
18-500 Final Project Report: Team D3 05/07/2022

1

Abstract—A digital flute input device (flute controller) that

mimics the functionality of a real flute, accompanied by an
application that allows beginners to learn flute in a cheap and
effective way. The controller and app allow the user to learn
fingerings, breath control, and posture while also learning scales,
notes, and basic music theory with the web application that
communicates wirelessly with the controller and gives live
feedback.

Index Terms—Arduino, Bluetooth Packet, Breath Detection,
Django, Music, Python, Raspberry Pi, Sonic Pi, Web Application

I. INTRODUCTION
earning an instrument can be daunting, inconvenient, and
expensive for beginners. It can easily cost thousands to gain

access to a good quality instrument and consistent high-quality
lessons. This can be a discouraging aspect of learning how to
play a new instrument, especially if the user simply wants to try
out the craft or is not sure about committing for a long period
of time.

To help solve this problem, we invented WoodwindMania, a
digital way to learn flute that is more cost-effective and easier
to use for beginners. This product allows beginners to interact
with a flute controller that is similar to an actual flute.
Additionally, it allows for a seamless transition to a real flute in
the case that the user decides that they would like to pursue the
instrument more seriously after mastering the basic skills.

The flute controller has the same dimensions as a real flute,
with buttons located where they normally are. In addition, the
user has to blow into the device using the correct technique to
create a sound. Lastly, the device tracks its position, so the user
must be holding it correctly. This ensures that the user starts to
learn the correct skills associated with playing the flute outside
of playing the correct notes.

The application displays feedback to the user and allows
them to learn the correct fingerings of notes from E4 to Db6.
The application also teaches the user nine scales and tests the
user on them. There is also a free play mode in which the user
can play without feedback.

In terms of competing technologies, there are no direct
products that are aimed at beginners. There are electronic wind
controllers that output Musical Instrument Digital Interface
(MIDI) that are aimed at musicians who want to add wind
instruments to their projects, but they do not teach the user
anything about the instrument or give feedback to the user about
what is being played.

The main goal of this project is a budget-friendly system that

allows beginners to learn how to play flute in a comprehensive
way. Users are able to learn this new instrument conveniently
and at their own pace.

II. USE-CASE REQUIREMENTS

A. Accuracy
The user is looking to use the flute controller to replace a

traditional instrument. Therefore, we expect the accuracy of our
system to be reasonably high. The accuracy of feedback for
fingerings, breath control, and orientation must be greater than
90%.

B. Speed
The input from the user is sent wirelessly from the Arduino

Nano on the flute controller to a Raspberry Pi that processes the
user input and hosts the web app locally. The combined latency
of Arduino processing, Bluetooth communication, and RPi
processing between the user input and displaying feedback in
the application must not be longer than 500 milliseconds on
average. This corresponds to a playing speed of 120 beats per
minute, which is the upper-end speed of what we expect a
beginner would like to play.

For the same reasons, we also require that the latency
between user input and audio feedback on the RPi is no longer
than 500 milliseconds on average.

C. User Experience
The dimensions of the flute controller must be as close to a

real flute as possible. This means it must measure 26 inches in
length and have a 1-inch diameter. It also must be around 1.13
pounds. The controller should also be wireless.

Secondly, user satisfaction (collected in the form of a survey)
must be greater than an average score of 4/5, or 80%, as
between 75% and 85% user satisfaction is generally considered
a good rate [9]. Additionally, the device and application should
be very beginner-friendly, with no assumed knowledge of the
flute or how to play one expected from the users of the device.

Lastly, the device should save the user money. This means
the total price of the device and web application should be less
than the expected $500 for a beginner flute plus a month of
lessons.

WoodwindMania

Judenique Auguste, Vivian Beaudoin, Angel Peprah

Department of Electrical and Computer Engineering, Carnegie Mellon University

L

18-500 Final Project Report: Team D3 05/07/2022

2

Fig. 1: System Overview

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
There are three main systems in the design of

WoodwindMania: the physical controller, the wireless
communication, and the web application. The block diagram in
Fig. 1 represents the overall system architecture. The controller
captures the user input of the fingerings, orientation, and breath
control and then sends this data wirelessly to a Raspberry Pi
using BLE communication. The RPi receives this data and
plays the corresponding note based on the fingering and breath
control amplitude. It then sends the data to the web application
where it displays the data for feedback.

Fig. 2: Physical controller

A. Physical Controller
Our physical controller, shown in Fig. 2, consists of a

collection of sensors encased in a PVC pipe. We have nine
tactile push buttons mounted in the position of the keys on a
flute, a breath control sensor, our Arduino Nano that also
contains an accelerometer for orientation reading, and a nine-
volt battery. The buttons determine the note fingering the user
is playing. The accelerometer in the Arduino determines the
angle at which the user is holding the device. The breath sensor
determines whether the user is providing enough airflow to
produce the note and indicates note onset and offset time. The
Arduino mounted at the end of the controller processes all of
these sensor readings and constructs a packet to be sent to the
RPi via Bluetooth.

Since the design report, the design of the physical controller
has only been modified slightly. We decided to use the Inertial
Measurement Unit (IMU) mounted on the Arduino Nano 33

BLE to limit the number of wires needed, and we decided to use
an accelerometer reading instead of a gyroscope reading. We
found that the accelerometer was more appropriate in
determining angle changes from the horizontal, as it measures
acceleration instead of velocity. We also decided to mount the
Arduino and battery outside the controller on a breadboard.
This ensures that the Arduino is always flat with respect to the
controller (which makes the angle reading more accurate), it
ensures that we can easily change wires if any of our
connections break, and it allows us to easily upload code
changes to the Arduino.

B. Communication
Using BLE, the Arduino Nano sends packets to the RPi using

characteristics for each type of data. This packet includes the
buttons pressed, angle difference from the horizontal, and
breath sensor reading. Once the RPi receives the data, it does
some data processing, plays the corresponding note through
Sonic Pi, and writes to a text file for the web application.

No changes have been made to our communication design
since the design report.

C. User Interface
The web application reads the sensor data from this text file

and displays feedback depending on the mode the user chooses
to interact with. This sensor data is processed in the three modes
on the website: Learn, Test, and Free Play. In the Learn mode,
the web app provides the user with information about various
notes and scales and teaches the user how to play them. In the
Test mode, the user is prompted to play scales without
assistance. Lastly, in the Free Play mode, the user can simply
just play various notes and see what note they are playing.
 The web application also includes a Simple mode, where
the user can choose to opt-out of breath control feedback for
any of the three modes. This allows users to test out our
product without placing their mouths on our device, which is
essential for our public demo.
 The only main change to the web application since the
design report was the addition of the Simple mode.

18-500 Final Project Report: Team D3 05/07/2022

3

IV. DESIGN REQUIREMENTS

A. Accuracy
Our use-case requires that the feedback the user receives

from the project is 90% accurate. This can be broken down into
the accuracy of our sensors and the accuracy of our wireless
communication.

