
18-500 Design Project Report: March 4, 2022 
 

1 

 
Abstract—A digital flute input device (flute controller) that 

mimics functionality of a real flute, accompanied with an 
application that allows beginners to learn flute in a cheap and 
effective way. The controller and app will allow the user to learn 
fingerings, breath control, and posture while also learning scales, 
notes, and basic music theory with the web application that will 
communicate wirelessly with the controller and give live feedback.  
 

Index Terms—Arduino, Bluetooth Packet, Breath Detection, 
Music, Raspberry Pi, Web Application 
 

I. INTRODUCTION 
earning an instrument can be hard for beginners to pursue, 
due to high costs associated with it. It can easily cost 

thousands to gain access to a good quality instrument and 
consistent high-quality lessons. This can be a discouraging 
aspect of learning how to play a new instrument, especially if 
the user simply wants to try out the craft or is not sure about 
committing for a long period of time. 

To help solve this problem, we came up with 
WoodwindMania, a digital way to learn flute that is more cost 
effective and easy to use for beginners. This will allow 
beginners to interact with a flute controller that is similar to an 
actual flute. Additionally, this will allow for a more seamless 
transition to a real flute in the case that the user decides that 
they would like to pursue the instrument more seriously after 
mastering the basic skills. 

The flute controller will have the same dimensions as a real 
flute and will also have buttons located where they normally 
would be on an actual flute. In addition, the user will have to 
blow into the device using correct technique to create a noise. 
Lastly, the device will be tracking its position, so the user will 
have to be holding it correctly. This will ensure that the user 
starts to learn the correct skills associated with playing the flute 
outside of playing the correct notes. 

The application will display feedback to the user and allow 
them to learn correct fingerings of notes from E4 to D6. The 
application will also teach the user seven scales and test the user 
on them as well. In the case that the use just wants to play 
without feedback, there will be a mode for that also. 

In terms of competing technologies, there are no direct 
products that are aimed at beginners. There are electronic wind 
controllers that output Musical Instrument Digital Interface 
(MIDI) that are aimed at musicians who want to add wind 
instruments to their projects, but they do not teach the user 
anything about the instrument or give feedback to the user about  

 
what is being played. 

The main goal of this project is to create a budget-friendly  
system that allows beginners to learn how to play flute in a 
comprehensive way. Users will be able to learn this new 
instrument conveniently and at their own pace. 

II. USE-CASE REQUIREMENTS 

A. Accuracy 
The user is looking to use the flute controller to replace a 

traditional instrument. Therefore, we expect the accuracy of our 
system to be reasonably high. The accuracy of feedback for 
fingerings, breath control, and orientation must be greater than 
90%.  

B. Speed 
The input from the user will be sent wirelessly from the 

onboard Arduino Nano on the flute controller to a Raspberry Pi 
that will process the user input and host the web app locally. 
The combined latency of Arduino processing, Bluetooth 
communication, and RPi processing between the user input and 
displaying feedback in the application must not be longer than 
500 milliseconds. This corresponds to a playing speed of 120 
beats per minute, which is the upper-end speed of what we 
expect a user would play. 

C. User Experience 
The dimensions of the flute controller must be as close to a 

real flute as possible. This means it must measure 26 inches in 
length and a 1-inch diameter. It also must be around 1.3 pounds. 

Lastly, user satisfaction (collected in the form of a survey) 
must be greater than an average score of 4/5, or 80%. 
Additionally, the device and application should be very 
beginner-friendly, with no assumed knowledge of the flute or 
how to play one expected from the users of the device. 
  

