and then the web application. This is an essential 
communication line which means the design choices made are 
important. One such choice was between hosting on AWS 
versus hosting locally.  

AWS would provide a platform for user interaction, as well 
as more security and scalability. We ultimately decided not to 
use AWS and host locally instead. User interaction would add 
a social media feel to our web application. Registered users 
would be able to communicate with each other and see others’ 
learning progress. For a first implementation website, we did 
not feel that user interaction was needed. It is something that 
we can consider for the future. Similar to user interaction, 
scalability is not necessary for the initial implementation and 
would be a valid reason to switch when we add more 
instruments. AWS’s best benefit is security for data-driven 
projects. While our project is data-driven, we are able to enforce 

the safety of our users’ learning data, private logins, and 
progress with Django’s built-in protections.   

Overall, the main reason for choosing hosting locally over 
AWS is the latency. Our latency requirement is 500 
milliseconds, so the user receives audio and visual feedback in 
a reasonable amount of time. Hosting on AWS would add an 
additional latency of 500 milliseconds varying by region. This 
along with the latency from the Arduino to RPi communication 
would not be efficient for our system.  

VI. SYSTEM IMPLEMENTATION 
Our system implementation, briefly described in section III, 

is broken down into three sections: physical controller, 
communication, and user interface. In this section, we describe 
these subsystems in greater detail. 

A. Physical Controller 
Our physical controller consists of a collection of sensors 

encased in or at the end of a PVC pipe. 
To sense the note the user is trying to play, the controller has 

nine push buttons mounted on the device. These nine buttons 
are arranged in the same locations as the buttons and keys on a 
real flute. The Arduino mounted at the end of the controller 
reads the button values and combines them into a 9-bit array to 
eventually send to the RPi. 

To determine whether the user is holding the flute controller 
at the correct angle, we originally planned for the controller to 
have a gyroscope module mounted inside. However, when we 
decided on using the Arduino Nano 33 BLE as our final 
microcontroller, we decided to utilize the IMU on the board, so 
we were not wasting pins. The IMU contains a gyroscope, 
accelerometer, and magnetometer, and we decided to use the 
accelerometer instead of the gyroscope. The gyroscope gives 
angular velocity readings while the accelerometer gives angular 
acceleration readings, meaning the accelerometer is more 
appropriate to determine how the device is oriented in space, 
while the gyroscope is more appropriate for determining the 
direction of force on the board. The accelerometer reading is 
what the physical controller uses to determine how many 
degrees the user is holding the controller from the correct 
position (parallel to the ground) [8]. 
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Fig. 3: Breath control sensor 

To determine whether the user is using the correct 
embouchure to play the given note and is blowing with 
sufficient speed to produce the note, we have a breath sensor 
also mounted inside the controller. Our breath sensor consists 
of an LED and a photodiode mounted across the mouthpiece 
from each other, as well as a latex barrier mounted on top of the 
LED (Fig. 3). When the user blows downward into the 
mouthpiece, the latex barrier curls down and obstructs some of 
the light entering the photodiode. The analog output from the 
photodiode is sent to the Arduino, where the Arduino 
determines the airspeed that the user is blowing with. 

 

 
Fig. 4: First breath control prototype 

Throughout the development process for the breath sensor, 
we had two major prototypes before landing on our final design. 
The first prototype, as shown in Fig. 4, consisted of the same 

LED, photodiode, and latex barrier, but was mounted quite 
differently. Both the LED and photodiode were glued on a flat 
piece of cardboard across from each other. A cardboard ceiling 
is placed on top of the LED for the latex to be taped onto.   

This prototype was a good start but had a few issues. First, 
the dimensions of this sensor made it impossible to mount 
inside the controller because the flat piece of cardboard was 
larger than the 1” inner diameter of the PVC pipe. Secondly, the 
components of the sensor were not very well secured. The LED 
and photodiode moved around a lot, making the reading from 
the photodiode very inconsistent. 

 

 
Fig. 5: Second breath control prototype 

We improved on both of these issues in the second prototype 
of the breath sensor (Fig. 5). In this sensor, the LED and 
photodiode were attached flat to pieces of cardboard, with more 
pieces of cardboard in between to separate the two components. 
The latex barrier was mounted on the back of the cardboard 
behind the LED, resting over the top of it. 