Our data must be sent wirelessly via Bluetooth with 95%
accuracy. This is to compensate for any inaccuracies in our
sensor readings. We can calculate the accuracy we have in our
Bluetooth communication with the following equation:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"!#$	&#'()!*	*)+!,-."&&)-	&#'()!*
!"!#$	&#'()!*	*)+!

 (1)
We need this accuracy to hold from a reasonable distance
between the controller and the RPi. To be comfortable for the
user, we need this accuracy in wireless communication to hold
within a distance of five feet between the controller and the RPi.

To ensure that the device senses note fingerings with a 90%
accuracy, our push buttons should be 99% accurate. We can
calculate the accuracy of our push buttons with the following
equation:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !)*!*	/0).)	&1*0	21!!"+	&.)**)*	/).)	-)!)'!)-
!"!#$!)*!*

 (2)

This should not be a difficult metric to achieve, as push buttons
are mechanical devices that are rarely inaccurate. Combined
with a 95% accuracy of wireless communication, our note
fingering detection should hit our 90% accuracy requirement.
 To ensure that our project senses correct playing posture with
90% accuracy, our gyroscope should sense a change in 1° with
respect to the horizontal. This corresponds to a 95% accuracy,
which combined with the accuracy of the wireless
communication, should yield an overall accuracy of 90%.
 Our breath control sensor should also determine the octave
of the note with 95% accuracy. The flute can produce notes
from three octaves, but our project only supports notes from two
out of those three octaves. This is because the very low and very
high notes the flute can play are very difficult, and a beginner
would be unlikely to play them on a real flute. Therefore, our
breath sensor only needs to differentiate between two breath
speeds for each note. Combined with the 95% accuracy of our
wireless communication, our breath control feedback should be
90% accurate.

B. Speed
The time between input change into our flute controller and

receiving feedback from that change should be no longer than
500 milliseconds. This means that our feedback will only feel
significantly delayed if the user is playing at a speed faster than
120 beats per minute, which we believe is the fastest reasonable
pace for a beginner to play at.

The longest contributor to our overall latency is the latency
of the wireless communication between our Arduino and RPi.
We wish to have a latency of Bluetooth communication of no
longer than 400 milliseconds. This leaves the remaining 100
milliseconds for processing data on the Arduino, processing
data on the RPi, and sending updates to the web application. To
split up these 100 milliseconds, we should have the latency of
our Arduino and RPi signal processing be less than ten
milliseconds each, and the latency of updates to the web
application from the RPi (reading from a text file) should be

less than 80 milliseconds. Combining all these latencies yields
an overall latency of 500 milliseconds from a user input change
to a feedback display.

C. User Experience
Our project should be easy to use and feel similar to a real

flute. We break down our user experience requirements into
dimensions and battery life.

The length, width, and weight of the flute controller must be
close to 26”, 1”, and 1.13 lbs. respectively. More specifically,
the length of our controller should be between 25” and 27”, the
width of our controller should be between 0.7” and 1.3”, and
the weight of our controller should be between 1.0 lbs. and 1.2
lbs. This is in order to best match the feel of a real flute. For the
same reason, the buttons on the controller must feel similar to
the buttons on a real flute. Our tactile buttons should be within
10% of the diameter of the buttons on a real flute. Additionally,
the position of the mouthpiece must be comparable to the actual
instrument. The position of the mouthpiece should land within
5% of the position of a real flute. These constraints for the
controller are crucial in order to aid the user in transferring their
learned skills to an actual flute and increase the efficacy of our
device.

The battery life of the flute controller should last at least three
hours. We chose this timeframe as the upper bound of a
continuous playing session for a beginner. Therefore, the user
does not have to replace the battery in the middle of a practice
session.

No changes were made to our design requirements since the
design report.

V. DESIGN TRADE STUDIES
 Throughout the design phase of our project, we had to make
many design tradeoff decisions to best fit our use-case. These
design decisions can be divided into three main categories: the
choice of our breath detection sensor, the nature of our
communication between our physical controller and web
application, and the nature of our communication between the
RPi and our web application.

A. Breath Detection
Beginners learning to play the flute often feel that learning

the correct breath control is the most difficult aspect. As a
result, it is important for our project that our breath control
sensor is accurate for learning breath control on a real flute.
Throughout our ideation process, we determined three
important requirements for our breath control sensor; accuracy,
ability to fit inside the controller, and ease of connection to the
Arduino. We examined these three requirements for each breath
control sensor we considered.
1) Microphone

The first sensor we considered was a microphone mounted
inside the controller. To use this sensor, we would need to
convert the microphone reading to a breath speed measurement.
This would involve filtering out noise and mapping the volume
measurement to the blow speed. This approach would require
signal processing, which no one in our group has much
experience in. We would also need to distinguish between
correct and incorrect blowing forms. We would need to ignore
readings where the user is talking or shouting, as well as

18-500 Final Project Report: Team D3 05/07/2022

4

readings when the user is blowing across or near the
microphone without blowing down into the device.

Due to these complications, we predicted that the microphone
would be the least accurate sensor for breath control. To
determine whether the user was blowing instead of talking or
shouting, our hardware would have to analyze the microphone
signal in the frequency domain and determine if the sound
spectrum matches that typically formed by a user blowing
instead of talking. Since blowing would look similar to noise in
the frequency domain, we would be looking for an equal band
of high amplitude at many frequencies. However, we might not
have a way to determine whether the user was blowing
downward into the device or simply blowing nearby. If we used
the volume reading from the microphone to determine the
distance to the controller, we might inaccurately ignore breath
control readings where the user is blowing softly into the
mouthpiece.

Our second consideration for this sensor is the ability to fit
inside our controller. We plan on using a PVC pipe with a 1”
internal diameter to contain all our sensors. Therefore, the width
and height of the sensor we use should be less than 1”. Table 1
gives a breakdown of the dimensions of the sensors we
considered using for breath control. Both the width and height
of the microphone we considered using are less than an inch, so
we would be able to comfortably fit this sensor inside our
controller.

TABLE 1: BREATH SENSOR DIMENSIONS, SOURCE [3], [4]

Sensor
Dimensions (in)

Width Height Length

Microphone 0.62 0.18 0.95

Physical Fan 1.06 1.06 1

LED + Photodiode 0.38 0.23 0.23

 Our final consideration is the ease that the sensor connects to
the Arduino, which is the microcontroller we are using to
process our sensor data and send it to the RPi. The connection
between the microphone and Arduino is simple, as the
microphone only has pins for power, ground, and analog out.
Therefore, the microphone would only take up one pin on the
Arduino in addition to powering the sensor.
2) Physical Fan

The second sensor we considered was a physical fan the user
blew on. This fan would be mounted on top of the mouthpiece
of the controller and would rotate when the user blew
downwards on it. To sense the airspeed, the Arduino would
connect to an IR diode and receiver mounted on each side of the
fan. Blowing on the fan would break the beam between the IR
diode and receiver, and we could convert the rate at which the
beam is interrupted to the speed the user is blowing.