WoodwindMania 

Authors: Angel Peprah, Judenique Auguste, Vivian Beaudoin 

Department of Electrical and Computer Engineering, Carnegie Mellon University 

L 



18-500 Design Project Report: March 4, 2022 
 

2 

Fig. 1: System Overview 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
There are three main systems in the design of 

WoodwindMania: the physical controller, the wireless 
communication, and the web application. The block diagram in 
Fig. 1 represents the overall system architecture. The controller 
captures the user input of the fingerings, orientation, and breath 
control and then sends this data wirelessly to a Raspberry Pi 
using BLE communication. The RPi then receives this data and 
plays the corresponding note based on the fingering and breath 
control amplitude. It will then send the data to the web 
application where the web app uses the data for feedback. 

A. Physical Controller 
Our physical controller consists of a collection of sensors 

encased in a PVC pipe. We will have tactile pushbuttons 
mounted in the position of the keys on a flute, a gyroscope, and 
a breath control sensor in the form of a photodiode reading. Our 
pushbuttons will sense the note fingering the user is playing, 
our gyroscope will determine the angle at which the user is 
holding the device, and our breath sensor will determine 
whether the user is providing enough airflow to produce the 
note. The Arduino mounted inside the controller will process 
all of these analog readings and construct a packet to be sent to 
the RPi via Bluetooth.  

B. Communication 
Using BLE, the Arduino Nano will send packets to the RPi 

using characteristics for each type of data. Once the RPi 
receives the data it will do some data processing, play the 
corresponding note, and write to a text file for the web 
application. 

C. User Interface 
The web application will get the sensor data from this text 

file and will display feedback depending on the mode the user 
chooses to interact with. This sensor data is processed in the 
three modes on the website: free play, learn, and test. The scale 
book does not require any information from the physical 
controller.   



18-500 Design Project Report: March 4, 2022 
 

3 

IV. DESIGN REQUIREMENTS 

A. Accuracy 
Our use-case requires that the feedback the user receives 

from the project is 90% accurate. This can be broken down into 
the accuracy of our sensors and the accuracy of our wireless 
communication. 

Our data must be sent wirelessly via Bluetooth with 95% 
accuracy. This is to compensate for any inaccuracies in our 
sensor readings. We can calculate the accuracy we have in our 
Bluetooth communication with the following equation: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"!#$	&#'()!*	*)+!,-."&&)-	&#'()!*
!"!#$	&#'()!*	*)+!

   (1) 
We would like this accuracy to hold from a reasonable distance 
between the controller and the RPi. To be comfortable for the 
user, we need this accuracy in wireless communication to hold 
within a distance of five feet between the controller and the RPi.  

To ensure that the device senses note fingerings with a 90% 
accuracy, our pushbuttons should be 99% accurate. We can 
calculate the accuracy we have in our pushbuttons with the 
following equation: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !)*!*	/0).)	&1*0	21!!"+	&.)**)*	/).)	-)!)'!)-
!"!#$	!)*!*

  (2) 
 
This should not be a difficult metric to achieve, as pushbuttons 
are mechanical devices that are rarely inaccurate. Combined 
with a 95% accuracy of wireless communication, our note 
fingering detection should hit our 90% accuracy requirement. 
 To ensure that our project senses correct playing posture with 
90% accuracy, our gyroscope should sense a change in 1° with 
respect to the horizontal. This corresponds to a 95% accuracy, 
which combined with the accuracy of the wireless 
communication, should yield an overall accuracy of 90%. 
 Our breath control sensor should also determine the octave 
of the note with 95% accuracy. The flute can produce notes 
from three octaves, but our project only plans to support notes 
from two out of those three octaves. This is because the very 
low and very high notes the flute can play are very difficult, and 
a beginner would be unlikely to play them on a real flute. 
Therefore, our breath sensor only needs to differentiate between 
two breath speeds for each note. Combined with the 95% 
accuracy of our wireless communication, our breath control 
feedback should be 90% accurate. 

B. Speed 
The time between input change into our flute controller and 

receiving feedback from that change should be no longer than 
500 milliseconds. This corresponds to a playing speed of 120 
beats per minute, which we believe is a reasonable pace for a 
beginner to play at. 