While this sensor was an improvement on the first prototype, 
it still had a few issues. The main problem was too much 
moisture was contacting the latex barrier and causing it to curl 
permanently. This meant that all of our breath sensor readings 
were too low, and we had to continuously replace the latex, 
which took a long time. We were able to solve this issue in our 
final breath sensor by using a thicker piece of latex and putting 
more space between the user’s mouth and the breath sensor with 
some cardboard pieces on the PVC. 

Finally, the Arduino constructs a packet to send to the RPi 
via Bluetooth. This packet consists of the 9-bit array containing 
the buttons currently depressed, the angle with respect to the 
horizontal that the user is holding the controller, and the 
airspeed with which the user is blowing.      

B. Communication 
Once the Arduino Nano collects the sensor data representing 

the flute fingerings, breath control, and position it broadcasts 
this data as a peripheral device in the BLE scheme, with the RPi 
acting as the central device. In BLE, members act as either of 
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these types of devices to either generate and post data using 
services and characteristics or to read/write to said data [11]. 
That is, the central devices interact with the peripheral devices 
that generate the data that they want. A diagram of central 
devices and peripheral devices showing their relationship 
graphically is located below (Fig. 6).  

On the Arduino Nano, we defined a new service associated 
with the flute controller, and three characteristics for each type 
of data that we wanted to send (fingerings, breath control, 
orientation). All three of the characteristics for the fingerings, 
breath control, and orientation were represented as integers.  

Once the Arduino updates a characteristic in the flute 
controller service, the RPi is able to quickly read the updated 
value when it changes (in a couple of milliseconds). 
Additionally, the baud rate was set to 9600 bits/s for the final 
product, but could easily be scaled up to 115200 bits/s. 

 

 
Fig 6: BLE Diagram, Source: [5] 

Once the RPi reads data from one of the three characteristics, 
it writes the updated values of the sensor data to a text file for 
the purpose of communicating with the application. The RPi 
also determines which note is being played based on the 
fingerings and breath control amplitude. A note mapping 
implemented via a dictionary that is prepopulated with the 
fingering combinations is used to quickly translate fingerings to 
note values. If the fingering is invalid, no note is be played. 
After determining the note (in the case that it is correct), it then 
sends a signal via OSC (Open Sound Control) to Sonic Pi 
denoting the note value, whether a new note is being played, 
and a “stop” value denoting if any sound should be played at 
all. Once Sonic Pi receives the signal, it plays the corresponding 
flute sample [10] or stops playing the current sample, 
depending on the message sent. This is possible through the 
live_loop functionality in Sonic Pi that allows a loop to play 
that can dynamically run and react to signals and function calls. 
This direct connection between the Bluetooth program and 
Sonic Pi allowed the user to get auditory feedback as quickly as 
possible after receiving the sensor data.  

The communication of the project was worked on 
incrementally with each portion being figured out as parallelly 

as possible— specifically, figuring out how to send sensor data 
via Bluetooth to an RPi and how to play flute samples 
automatically in response to a program. After being 
recommended Sonic Pi by a fellow student, it was relatively 
straightforward to use live_loops and OSC to play notes from a 
separate python script. The more difficult process was 
establishing a Bluetooth connection between an Arduino and 
the Raspberry Pi. We tried out many different Bluetooth 
modules such as the HC-10 (BLE) and HC-5, but none of them 
would connect to the RPi. After doing some research, we 
discovered the Arduino Nano BLE has built-in BLE 
capabilities. This chip allowed us to connect with the RPi with 
the help of another library on the RPi. We also utilized Bluepy 
on the RPi to utilize its BLE capabilities. This library allows 
easier control over the BLE ports on devices, and hence we 
were able to use it to connect specifically with the Arduino’s 
MAC address in a program. Bluepy also contained defined 
classes that allowed us to read and write to specific 
characteristics and services of devices it was connected to, so 
we were able to send data to the RPi using the newly defined 
flute controller services and characteristics associated with the 
sensor data. 

C. User Interface 
The web application is the main view of the user interface. 

We use Django [13], a high-level Python web framework. This 
framework consists of several languages including HTML, 
CSS, and JavaScript. The Model-View-Controller system in 
Django allows the construction of four different modes for our 
system: “Practice”, “Learn”, “Test”, and “Resource”. The web 
application is styled using Bootstrap [12]. Bootstrap added 
functionality for the layout and a more appealing UI.  