This sensor would have better accuracy than the microphone,
as no signal processing is necessary to convert the signal to a
speed reading. The user would not be able to move the fan when
talking or shouting, but they might be able to move the fan when
blowing at an incorrect angle (such as across the mouthpiece
instead of down). To determine the speed the user is blowing,
we would be able to use a more accurate reading from the

interruption of the IR beam, instead of using the volume reading
from the microphone.

The difficulty with this sensor is the size. If we created a
paper windmill out of a small piece of paper (0.75” x 0.75”),
the pinwheel would be 1.06” in diameter, which is larger than
what would fit on the inside of the PVC pipe. We could shrink
the paper fan more, but it would be hard to work with a piece of
paper smaller than 0.75” x 0.75”.

Similar to the microphone, the IR sensor would only require
an analog input pin on the Arduino, as well as power and
ground. The circuit required would be a bit more complicated
than the microphone, because both the IR LED and the IR
sensor need to be connected to resistors to ensure the correct
current is being drawn.
3) LED and Photodiode

The final sensor we considered, and the sensor we plan to use
in our project, combines the small, portable size of the
microphone and the accuracy of a physical fan. This sensor
consists of an LED and a photodiode mounted across from each
other on different sides of the mouthpiece. A latex barrier is
mounted overtop of the LED. When the user blows downward,
the latex barrier blocks the beam of light between the LED and
the photodiode, allowing the controller to sense the airspeed of
the blow.

This sensor would be of similar accuracy to the physical fan.
The user would not be able to trigger the sensor while talking
or shouting. The user also would not be able to blow incorrectly
into the sensor to trigger it, as the latex barrier is mounted
horizontally and would need airflow downwards to break the
beam. We did a proof of concept with an LED and a
photoresistor, and we found it to be able to differentiate
between blowing softly into the mouthpiece and blowing
harder.

The LED and photodiode required for this sensor are both
quite small and would be able to fit inside a mouthpiece-sized
hole inside the PVC pipe. Table 1 gives the dimensions of this
sensor.

Finally, the connection to the Arduino would be simple. The
LED requires a connection to digital output and ground, and the
photodiode requires a connection to analog input and ground.
This would only take an additional two pins off the Arduino.

B. Bluetooth vs. Wired vs. Wi-Fi Communication
There are many factors to consider when looking at how to

facilitate the communication between the flute controller and
the RPi. There were many options available to us, each with its
own pros and cons, which we will discuss here. In order for the
flute controller to feel the most natural and allow the most range
of motion for the user, we initially only looked at wireless
options.

Bluetooth and Wi-Fi communication were both feasible
options for this project, as the Arduino platform is compatible
with many external modules that enable these types of
communication. Additionally, there are Arduino boards with
built-in BLE and Wi-Fi as well.
1) BLE

When looking specifically at BLE, we see that it fulfills many
of our requirements. One, it is very energy efficient, especially
compared to regular Bluetooth. This is achieved via a
combination of longer sleep times and shorter transmission

18-500 Final Project Report: Team D3 05/07/2022

5

bursts (from seconds/minutes to milliseconds). This helps us
achieve our goal of a 3-hour battery life on a single 9V battery.
Since we are not constantly streaming large amounts of data
(such as music), the data transmission rate for BLE –which
maxes out around 1 Mbit/s—satisfies the design requirements,
as we are only sending a couple of bytes twenty times or so a
second. The BLE connection is also a direct wireless
connection to the RPi.

For cons, there is always a chance of dropped packets or lost
data in wireless communication, which could be better managed
by recommending the user stay within five feet of the RPi for
the smoothest experience.
2) Wi-Fi

We also considered using a Wi-Fi connection and ended up
not choosing it as our preferred wireless option. For one, this
would require the user to connect the flute controller to their
local Wi-Fi connection and depend on that network to transmit
data to the RPi. We felt that this was not necessary especially
since we are currently planning on hosting the application
locally on the RPi. Additionally, more power and data would
have to be used/sent compared to BLE, which would send 12
bytes at a time.
3) Wired Connection

We are also considering a wired connection between the flute
controller and the RPi as our mitigation for not getting either of
the wireless connections working, and this has its own pros and
cons to consider. The biggest downside of this option is the
potential to affect the use-case for the feel of the controller, as
the user’s motion would potentially be greatly inhibited by the
presence of a cable attached to the end of the flute controller.
However, this could be slightly improved by using a longer
cable that is a couple of feet long.

In terms of the pros, a wired connection would be the most
stable and fastest communication option since it would be the
most direct connection to the RPi. This would ensure that our
accuracy and latency goals were met in our mitigation case.

After looking at these three options, we decided to go with
BLE communication between the flute controller and RPi for
the energy benefits and direct connection, with the wired being
our backup for reliability.

C. Communication between RPi and Web Application
Sensor data from the controller is first communicated to the

RPi and then the web application. This is an essential
communication line which means the design choices made are
important. One such choice was between hosting on AWS
versus hosting locally.

AWS would provide a platform for user interaction, as well
as more security and scalability. We ultimately decided not to
use AWS and host locally instead. User interaction would add
a social media feel to our web application. Registered users
would be able to communicate with each other and see others’
learning progress. For a first implementation website, we did
not feel that user interaction was needed. It is something that
we can consider for the future. Similar to user interaction,
scalability is not necessary for the initial implementation and
would be a valid reason to switch when we add more
instruments. AWS’s best benefit is security for data-driven
projects. While our project is data-driven, we are able to enforce

the safety of our users’ learning data, private logins, and
progress with Django’s built-in protections.

Overall, the main reason for choosing hosting locally over
AWS is the latency. Our latency requirement is 500
milliseconds, so the user receives audio and visual feedback in
a reasonable amount of time. Hosting on AWS would add an
additional latency of 500 milliseconds varying by region. This
along with the latency from the Arduino to RPi communication
would not be efficient for our system.

VI. SYSTEM IMPLEMENTATION
Our system implementation, briefly described in section III,

is broken down into three sections: physical controller,
communication, and user interface. In this section, we describe
these subsystems in greater detail.

A. Physical Controller
Our physical controller consists of a collection of sensors

encased in or at the end of a PVC pipe.
To sense the note the user is trying to play, the controller has

nine push buttons mounted on the device. These nine buttons
are arranged in the same locations as the buttons and keys on a
real flute. The Arduino mounted at the end of the controller
reads the button values and combines them into a 9-bit array to
eventually send to the RPi.

To determine whether the user is holding the flute controller
at the correct angle, we originally planned for the controller to
have a gyroscope module mounted inside. However, when we
decided on using the Arduino Nano 33 BLE as our final
microcontroller, we decided to utilize the IMU on the board, so
we were not wasting pins. The IMU contains a gyroscope,
accelerometer, and magnetometer, and we decided to use the
accelerometer instead of the gyroscope. The gyroscope gives
angular velocity readings while the accelerometer gives angular
acceleration readings, meaning the accelerometer is more
appropriate to determine how the device is oriented in space,
while the gyroscope is more appropriate for determining the
direction of force on the board. The accelerometer reading is
what the physical controller uses to determine how many
degrees the user is holding the controller from the correct
position (parallel to the ground) [8].