The Learn mode is the core of our web application as 
referenced in Fig. 7. This mode is similar to a private flute 
lesson. The user is not able to start if the controller is not 
enabled. On this page, the user first chooses one of the eight 
major scales plus a chromatic scale to play. Each scale goes 
through the notes with displayed flute fingerings. The UI 
consists of visuals of the flute fingering with the note on the 
staff, a visual of the fingering for the current note, and a 
description of the fingering. When the data from the user is 
received, this mode provides user feedback. These are 
displayed as red keys for incorrect hand positions and green 
keys for the correct hand positions. Additionally, feedback 
about the overall flute position such as the angle and breath 
control are shown. This page has the most computations and is 
done by reading a text file with sensor information from the 
physical controller. Specifically, the Controller in Django’s 
MVC system has the functions for processing the sensors: the 
accelerometer, buttons, and breath sensor. The Controller 
communicates with the JavaScript component of Django to 
update the page every 200ms. When the user completes a note, 
a short popup appears giving the user feedback that they are 
correct. This continues until the user reaches the starting note 
again where the scale is marked as complete, and the user is 
redirected to the select scale menu. 

The Test mode is where the user has a chance to show 
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mastery over the nine scales. The physical controller is required 
in this mode. The user first chooses the scale to get tested on. 
The UI is very similar to the Learn mode except the fingerings 
for the notes are not shown. Passing the scale means finishing 
all the notes. In the end, they receive an accuracy score. If the 
user has the correct breath control but does not have the correct 
fingering, the accuracy score decreases. The priority in the Test 
mode is breath control, correct position, and finally, overall 
flute position. On the processing side, the user inputs from the 
constantly updating text file are compared with the correct 
fingering in the scale. The test results are saved inside the user’s 
database.  

The Resource mode is the simplest mode. It does not require 
the flute controller to be connected. On this page, there are 
options to view and listen to the seven major scales that are 
available to learn. A static flute fingering chart of all the notes 
is also displayed. And finally, there are links to resources for 
additional education.  

The purpose of the Practice mode is to give the user a space 
to practice what they learned. It is similar to the experience of 
playing the flute for fun or practicing a musical piece. The UI 
for this page is more relaxed, and there is user feedback as well 
as a fingering chart to practice. It ensures that the controller is 
active before starting.  

All of the modes, with the exception of the Resource mode, 
have an option called “Simple”. With Simple enabled, the web 
application disregards the breath control sensor. The web 
application passes information to the RPi to produce the sound. 
This is done by the Controller writing to a text file that the RPi 
reads. In the Practice mode, the note the user is playing is only 
written if they have the correct fingering for a note. Since there 
are similar fingerings for multiple notes, only one octave is 
available. In the Test and Learn mode, the note that is written 
to the text file is the current note in the scale. 

Every user of the web app has a profile page. The main 
information shown is the progress for each scale in Learn mode 
and the completion for each scale in Test mode. The user also 
has the option to reset all their scale data.  

The current web application is run locally. A database is 
needed to store user information, like usernames, passwords, 
and progress. There are many databases Django supports, and 
we started with MySQL due to familiarity. The final web 
application uses PostgreSQL [14] since it is much faster.  

 
 

 

 
Fig. 7: Learn Mode in action 

VII. TEST, VERIFICATION, AND VALIDATION 
We separated our use-case requirements into three 

categories: accuracy, speed, and user experience. Below we 
break down our testing procedures and results for each 
requirement. 

A. Accuracy 
We aimed to have 90% accuracy in the feedback from our 

project. This accuracy relates to the feedback provided for note 
fingerings, instrument posture, and breath control. 

To test the accuracy of our note feedback, we provided both 
correct and incorrect note fingerings when prompted. For each 
of the 14 notes in a scale, we tested both an incorrect note 
fingering and a correct one and verified the feedback given from 
the web application. We then averaged our accuracy over 28 
trials. 

Similarly, to test the accuracy of our posture feedback, we 
held the controller at the correct angle (parallel to the ground) 
and a series of incorrect angles. We then tested that the web 
application correctly determined if the user was playing in the 
correct posture and averaged that result over ten trials. 

Finally, we tested the accuracy of our breath control sensor. 
First, we tested that our sensor does not interpret talking or 
blowing with incorrect form (such as blowing across the 
mouthpiece instead of blowing downwards) as an attempt to 
play a note. Second, we tested that the breath sensor sensed the 
octave the user was playing correctly. We tested this by doing 
ten trials of blowing softly to produce the lower octave note and 
ten trials of blowing hard to produce the higher octave note. We 
calibrated the speed necessary to blow soft/hard by using a real 
flute. We then determined if the web app played the correct 
octave, averaging over 20 trials. 

In our design report, we also included a design requirement 
of 95% accuracy for Bluetooth communication. This is because 
we anticipated that we would occasionally drop a packet, and 
that would affect our overall feedback accuracy. As a result, we 
aimed for higher than 90% accuracy of our sensors, so that 
when averaged with our Bluetooth accuracy we would hit our 
overall requirement of 90%. However, we found in our testing 
that we rarely ever dropped a Bluetooth packet. As a result, we 
were able to lower the accuracy we could tolerate from our 
sensors to still hit our overall 90% feedback accuracy. 
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TABLE 2: TEST RESULTS FOR ACCURACY REQUIREMENTS, USE-CASE 
REQUIREMENTS ARE BOLDED 

 

Requirement Metric Result 

Accurate fingering feedback >= 90% 100% 

Bluetooth accuracy >= 95% 100% 

Button accuracy >= 99% 100% 

Accurate orientation feedback >= 90% 90% 

Accelerometer accuracy >= 95% 90% 

Accurate breath control feedback >= 90% 90% 

Breath sensor accuracy >= 95% 90% 

 
 Table 2 above shows a summary of our test results for our 
accuracy requirement. For note fingering feedback, we had an 
overall accuracy of 100%. As mentioned previously, we had a 
Bluetooth communication accuracy of 100%, in addition to a 
button accuracy of 100%. This was expected because push 
buttons are mechanical sensors that are rarely inaccurate.  

For orientation feedback, we had an overall accuracy of 90%. 
Specifically, when we tested our orientation feedback, we only 
found one trial out of ten to give inaccurate feedback. While we 
did not hit our desired accelerometer accuracy of 95%, because 
Bluetooth accuracy was so high, we still hit our use-case 
requirement. 

Similarly, for breath control, we hit our overall accuracy 
requirement of 90%. We found our breath sensor to only be 
90% accurate instead of 95%, but we are still satisfied because 
we hit our use-case requirement. Specifically, we completed 20 
trials of testing for the breath sensor, and we only found two 
trials where the breath control feedback was wrong. 
Additionally, we found our breath sensor to require the correct 
technique to get readings. The user must blow instead of talking 
or shouting, and specifically, the user must blow downward into 
the controller to trigger the sensor. 

B. Speed 
We aimed to have an average latency of less than 500ms 

between the user producing a note and our project providing 
feedback. In our design requirements, we split this up into the 
two largest contributors: the latency from Bluetooth 
communication and the latency from the communication 
between the RPi and the web app. For Bluetooth latency, we 
aimed to have an average of 400ms and for web app latency we 
aimed to have an average of 100ms. 

We tested the Bluetooth latency by writing a python program 
to ping the Arduino and wait for a response back. The code 
records the start time and the end time and then subtracts the 
two times to determine the total time taken for a round trip via 
Bluetooth. The Arduino code simply waited for a message and 
immediately sent a message back. The Bluetooth latency is then 
calculated as: 

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = !"#	%&'!()%*+%	%&'!
,

        (3) 

We tested the web app latency by writing a python program 
that continuously wrote the current time to a text file. Then, in 
the web app, we wrote some JavaScript code to read the text 
file, subtract the given time from the current time, and print the 
latency in milliseconds. 

 
TABLE 3: TEST RESULTS FOR SPEED REQUIREMENTS, USE-CASE 

REQUIREMENTS ARE BOLDED 

Requirement Metric Result 

Total latency <= 500ms 369ms 

Bluetooth latency <= 400ms 96.95ms 

Web app latency <= 100ms 269ms 

 
Table 3 above shows a summary of our test results for our 

accuracy requirement. For our Bluetooth latency, we found that 
we were way under our 400ms bound, and our latency was 
around 97ms on average. For our web app latency, however, we 
were over our predicted latency bound, with an average of 
269ms. While this was more than we aimed for, our overall 
latency was still within our 500ms bound, with an average 
latency of 369ms. 

 
TABLE 4: FIVE TRIALS FOR LATENCY TESTS 

Requirement 1 2 3 4 5 

Bluetooth latency 97ms 97.05ms 96.9ms 96.9ms 97.1ms 

Web app latency 18ms 234ms 127ms 20ms 317ms 

 
Table 4 above shows five trials of both our Bluetooth latency 

tests and our web app latency tests. As you can see from these 
trials, the Bluetooth latency is very consistent and close to the 
average latency. The web app latency, however, is quite 
inconsistent and fluctuates quite far above and below the 
average. 