18-500 Final Project Report: Team D3 05/07/2022

6

Fig. 3: Breath control sensor

To determine whether the user is using the correct
embouchure to play the given note and is blowing with
sufficient speed to produce the note, we have a breath sensor
also mounted inside the controller. Our breath sensor consists
of an LED and a photodiode mounted across the mouthpiece
from each other, as well as a latex barrier mounted on top of the
LED (Fig. 3). When the user blows downward into the
mouthpiece, the latex barrier curls down and obstructs some of
the light entering the photodiode. The analog output from the
photodiode is sent to the Arduino, where the Arduino
determines the airspeed that the user is blowing with.

Fig. 4: First breath control prototype

Throughout the development process for the breath sensor,
we had two major prototypes before landing on our final design.
The first prototype, as shown in Fig. 4, consisted of the same

LED, photodiode, and latex barrier, but was mounted quite
differently. Both the LED and photodiode were glued on a flat
piece of cardboard across from each other. A cardboard ceiling
is placed on top of the LED for the latex to be taped onto.

This prototype was a good start but had a few issues. First,
the dimensions of this sensor made it impossible to mount
inside the controller because the flat piece of cardboard was
larger than the 1” inner diameter of the PVC pipe. Secondly, the
components of the sensor were not very well secured. The LED
and photodiode moved around a lot, making the reading from
the photodiode very inconsistent.

Fig. 5: Second breath control prototype

We improved on both of these issues in the second prototype
of the breath sensor (Fig. 5). In this sensor, the LED and
photodiode were attached flat to pieces of cardboard, with more
pieces of cardboard in between to separate the two components.
The latex barrier was mounted on the back of the cardboard
behind the LED, resting over the top of it.

While this sensor was an improvement on the first prototype,
it still had a few issues. The main problem was too much
moisture was contacting the latex barrier and causing it to curl
permanently. This meant that all of our breath sensor readings
were too low, and we had to continuously replace the latex,
which took a long time. We were able to solve this issue in our
final breath sensor by using a thicker piece of latex and putting
more space between the user’s mouth and the breath sensor with
some cardboard pieces on the PVC.

Finally, the Arduino constructs a packet to send to the RPi
via Bluetooth. This packet consists of the 9-bit array containing
the buttons currently depressed, the angle with respect to the
horizontal that the user is holding the controller, and the
airspeed with which the user is blowing.

B. Communication
Once the Arduino Nano collects the sensor data representing

the flute fingerings, breath control, and position it broadcasts
this data as a peripheral device in the BLE scheme, with the RPi
acting as the central device. In BLE, members act as either of

18-500 Final Project Report: Team D3 05/07/2022

7

these types of devices to either generate and post data using
services and characteristics or to read/write to said data [11].
That is, the central devices interact with the peripheral devices
that generate the data that they want. A diagram of central
devices and peripheral devices showing their relationship
graphically is located below (Fig. 6).

On the Arduino Nano, we defined a new service associated
with the flute controller, and three characteristics for each type
of data that we wanted to send (fingerings, breath control,
orientation). All three of the characteristics for the fingerings,
breath control, and orientation were represented as integers.

Once the Arduino updates a characteristic in the flute
controller service, the RPi is able to quickly read the updated
value when it changes (in a couple of milliseconds).
Additionally, the baud rate was set to 9600 bits/s for the final
product, but could easily be scaled up to 115200 bits/s.

Fig 6: BLE Diagram, Source: [5]

Once the RPi reads data from one of the three characteristics,
it writes the updated values of the sensor data to a text file for
the purpose of communicating with the application. The RPi
also determines which note is being played based on the
fingerings and breath control amplitude. A note mapping
implemented via a dictionary that is prepopulated with the
fingering combinations is used to quickly translate fingerings to
note values. If the fingering is invalid, no note is be played.
After determining the note (in the case that it is correct), it then
sends a signal via OSC (Open Sound Control) to Sonic Pi
denoting the note value, whether a new note is being played,
and a “stop” value denoting if any sound should be played at
all. Once Sonic Pi receives the signal, it plays the corresponding
flute sample [10] or stops playing the current sample,
depending on the message sent. This is possible through the
live_loop functionality in Sonic Pi that allows a loop to play
that can dynamically run and react to signals and function calls.
This direct connection between the Bluetooth program and
Sonic Pi allowed the user to get auditory feedback as quickly as
possible after receiving the sensor data.

The communication of the project was worked on
incrementally with each portion being figured out as parallelly

as possible— specifically, figuring out how to send sensor data
via Bluetooth to an RPi and how to play flute samples
automatically in response to a program. After being
recommended Sonic Pi by a fellow student, it was relatively
straightforward to use live_loops and OSC to play notes from a
separate python script. The more difficult process was
establishing a Bluetooth connection between an Arduino and
the Raspberry Pi. We tried out many different Bluetooth
modules such as the HC-10 (BLE) and HC-5, but none of them
would connect to the RPi. After doing some research, we
discovered the Arduino Nano BLE has built-in BLE
capabilities. This chip allowed us to connect with the RPi with
the help of another library on the RPi. We also utilized Bluepy
on the RPi to utilize its BLE capabilities. This library allows
easier control over the BLE ports on devices, and hence we
were able to use it to connect specifically with the Arduino’s
MAC address in a program. Bluepy also contained defined
classes that allowed us to read and write to specific
characteristics and services of devices it was connected to, so
we were able to send data to the RPi using the newly defined
flute controller services and characteristics associated with the
sensor data.

C. User Interface
The web application is the main view of the user interface.

We use Django [13], a high-level Python web framework. This
framework consists of several languages including HTML,
CSS, and JavaScript. The Model-View-Controller system in
Django allows the construction of four different modes for our
system: “Practice”, “Learn”, “Test”, and “Resource”. The web
application is styled using Bootstrap [12]. Bootstrap added
functionality for the layout and a more appealing UI.

The Learn mode is the core of our web application as
referenced in Fig. 7. This mode is similar to a private flute
lesson. The user is not able to start if the controller is not
enabled. On this page, the user first chooses one of the eight
major scales plus a chromatic scale to play. Each scale goes
through the notes with displayed flute fingerings. The UI
consists of visuals of the flute fingering with the note on the
staff, a visual of the fingering for the current note, and a
description of the fingering. When the data from the user is
received, this mode provides user feedback. These are
displayed as red keys for incorrect hand positions and green
keys for the correct hand positions. Additionally, feedback
about the overall flute position such as the angle and breath
control are shown. This page has the most computations and is
done by reading a text file with sensor information from the
physical controller. Specifically, the Controller in Django’s
MVC system has the functions for processing the sensors: the
accelerometer, buttons, and breath sensor. The Controller
communicates with the JavaScript component of Django to
update the page every 200ms. When the user completes a note,
a short popup appears giving the user feedback that they are
correct. This continues until the user reaches the starting note
again where the scale is marked as complete, and the user is
redirected to the select scale menu.

The Test mode is where the user has a chance to show

18-500 Final Project Report: Team D3 05/07/2022

8

mastery over the nine scales. The physical controller is required
in this mode. The user first chooses the scale to get tested on.
The UI is very similar to the Learn mode except the fingerings
for the notes are not shown. Passing the scale means finishing
all the notes. In the end, they receive an accuracy score. If the
user has the correct breath control but does not have the correct
fingering, the accuracy score decreases. The priority in the Test
mode is breath control, correct position, and finally, overall
flute position. On the processing side, the user inputs from the
constantly updating text file are compared with the correct
fingering in the scale. The test results are saved inside the user’s
database.

The Resource mode is the simplest mode. It does not require
the flute controller to be connected. On this page, there are
options to view and listen to the seven major scales that are
available to learn. A static flute fingering chart of all the notes
is also displayed. And finally, there are links to resources for
additional education.

The purpose of the Practice mode is to give the user a space
to practice what they learned. It is similar to the experience of
playing the flute for fun or practicing a musical piece. The UI
for this page is more relaxed, and there is user feedback as well
as a fingering chart to practice. It ensures that the controller is
active before starting.

All of the modes, with the exception of the Resource mode,
have an option called “Simple”. With Simple enabled, the web
application disregards the breath control sensor. The web
application passes information to the RPi to produce the sound.
This is done by the Controller writing to a text file that the RPi
reads. In the Practice mode, the note the user is playing is only
written if they have the correct fingering for a note. Since there
are similar fingerings for multiple notes, only one octave is
available. In the Test and Learn mode, the note that is written
to the text file is the current note in the scale.

Every user of the web app has a profile page. The main
information shown is the progress for each scale in Learn mode
and the completion for each scale in Test mode. The user also
has the option to reset all their scale data.

The current web application is run locally. A database is
needed to store user information, like usernames, passwords,
and progress. There are many databases Django supports, and
we started with MySQL due to familiarity. The final web
application uses PostgreSQL [14] since it is much faster.

Fig. 7: Learn Mode in action

VII. TEST, VERIFICATION, AND VALIDATION
We separated our use-case requirements into three

categories: accuracy, speed, and user experience. Below we
break down our testing procedures and results for each
requirement.

A. Accuracy
We aimed to have 90% accuracy in the feedback from our

project. This accuracy relates to the feedback provided for note
fingerings, instrument posture, and breath control.

To test the accuracy of our note feedback, we provided both
correct and incorrect note fingerings when prompted. For each
of the 14 notes in a scale, we tested both an incorrect note
fingering and a correct one and verified the feedback given from
the web application. We then averaged our accuracy over 28
trials.

Similarly, to test the accuracy of our posture feedback, we
held the controller at the correct angle (parallel to the ground)
and a series of incorrect angles. We then tested that the web
application correctly determined if the user was playing in the
correct posture and averaged that result over ten trials.

Finally, we tested the accuracy of our breath control sensor.
First, we tested that our sensor does not interpret talking or
blowing with incorrect form (such as blowing across the
mouthpiece instead of blowing downwards) as an attempt to
play a note. Second, we tested that the breath sensor sensed the
octave the user was playing correctly. We tested this by doing
ten trials of blowing softly to produce the lower octave note and
ten trials of blowing hard to produce the higher octave note. We
calibrated the speed necessary to blow soft/hard by using a real
flute. We then determined if the web app played the correct
octave, averaging over 20 trials.

In our design report, we also included a design requirement
of 95% accuracy for Bluetooth communication. This is because
we anticipated that we would occasionally drop a packet, and
that would affect our overall feedback accuracy. As a result, we
aimed for higher than 90% accuracy of our sensors, so that
when averaged with our Bluetooth accuracy we would hit our
overall requirement of 90%. However, we found in our testing
that we rarely ever dropped a Bluetooth packet. As a result, we
were able to lower the accuracy we could tolerate from our
sensors to still hit our overall 90% feedback accuracy.

18-500 Final Project Report: Team D3 05/07/2022

9

TABLE 2: TEST RESULTS FOR ACCURACY REQUIREMENTS, USE-CASE
REQUIREMENTS ARE BOLDED

Requirement Metric Result

Accurate fingering feedback >= 90% 100%

Bluetooth accuracy >= 95% 100%

Button accuracy >= 99% 100%

Accurate orientation feedback >= 90% 90%

Accelerometer accuracy >= 95% 90%

Accurate breath control feedback >= 90% 90%

Breath sensor accuracy >= 95% 90%

 Table 2 above shows a summary of our test results for our
accuracy requirement. For note fingering feedback, we had an
overall accuracy of 100%. As mentioned previously, we had a
Bluetooth communication accuracy of 100%, in addition to a
button accuracy of 100%. This was expected because push
buttons are mechanical sensors that are rarely inaccurate.

For orientation feedback, we had an overall accuracy of 90%.
Specifically, when we tested our orientation feedback, we only
found one trial out of ten to give inaccurate feedback. While we
did not hit our desired accelerometer accuracy of 95%, because
Bluetooth accuracy was so high, we still hit our use-case
requirement.

Similarly, for breath control, we hit our overall accuracy
requirement of 90%. We found our breath sensor to only be
90% accurate instead of 95%, but we are still satisfied because
we hit our use-case requirement. Specifically, we completed 20
trials of testing for the breath sensor, and we only found two
trials where the breath control feedback was wrong.
Additionally, we found our breath sensor to require the correct
technique to get readings. The user must blow instead of talking
or shouting, and specifically, the user must blow downward into
the controller to trigger the sensor.

B. Speed
We aimed to have an average latency of less than 500ms

between the user producing a note and our project providing
feedback. In our design requirements, we split this up into the
two largest contributors: the latency from Bluetooth
communication and the latency from the communication
between the RPi and the web app. For Bluetooth latency, we
aimed to have an average of 400ms and for web app latency we
aimed to have an average of 100ms.

We tested the Bluetooth latency by writing a python program
to ping the Arduino and wait for a response back. The code
records the start time and the end time and then subtracts the
two times to determine the total time taken for a round trip via
Bluetooth. The Arduino code simply waited for a message and
immediately sent a message back. The Bluetooth latency is then
calculated as:

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = !"#	%&'!()%*+%	%&'!
,

 (3)

We tested the web app latency by writing a python program
that continuously wrote the current time to a text file. Then, in
the web app, we wrote some JavaScript code to read the text
file, subtract the given time from the current time, and print the
latency in milliseconds.

TABLE 3: TEST RESULTS FOR SPEED REQUIREMENTS, USE-CASE

REQUIREMENTS ARE BOLDED

Requirement Metric Result

Total latency <= 500ms 369ms

Bluetooth latency <= 400ms 96.95ms

Web app latency <= 100ms 269ms

Table 3 above shows a summary of our test results for our

accuracy requirement. For our Bluetooth latency, we found that
we were way under our 400ms bound, and our latency was
around 97ms on average. For our web app latency, however, we
were over our predicted latency bound, with an average of
269ms. While this was more than we aimed for, our overall
latency was still within our 500ms bound, with an average
latency of 369ms.