One tradeoff we identified when testing our latency 
requirement was the tradeoff between audio latency and having 
a wireless controller. The average reasonable audio latency is 
considered to be around 20ms [6], and our audio latency is 
currently around 100ms due to our Bluetooth communication. 
Our Bluetooth latency is actually around the average Bluetooth 
latency (between 100ms and 300ms) [7], but this is higher than 
desired for general audio latency. We decided that for a 
beginner learning to play the flute, it was more important that 
the controller be wireless than to have a small delay between 
user input and audio feedback. 

C. User Experience 
Because users would be using our project to replace a real 

flute, it was important that we extensively tested our user 
experience. This came in two major areas: controller 
dimensions and user satisfaction. We tested our controller 
dimensions by measuring the length, width, and weight of our 
physical controller. We aimed for our controller to be between 
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25” and 27” in length, between 0.7” and 1.3” in width, and 1.0 
and 1.2lbs in weight. We tested the user satisfaction of our 
device in the form of a survey. We surveyed 10 beginners (and 
a few advanced flute players) on the comfort of our controller, 
comparison to a real flute, and overall satisfaction with the 
device. We aimed to have an overall user satisfaction rate of 
80%. 
 

TABLE 5: TEST RESULTS FOR USER EXPERIENCE REQUIREMENTS, USE-CASE 
REQUIREMENTS ARE BOLDED 

Requirement Metric Result 

 Length 25"-27" 29" 

Width 0.7"-1.3" 1.375" 

Weight 1.0-1.2lbs 1.13lbs 

Portability Controller is wireless Controller is wireless 

User satisfaction >= 80% 92% 

Cost <= $500 $249.49 

Size of buttons 13.5mm-16.5mm 13.5mm 

Place of breath 
sensor 1.7"-4.3" 2.75" 

Battery life >= 3hrs 8hrs 

Bluetooth range >= 5ft 30ft 

 
Table 5 above shows a summary of our test results for our 

user experience requirements. For our dimension 
measurements (length, width, and weight of the controller), the 
only requirement we hit accurately was the weight requirement. 
We made some design tradeoff decisions in relation to both of 
these requirements, which we will discuss shortly. 

However, all our other use-case and design requirements fell 
within the range we were aiming for. Firstly, we created a 
wireless controller that is significantly less expensive than 
purchasing a beginner flute and a month of lessons (around 
$500). Secondly, our buttons and breath sensor are positioned 
correctly in relation to where they fall on a real flute, and our 
battery life and Bluetooth range are comfortable for practicing. 
Finally, our overall user satisfaction rate was 92%. 

When we did our user satisfaction survey, we were able to 
gain a bit more insight than just overall user satisfaction. The 
main complaint we received was that the buttons were a bit 
difficult to press, and therefore somewhat uncomfortable to 
hold for long periods of time. However, we also received some 
helpful positive feedback. Most users found breath control to be 
comfortable to use and found in general that the feel of the 
device was pretty similar to a real flute. 

We made quite a few design tradeoff decisions in relation to 
the user experience requirements. Firstly, our physical 
controller is currently 29” in length because our board is 
mounted at the end on a breadboard. This ensures that our 
Arduino is always flat with respect to the device for 
accelerometer readings and allows us to replace broken wires 

and upload code easily. We determined that this increase in 
length did not affect the user much, as the buttons were still 
comparable to their spots on the flute and the user’s hands did 
not contact the breadboard or battery at the end. 

Secondly, the width of our controller is currently 1 3/8”. The 
outer diameter of a real flute is 1”, so our device is slightly 
wider than a real flute. While this is a bit of a difference the user 
might notice, most users we surveyed did not appear bothered 
by the slight increase in width. We chose a PVC pipe with a 
slightly larger outer diameter than 1” to ensure we could fit all 
our electronics inside. Our electronics currently fit quite snugly 
in the device, so if we had chosen a smaller PVC pipe, we likely 
would have had a lot of wires sticking out of the controller. We 
felt that having the controller wireless was more important than 
this small difference in width. 

Finally, we wanted to make sure our buttons were of similar 
size to the buttons on a real flute. Because the buttons on the 
flute are quite large for push buttons, there were not a lot of 
options we could order. In the end, the best buttons we could 
find were a bit hard to press sometimes (as evidenced by the 
feedback in our user survey), but we felt that it affected the 
user’s experience more to have similarly sized buttons to that 
on the flute.  

VIII. PROJECT MANAGEMENT 

A. Schedule 
Our schedule remained mostly the same between the design 

report and the final demo. We still split our project into three 
main sections, each taken on by a specific team member, and 
worked on them largely in parallel. In our design report, we had 
about two weeks of slack at the end of the project, and we ended 
up using all of that for testing and adjustments before the demo. 
We extended some of our beginning tasks for the 
communication section of the project because getting Bluetooth 
communication between the Arduino and the RPi ended up 
being more challenging than we anticipated. Similarly, we 
extended tasks to work on the breath control sensor because that 
also took longer than anticipated. Additionally, we removed 
and shortened integration tasks for the communication between 
the RPi and the web app because we ended up just 
communicating via a text file instead of by Wi-Fi. Finally, we 
added tasks to complete our demo mode for our final demo, 
because we did not anticipate needing that in the design report. 

Refer to Appendix A for our Gantt chart. 

B. Team Member Responsibilities 
Angel Peprah was primarily responsible for the 

communication chain in the system. Her responsibilities 
included sending sensor information from the Arduino with 
BLE characteristics to the RPi, transferring that processed 
information from the RPi to the web application, and 
determining the audio of the note through Sonic Pi. Angel 
worked with Vivian to determine what note was played based 
on fingerings and breath input from the flute controller. 

Judenique Auguste was primarily responsible for the 
construction of the web application and user interface. Her 
responsibilities included designing the layout of the website, the 
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scales, flute fingerings, the three modes, and the processing of 
user feedback. Judenique collaborated with Angel to 
send/process the sensor information in the communication 
chain between the RPi and the web application and adjusted 
data as needed. 

Vivian Beaudoin was primarily responsible for the 
construction of the flute controller. Her responsibilities 
included crafting the PVC pipe to size, wiring and soldering the 
buttons, fitting all components inside the pipe, and combining 
the breath control components. As stated previously, Vivian 
worked with Angel for note determination. 

Our team member responsibilities did not change after the 
design report. 

C. Bill of Materials and Budget 
Please see Appendix B for a full list of the equipment we used 

and their costs, with indications of items we discovered we no 
longer needed and items we realized we needed after the design 
report. 

D. Risk Management  
The largest risk we faced in this project was implementing 

wireless communication between the RPi and the Arduino. If 
this communication had too high of a latency, users could begin 
to feel frustrated using our project. If the communication was 
unstable, the accuracy of feedback would be greatly affected. It 
was also vital that our controller remained wireless to make it 
easier to use and similar to a real flute. 

To combat this risk, we began researching and prototyping 
this area of the project very early, and we dedicated a group 
member’s responsibility solely to this communication. We also 
had many backup plans to fall back on. We originally planned 
on attempting communication first with Bluetooth, then with 
Wi-Fi, and finally, with USB wired communication as the last 
resort. As getting Bluetooth to work initially seemed daunting, 
we reached out to our TA, since she had previously used BLE 
in her capstone project. With her guidance and 
recommendations on libraries to use, we felt confident that we 
would be able to get it working with BLE if regular Bluetooth 
was too difficult to get working. However, in the case that 
Bluetooth did not work, we had a deadline in our initial 
schedule where we would cease work on Bluetooth and move 
on to the next options so integration would still start on time. 
Thankfully, we were able to get Bluetooth working before this 
deadline and did not have to switch to our backup plans. We 
also were able to use our extra budget to buy many different 
Bluetooth modules to test out until we were successful. 

Another risk we faced in this project was having inaccurate 
or inconsistent readings from our sensors. Our physical 
controller combines a lot of different analog sensors, and 
therefore we needed to do a lot of calibration and testing to find 
sensors that were accurate and reasonable for our use-case. The 
three sensors we have inside our flute controller are push 
buttons, an accelerometer, and a breath control sensor. Because 
a large use-case requirement for our project is the accuracy of 
our feedback, it was vital that our sensors were accurate. 