TABLE 4: FIVE TRIALS FOR LATENCY TESTS

Requirement 1 2 3 4 5

Bluetooth latency 97ms 97.05ms 96.9ms 96.9ms 97.1ms

Web app latency 18ms 234ms 127ms 20ms 317ms

Table 4 above shows five trials of both our Bluetooth latency

tests and our web app latency tests. As you can see from these
trials, the Bluetooth latency is very consistent and close to the
average latency. The web app latency, however, is quite
inconsistent and fluctuates quite far above and below the
average.

One tradeoff we identified when testing our latency
requirement was the tradeoff between audio latency and having
a wireless controller. The average reasonable audio latency is
considered to be around 20ms [6], and our audio latency is
currently around 100ms due to our Bluetooth communication.
Our Bluetooth latency is actually around the average Bluetooth
latency (between 100ms and 300ms) [7], but this is higher than
desired for general audio latency. We decided that for a
beginner learning to play the flute, it was more important that
the controller be wireless than to have a small delay between
user input and audio feedback.

C. User Experience
Because users would be using our project to replace a real

flute, it was important that we extensively tested our user
experience. This came in two major areas: controller
dimensions and user satisfaction. We tested our controller
dimensions by measuring the length, width, and weight of our
physical controller. We aimed for our controller to be between

18-500 Final Project Report: Team D3 05/07/2022

10

25” and 27” in length, between 0.7” and 1.3” in width, and 1.0
and 1.2lbs in weight. We tested the user satisfaction of our
device in the form of a survey. We surveyed 10 beginners (and
a few advanced flute players) on the comfort of our controller,
comparison to a real flute, and overall satisfaction with the
device. We aimed to have an overall user satisfaction rate of
80%.

TABLE 5: TEST RESULTS FOR USER EXPERIENCE REQUIREMENTS, USE-CASE
REQUIREMENTS ARE BOLDED

Requirement Metric Result

 Length 25"-27" 29"

Width 0.7"-1.3" 1.375"

Weight 1.0-1.2lbs 1.13lbs

Portability Controller is wireless Controller is wireless

User satisfaction >= 80% 92%

Cost <= $500 $249.49

Size of buttons 13.5mm-16.5mm 13.5mm

Place of breath
sensor 1.7"-4.3" 2.75"

Battery life >= 3hrs 8hrs

Bluetooth range >= 5ft 30ft

Table 5 above shows a summary of our test results for our

user experience requirements. For our dimension
measurements (length, width, and weight of the controller), the
only requirement we hit accurately was the weight requirement.
We made some design tradeoff decisions in relation to both of
these requirements, which we will discuss shortly.

However, all our other use-case and design requirements fell
within the range we were aiming for. Firstly, we created a
wireless controller that is significantly less expensive than
purchasing a beginner flute and a month of lessons (around
$500). Secondly, our buttons and breath sensor are positioned
correctly in relation to where they fall on a real flute, and our
battery life and Bluetooth range are comfortable for practicing.
Finally, our overall user satisfaction rate was 92%.

When we did our user satisfaction survey, we were able to
gain a bit more insight than just overall user satisfaction. The
main complaint we received was that the buttons were a bit
difficult to press, and therefore somewhat uncomfortable to
hold for long periods of time. However, we also received some
helpful positive feedback. Most users found breath control to be
comfortable to use and found in general that the feel of the
device was pretty similar to a real flute.

We made quite a few design tradeoff decisions in relation to
the user experience requirements. Firstly, our physical
controller is currently 29” in length because our board is
mounted at the end on a breadboard. This ensures that our
Arduino is always flat with respect to the device for
accelerometer readings and allows us to replace broken wires

and upload code easily. We determined that this increase in
length did not affect the user much, as the buttons were still
comparable to their spots on the flute and the user’s hands did
not contact the breadboard or battery at the end.

Secondly, the width of our controller is currently 1 3/8”. The
outer diameter of a real flute is 1”, so our device is slightly
wider than a real flute. While this is a bit of a difference the user
might notice, most users we surveyed did not appear bothered
by the slight increase in width. We chose a PVC pipe with a
slightly larger outer diameter than 1” to ensure we could fit all
our electronics inside. Our electronics currently fit quite snugly
in the device, so if we had chosen a smaller PVC pipe, we likely
would have had a lot of wires sticking out of the controller. We
felt that having the controller wireless was more important than
this small difference in width.

Finally, we wanted to make sure our buttons were of similar
size to the buttons on a real flute. Because the buttons on the
flute are quite large for push buttons, there were not a lot of
options we could order. In the end, the best buttons we could
find were a bit hard to press sometimes (as evidenced by the
feedback in our user survey), but we felt that it affected the
user’s experience more to have similarly sized buttons to that
on the flute.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule remained mostly the same between the design

report and the final demo. We still split our project into three
main sections, each taken on by a specific team member, and
worked on them largely in parallel. In our design report, we had
about two weeks of slack at the end of the project, and we ended
up using all of that for testing and adjustments before the demo.
We extended some of our beginning tasks for the
communication section of the project because getting Bluetooth
communication between the Arduino and the RPi ended up
being more challenging than we anticipated. Similarly, we
extended tasks to work on the breath control sensor because that
also took longer than anticipated. Additionally, we removed
and shortened integration tasks for the communication between
the RPi and the web app because we ended up just
communicating via a text file instead of by Wi-Fi. Finally, we
added tasks to complete our demo mode for our final demo,
because we did not anticipate needing that in the design report.

Refer to Appendix A for our Gantt chart.

B. Team Member Responsibilities
Angel Peprah was primarily responsible for the

communication chain in the system. Her responsibilities
included sending sensor information from the Arduino with
BLE characteristics to the RPi, transferring that processed
information from the RPi to the web application, and
determining the audio of the note through Sonic Pi. Angel
worked with Vivian to determine what note was played based
on fingerings and breath input from the flute controller.

Judenique Auguste was primarily responsible for the
construction of the web application and user interface. Her
responsibilities included designing the layout of the website, the

18-500 Final Project Report: Team D3 05/07/2022

11

scales, flute fingerings, the three modes, and the processing of
user feedback. Judenique collaborated with Angel to
send/process the sensor information in the communication
chain between the RPi and the web application and adjusted
data as needed.

Vivian Beaudoin was primarily responsible for the
construction of the flute controller. Her responsibilities
included crafting the PVC pipe to size, wiring and soldering the
buttons, fitting all components inside the pipe, and combining
the breath control components. As stated previously, Vivian
worked with Angel for note determination.

Our team member responsibilities did not change after the
design report.

C. Bill of Materials and Budget
Please see Appendix B for a full list of the equipment we used

and their costs, with indications of items we discovered we no
longer needed and items we realized we needed after the design
report.

D. Risk Management
The largest risk we faced in this project was implementing

wireless communication between the RPi and the Arduino. If
this communication had too high of a latency, users could begin
to feel frustrated using our project. If the communication was
unstable, the accuracy of feedback would be greatly affected. It
was also vital that our controller remained wireless to make it
easier to use and similar to a real flute.