Our mitigation plan for this risk was to again begin 
prototyping early and dedicate a group member to focus solely 
on this area. We tested a variety of different sensors and 

selected the most accurate and consistent sensor for our final 
product. As we expected, the push buttons and gyroscope were 
the easiest to get accurate, so we did not spend too much time 
on those sensors once we got working ones. Our hardest sensor 
was definitely the breath control sensor because we mainly 
created this sensor from scratch and breath control is an 
important part of playing the flute. To combat this, Vivian 
researched this sensor very early and made a proof of concept 
before the design report, so we felt confident that we would be 
able to reach a working product. Vivian also made two early 
prototypes before landing on the final sensor. These sensors 
were of various sizes and used various materials until 
eventually we found a consistent sensor. We researched and 
tested various different materials for the sensor, including 
different kinds of latex and acrylic or thin wood instead of 
cardboard. We also considered mounting the breath sensor 
outside the controller if we needed to make it larger or more 
stable. 

The last risk we identified for this project was ensuring the 
feel of our controller was like the feel of a real flute. This is 
important to our use-case as our project is meant to be a 
replacement for purchasing a real instrument and receiving 
lessons. If the controller was too heavy or clunky to hold, users 
would feel uncomfortable practicing on it. 

To manage this risk, we started building the physical 
controller as early as possible. We also calculated rough 
weights and dimensions for components before we purchased 
them, making sure we only got sensors that would match the 
feel of a real flute and fit inside our controller. Because we had 
a lot of money in our budget, we were able to purchase a lot of 
different components and test them individually for feel and 
size, instead of getting stuck on one item. We also always had 
a flute in the lab to use as a reference, which was vital for 
verifying that our controller felt similar to the real thing. We 
specifically chose the flute for our project because Judenique is 
a flute player and had an extra flute on hand to keep in the lab. 
Finally, we made a backup plan to switch to wired 
communication and take the heavy sensors out of the controller 
if the controller was unreasonably heavy and hard to hold. 

IX. ETHICAL ISSUES 
In terms of ethical issues, there are a few things to discuss. 

For one, the use of a web application opens opportunities for 
malicious parties to access the data associated with users on the 
site. Some examples of data that could possibly be stolen are 
emails, passwords, or even payment information if that was 
added to the web application. Another thing that malicious 
parties could determine is when users are practicing or using the 
app. This data could be used to track what the users are doing 
and help piece together their schedule for nefarious purposes. 
Malicious users could also hack the Bluetooth connection 
between the flute controller and RPi, sending unintended data 
to the web application or causing the user to think that the 
controller is not working. To mitigate this, we could use secure 
communication between the different parts of the project and 
make sure to encrypt all communications. 

The device, as it currently is, could not be accessible to 
certain users due to some requirements in the web application. 
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People who are unable to hold the flute controller horizontal to 
the ground would not progress in the Learn or Test modes. This 
could be fixed by simply notifying the user that their posture is 
not flat, instead of requiring it to progress. Another way that the 
controller could not be accessible is the difficulty of pressing 
the buttons. Compared to a real flute, the controller’s buttons 
are a lot harder to press. Additionally, the added size from the 
thickness of the PVC pipe also makes the device harder to use 
for people who have smaller hands. These issues could be fixed 
by making the controller smaller with custom PCBs to 
minimize the wiring and by making custom buttons that are 
easier to press down, making it easier to use. 

In terms of the web application not being accessible, it 
currently uses colors to distinguish between buttons being 
pressed or not. This could be difficult for users who are color 
blind. Additionally, the only audio feedback provided in our 
project is when the user puts in a correct fingering. This could 
be difficult for users who mainly rely on audio feedback for 
day-to-day tasks that could still learn an instrument with the 
help of a more traditional teacher. These could all be fixed by 
tweaking the web application to be more accessible and give 
feedback in a larger variety of options. 

X. RELATED WORK 
While researching sensors and requirements for our project, 

we discovered that there does not currently exist a woodwind 
controller that accurately mimics a flute. The current flute 
controller on the market [2] is modeled to be a generic 
woodwind instrument, so the breath control required is closer 
to a clarinet or saxophone than a flute. This controller supports 
output with headphones, a USB cable, or wirelessly to an 
optional device. This instrument retails for 800€ (~$888) and 
does not offer any feedback on note playing, posture, or breath 
control.  
 Our design is more specialized for flute playing, including a 
more accurate breath control sensor, and requires the user to 
hold the controller at the correct angle. We output sound from 
the RPi wirelessly, and our controller is significantly less 
expensive. 
 The closest project we have found to our design is a YouTube 
project [1]. In his design, he uses conductive paint instead of 
buttons and uses specific buttons to change the octave the flute 
is currently playing. Our breath control sensor is modeled off 
his breath sensor, but his flute controller is connected to his 
laptop via a USB cable and does not provide any feedback. 
 Our design uses tactile buttons and a wireless controller to 
resemble the feel of a real flute. We modeled our breath control 
sensor off this sensor, but we use the reading of the breath speed 
to test the user’s octave instead of simply changing the note 
volume.	