To combat this risk, we began researching and prototyping
this area of the project very early, and we dedicated a group
member’s responsibility solely to this communication. We also
had many backup plans to fall back on. We originally planned
on attempting communication first with Bluetooth, then with
Wi-Fi, and finally, with USB wired communication as the last
resort. As getting Bluetooth to work initially seemed daunting,
we reached out to our TA, since she had previously used BLE
in her capstone project. With her guidance and
recommendations on libraries to use, we felt confident that we
would be able to get it working with BLE if regular Bluetooth
was too difficult to get working. However, in the case that
Bluetooth did not work, we had a deadline in our initial
schedule where we would cease work on Bluetooth and move
on to the next options so integration would still start on time.
Thankfully, we were able to get Bluetooth working before this
deadline and did not have to switch to our backup plans. We
also were able to use our extra budget to buy many different
Bluetooth modules to test out until we were successful.

Another risk we faced in this project was having inaccurate
or inconsistent readings from our sensors. Our physical
controller combines a lot of different analog sensors, and
therefore we needed to do a lot of calibration and testing to find
sensors that were accurate and reasonable for our use-case. The
three sensors we have inside our flute controller are push
buttons, an accelerometer, and a breath control sensor. Because
a large use-case requirement for our project is the accuracy of
our feedback, it was vital that our sensors were accurate.

Our mitigation plan for this risk was to again begin
prototyping early and dedicate a group member to focus solely
on this area. We tested a variety of different sensors and

selected the most accurate and consistent sensor for our final
product. As we expected, the push buttons and gyroscope were
the easiest to get accurate, so we did not spend too much time
on those sensors once we got working ones. Our hardest sensor
was definitely the breath control sensor because we mainly
created this sensor from scratch and breath control is an
important part of playing the flute. To combat this, Vivian
researched this sensor very early and made a proof of concept
before the design report, so we felt confident that we would be
able to reach a working product. Vivian also made two early
prototypes before landing on the final sensor. These sensors
were of various sizes and used various materials until
eventually we found a consistent sensor. We researched and
tested various different materials for the sensor, including
different kinds of latex and acrylic or thin wood instead of
cardboard. We also considered mounting the breath sensor
outside the controller if we needed to make it larger or more
stable.

The last risk we identified for this project was ensuring the
feel of our controller was like the feel of a real flute. This is
important to our use-case as our project is meant to be a
replacement for purchasing a real instrument and receiving
lessons. If the controller was too heavy or clunky to hold, users
would feel uncomfortable practicing on it.

To manage this risk, we started building the physical
controller as early as possible. We also calculated rough
weights and dimensions for components before we purchased
them, making sure we only got sensors that would match the
feel of a real flute and fit inside our controller. Because we had
a lot of money in our budget, we were able to purchase a lot of
different components and test them individually for feel and
size, instead of getting stuck on one item. We also always had
a flute in the lab to use as a reference, which was vital for
verifying that our controller felt similar to the real thing. We
specifically chose the flute for our project because Judenique is
a flute player and had an extra flute on hand to keep in the lab.
Finally, we made a backup plan to switch to wired
communication and take the heavy sensors out of the controller
if the controller was unreasonably heavy and hard to hold.

IX. ETHICAL ISSUES
In terms of ethical issues, there are a few things to discuss.

For one, the use of a web application opens opportunities for
malicious parties to access the data associated with users on the
site. Some examples of data that could possibly be stolen are
emails, passwords, or even payment information if that was
added to the web application. Another thing that malicious
parties could determine is when users are practicing or using the
app. This data could be used to track what the users are doing
and help piece together their schedule for nefarious purposes.
Malicious users could also hack the Bluetooth connection
between the flute controller and RPi, sending unintended data
to the web application or causing the user to think that the
controller is not working. To mitigate this, we could use secure
communication between the different parts of the project and
make sure to encrypt all communications.

The device, as it currently is, could not be accessible to
certain users due to some requirements in the web application.

18-500 Final Project Report: Team D3 05/07/2022

12

People who are unable to hold the flute controller horizontal to
the ground would not progress in the Learn or Test modes. This
could be fixed by simply notifying the user that their posture is
not flat, instead of requiring it to progress. Another way that the
controller could not be accessible is the difficulty of pressing
the buttons. Compared to a real flute, the controller’s buttons
are a lot harder to press. Additionally, the added size from the
thickness of the PVC pipe also makes the device harder to use
for people who have smaller hands. These issues could be fixed
by making the controller smaller with custom PCBs to
minimize the wiring and by making custom buttons that are
easier to press down, making it easier to use.

In terms of the web application not being accessible, it
currently uses colors to distinguish between buttons being
pressed or not. This could be difficult for users who are color
blind. Additionally, the only audio feedback provided in our
project is when the user puts in a correct fingering. This could
be difficult for users who mainly rely on audio feedback for
day-to-day tasks that could still learn an instrument with the
help of a more traditional teacher. These could all be fixed by
tweaking the web application to be more accessible and give
feedback in a larger variety of options.

X. RELATED WORK
While researching sensors and requirements for our project,

we discovered that there does not currently exist a woodwind
controller that accurately mimics a flute. The current flute
controller on the market [2] is modeled to be a generic
woodwind instrument, so the breath control required is closer
to a clarinet or saxophone than a flute. This controller supports
output with headphones, a USB cable, or wirelessly to an
optional device. This instrument retails for 800€ (~$888) and
does not offer any feedback on note playing, posture, or breath
control.
 Our design is more specialized for flute playing, including a
more accurate breath control sensor, and requires the user to
hold the controller at the correct angle. We output sound from
the RPi wirelessly, and our controller is significantly less
expensive.
 The closest project we have found to our design is a YouTube
project [1]. In his design, he uses conductive paint instead of
buttons and uses specific buttons to change the octave the flute
is currently playing. Our breath control sensor is modeled off
his breath sensor, but his flute controller is connected to his
laptop via a USB cable and does not provide any feedback.
 Our design uses tactile buttons and a wireless controller to
resemble the feel of a real flute. We modeled our breath control
sensor off this sensor, but we use the reading of the breath speed
to test the user’s octave instead of simply changing the note
volume.	

XI. SUMMARY
Our goal was to create an effective woodwind learning tool

for beginners to start learning the flute at a low cost. Overall,
we feel that we were able to accomplish this when looking at
the use-case specifications. Our goals for latency and accuracy
were all met as determined through testing, and the flute

controller itself was in the same range of the weight and size
dimensions of a real flute. In terms of performance, we are
currently limited by two things, latency and feel, which future
groups could address.

For latency, we would like it to be lowered to allow for a
smoother experience. The user could receive feedback quicker,
put in a faster series of inputs, and practice at a faster speed.
This could be accomplished with the use of a different device
to host the web application or by hosting the web app on the
cloud. We also found that our web app latency was pretty
inconsistent and think that hosting the web app differently
would also address this issue.

As stated in the user feedback, the buttons were hard to press,
so this aspect of the controller also limits the experience. This
is for two reasons. First, this contrasts with a real flute, so the
pressing the buttons does not feel like pressing the valves,
negatively affecting our goal for feel. Second, the buttons being
hard to press negatively affects the user experience leading to
quicker fatigue during practice, and harder use overall. This was
an extremely important portion of the feedback that we feel
could reasonably be addressed with more time, as we were
limited in our button options since we focused more on the size
similarity to an actual flute.

We learned the importance of leaving slack in our schedule.
Components took more time to develop than we initially
thought they would, which ate into the slack that we built into
our timeline. Without the conscious addition of slack, we most
likely would not have been able to reach all of our goals for the
project.

Another thing we learned throughout this semester is the
importance of being flexible and willing to try different things.
When trying to figure out Bluetooth, we had to go through five
different modules and boards before we found one that would
work with our design. Additionally, the breath sensor went
through many prototypes between establishing the proof of
concept and the final product that performed reliably.

Overall, we feel this project was a success, and will be
excited to see the work of any future groups that choose to
continue this.

GLOSSARY OF ACRONYMS
AWS — Amazon Web Services
BLE — Bluetooth Low Energy
IMU — Inertial Measurement Unit
IR — Infrared
LED — Light Emitting Diode
RPi — Raspberry Pi
UI — User Interface

18-500 Final Project Report: Team D3 05/07/2022

13

REFERENCES
[1] KontinuumLab. “KontrolFreak DIY cardboard MIDI flute. Worlds first

flute mouthpiece emulator?” YouTube, Jun. 29, 2019 [Video file].
Available: https://www.youtube.com/watch?v=HkaP1IJqq98.
[Accessed: Mar. 4, 2022].

[2] “Buy the Sylphyo – electronic musical instrument – Aodyo.” [Online].
Available: https://www.aodyo.com/sylphyo-produit-157.html.
[Accessed: Mar. 4, 2022].

[3] “Electret Microphone Amplifier - MAX4466 with Adjustable Gain.”
[Online]. Available:
https://www.adafruit.com/product/1063?gclid=CjwKCAiAo4OQBhBBE
iwA5KWu_2fry14Pa8Jg-
PhUIAVv299KjdJ6InrgVb7P4s4mAHMuBUoFaqL4AxoCKR0QAvD_
BwE. [Accessed: Mar. 4, 2022]

[4] “LED Size Chart: Types & Dimensions,” 2022, [Online]. Available:
https://evandesigns.com/pages/information-about-led-sizes. [Accessed:
Mar. 4, 2022]

[5] SM. ‘ble-bulletin-board-model’, 2019 [Online Image] Arduino.
Available:
https://www.arduino.cc/en/Reference/ArduinoBLE?_gl=1*z9dbj6*_ga*
MTQyOTAyOTg5Ni4xNjQ0MDIzODk5*_ga_NEXN8H46L5*MTY0N
jI3MDU0Ni4zMC4xLjE2NDYyNzA1NDguMA. [Accessed: Mar 4,
2022]

[6] Sweetwater, “Better Latency Than Never: Latency Tips and Hints:”
inSync, 06-Jan-2005. [Online]. Available:
https://www.sweetwater.com/insync/better-latency-than-never-latency-
tips-hints/. [Accessed: 05-May-2022]

[7] C. Editor, “How to Fix Sound Delay in Bluetooth Headphones,”
Headphonesty, 07-Oct-2021. [Online]. Available:
https://www.headphonesty.com/2020/07/fix-sound-delay-bluetooth-
headphones/. [Accessed: 05-May-2022]

[8] N. Alushi, “Accessing Accelerometer Data on Nano 33 BLE,” Arduino
Documentation | Arduino Documentation, 03-May-2022. [Online].
Available: https://docs.arduino.cc/tutorials/nano-33-
ble/imu_accelerometer. [Accessed: 07-May-2022]

[9] A. Birkett, “What is Customer Satisfaction Score (CSAT)?,” HubSpot
Blog, 16-Jun-2021. [Online]. Available:
https://blog.hubspot.com/service/customer-satisfaction-
score#:~:text=While%20CSAT%20scores%20vary%20by,a%20negativ
e%20or%20neutral%20one. [Accessed: 07-May-2022]

[10] Robert, “Adding a new sample based flute voice for sonic pi,”
rbnrpi,wordpress.com, 13-Oct-2014. [Online]. Available:
https://rbnrpi.wordpress.com/project-list/adding-a-new-sample-based-
flute-voice-for-sonic-pi/. [Accessed: 07-May-2022]

[11] “Arduinoble - blecharacteristic.written(),” ArduinoBLE -
bleCharacteristic.written() - Arduino Reference. [Online]. Available:
https://www.arduino.cc/reference/en/libraries/arduinoble/blecharacteristi
c.written/. [Accessed: 07-May-2022]

[12] Mark Otto, Jacob Thornton. “Bootstrap.” Bootstrap · The Most Popular
HTML, CSS, and JS Library in the World. [Online] Available:
https://getbootstrap.com/. [Accessed: Mar 4, 2022]

[13] “The Web Framework for Perfectionists with Deadlines | Django.”
Django Project [Online] Available: www.djangoproject.com. [Accessed:
Feb 20, 2022]

[14] Group, PostgreSQL Global Development. PostgreSQL, 8 May 2022,
[Online] Available: https://www.postgresql.org/. [Accessed: April 20,
2022]

18-500 Final Project Report: Team D3 05/07/2022

14

Appendix A: Gantt Chart

18-500 Final Project Report: Team D3 05/07/2022

15

Appendix B: Bill of Materials

Description Model # Manufacturer Quantity Amt Used in
Final Product

Notes Cost @ Total

Raspberry Pi 4 SC15184 Labist 1 1 $159 $159

Bluetooth 2.0 Module HC-06 DSD Tech 1 0 Did not need $8.49 $0

3-Axis Accelerometer
Gyroscope Module

B01DK83ZYQ HiLetGo 1 0 Did not need $6.29 $0

16GB Micro SD SDSQUNC-016G-
GN6MA

SanDisk 1 1 $7.89 $7.89

Arduino Nano 33 BLE ABX00034 Arduino 3 1 Ordered extras $22.50 $22.50

Bluetooth Serial Pass-through
Module

HC-05 DSD Tech 1 0 Did not need $9.99 $0

Bluetooth 4.0 BLE Beacon ML-HM-10 DSD Tech 1 0 Did not need $10.99 $0

3ft PVC Pipe (1 in diameter)

Ventral 2 1 Ordered extras $12.59 $12.59

16mm Momentary Pushbutton
(set of 10)

B07SVTQ7B9 Twidec 2 1 Ordered extras $7.99 $7.99

Silicon PIN Photodiode (set of
5)

BPW34 Comimark 1 1 $6.49 $6.49

9V Battery (8 pack) Amazon Basics 1 1 Ordered post-
design report

$11.39 $11.39

9V Battery clip connector (8
pack)

 Meebok 1 1 Ordered post-
design report

$6.99 $6.99

Low Voltage Solderless Wire
Connectors (12 pack)

B017FT5G4I Brightfour 1 0 Did not need $10.99 $0

Wago (2 port, 3 port, 5 port)
pack

B07NKSHVF6 ECTY 1 1 Ordered post-
design report

$14.65 $14.65

$249.49