XI. SUMMARY 
Our goal was to create an effective woodwind learning tool 

for beginners to start learning the flute at a low cost. Overall, 
we feel that we were able to accomplish this when looking at 
the use-case specifications. Our goals for latency and accuracy 
were all met as determined through testing, and the flute 

controller itself was in the same range of the weight and size 
dimensions of a real flute. In terms of performance, we are 
currently limited by two things, latency and feel, which future 
groups could address. 

For latency, we would like it to be lowered to allow for a 
smoother experience. The user could receive feedback quicker, 
put in a faster series of inputs, and practice at a faster speed. 
This could be accomplished with the use of a different device 
to host the web application or by hosting the web app on the 
cloud. We also found that our web app latency was pretty 
inconsistent and think that hosting the web app differently 
would also address this issue. 

As stated in the user feedback, the buttons were hard to press, 
so this aspect of the controller also limits the experience. This 
is for two reasons. First, this contrasts with a real flute, so the 
pressing the buttons does not feel like pressing the valves, 
negatively affecting our goal for feel. Second, the buttons being 
hard to press negatively affects the user experience leading to 
quicker fatigue during practice, and harder use overall. This was 
an extremely important portion of the feedback that we feel 
could reasonably be addressed with more time, as we were 
limited in our button options since we focused more on the size 
similarity to an actual flute. 

We learned the importance of leaving slack in our schedule. 
Components took more time to develop than we initially 
thought they would, which ate into the slack that we built into 
our timeline. Without the conscious addition of slack, we most 
likely would not have been able to reach all of our goals for the 
project. 

Another thing we learned throughout this semester is the 
importance of being flexible and willing to try different things. 
When trying to figure out Bluetooth, we had to go through five 
different modules and boards before we found one that would 
work with our design. Additionally, the breath sensor went 
through many prototypes between establishing the proof of 
concept and the final product that performed reliably.  

Overall, we feel this project was a success, and will be 
excited to see the work of any future groups that choose to 
continue this. 

GLOSSARY OF ACRONYMS 
AWS — Amazon Web Services  
BLE — Bluetooth Low Energy 
IMU — Inertial Measurement Unit  
IR — Infrared 
LED — Light Emitting Diode  
RPi — Raspberry Pi 
UI — User Interface 
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Appendix A: Gantt Chart
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Appendix B: Bill of Materials 

Description Model # Manufacturer Quantity Amt Used in 
Final Product 

Notes Cost @ Total 

Raspberry Pi 4 SC15184  Labist 1 1  $159  $159 

Bluetooth 2.0 Module HC-06 DSD Tech 1 0 Did not need $8.49 $0 

3-Axis Accelerometer 
Gyroscope Module 

B01DK83ZYQ HiLetGo 1 0 Did not need $6.29 $0 

16GB Micro SD SDSQUNC-016G-
GN6MA 

SanDisk 1 1  $7.89  $7.89  

Arduino Nano 33 BLE ABX00034 Arduino 3 1 Ordered extras $22.50  $22.50  

Bluetooth Serial Pass-through 
Module 

HC-05 DSD Tech 1 0 Did not need $9.99 $0 

Bluetooth 4.0 BLE Beacon ML-HM-10 DSD Tech 1 0 Did not need $10.99 $0 

3ft PVC Pipe (1 in diameter) 
 

Ventral 2 1 Ordered extras $12.59  $12.59  

16mm Momentary Pushbutton 
(set of 10) 

B07SVTQ7B9 Twidec 2 1 Ordered extras $7.99  $7.99  

Silicon PIN Photodiode (set of 
5) 

BPW34 Comimark 1 1  $6.49  $6.49  

9V Battery (8 pack)  Amazon Basics 1 1 Ordered post- 
design report 

$11.39 $11.39 

9V Battery clip connector (8 
pack) 

 Meebok 1 1 Ordered post- 
design report 

$6.99 $6.99 

Low Voltage Solderless Wire 
Connectors (12 pack) 

B017FT5G4I Brightfour 1 0 Did not need $10.99 $0 

Wago (2 port, 3 port, 5 port) 
pack 

B07NKSHVF6 ECTY 1 1 Ordered post- 
design report 

$14.65 $14.65 
    

  
 

$249.49 

 