The longest contributor to our latency will be the latency of 
the wireless communication between our Arduino and RPi. We 
wish to have a latency of Bluetooth communication of no longer 
than 400 milliseconds. This leaves the remaining 100 
milliseconds for processing data on the Arduino, processing 
data on the RPi, and sending updates to the web application. To 
split up these 100 milliseconds, we should have the latency of 
our Arduino and RPi signal processing be less than ten 
milliseconds each, and the latency of updates to the web 
application from the RPi (reading from a text file) should be 
less than 80 milliseconds. Combining all these latencies yields 

an overall latency of 500 milliseconds from a user input change 
to a feedback display.  

C. User Experience 
Our project should be easy to use and feel similar to a real 

flute. We break down our user experience requirements into 
dimensions and battery life. 

The length, width, and weight of the flute controller must be 
close to 26”, 1”, and 1.3 lbs. respectively. More specifically, the 
length of our controller should be between 25” and 27”, the 
width of our controller should be between 0.7” and 1.3”, and 
the weight of our controller should be between 1.2 lbs. and 1.4 
lbs. This is in order to best match the feel of a real flute. For the 
same reason, the buttons on the controller must feel similar to 
the buttons on a real flute. Our tactile buttons should be within 
10% of the diameter of the buttons on a real flute. Additionally, 
the position of the mouthpiece must be comparable to the actual 
instrument. The position of the mouthpiece should land within 
5% of the position of a real flute. These constraints for the 
controller are crucial in order to aid the user in transferring their 
learned skills to an actual flute and increase the efficacy of our 
device. 

The battery life of the flute controller should last at least three 
hours. We chose this timeframe as the upper bound of a 
continuous playing session for a beginner. Therefore, the user 
does not have to replace the battery in the middle of a practice 
session. 

V. DESIGN TRADE STUDIES 
 Throughout the design phase of our project, we had to make 
many design tradeoff decisions to best fit our use case. These 
design decisions can be divided into three main categories: the 
choice of our breath detection sensor, the nature of our 
communication between our physical controller and web 
application, and the nature of our communication between the 
RPi and our web application. 

A. Breath Detection 
Beginners learning to play the flute often feel that learning 

the correct breath control is the most difficult aspect. As a 
result, it is important for our project that our breath control 
sensor is accurate for learning breath control on a real flute. 
Throughout our ideation process, we determined three 
important requirements for our breath control sensor are 
accuracy, ability to fit inside the controller, and ease of 
connection to the Arduino. We examined these three 
requirements for each breath control sensor we considered. 

1) Microphone 
The first sensor we considered was a microphone mounted 

inside the controller. To use this sensor, we would need to 
convert the microphone reading to a breath speed measurement. 
This would involve filtering out noise and mapping the volume 
measurement to the blow speed. This approach would require 
signal processing, which no one in our group has much 
experience in. We would also need to distinguish between 
correct and incorrect blowing forms. We would need to ignore 
readings where the user is talking or shouting, as well as 
readings when the user is blowing across or near the 
microphone without blowing down into the device. 



18-500 Design Project Report: March 4, 2022 
 

4 

Due to these complications, we predicted that the microphone 
would be the least accurate sensor for breath control. To 
determine whether the user was blowing instead of talking or 
shouting, our hardware would have to analyze the microphone 
signal in the frequency domain and determine if the sound 
spectrum matches that typically formed by a user blowing 
instead of talking. Since blowing would look similar to noise in 
the frequency domain, we would be looking for an equal band 
of high amplitude at many frequencies. However, we might not 
have a way to determine whether the user was blowing 
downward into the device or simply blowing nearby. If we used 
the volume reading from the microphone to determine the 
distance to the controller, we might inaccurately ignore breath 
control readings where the user is blowing softly into the 
mouthpiece.  

Our second consideration for this sensor is the ability to fit 
inside our controller. We plan on using a PVC pipe with a 1” 
internal diameter to contain all our sensors. Therefore, the width 
and height of the sensor we use should be less than 1”. Table 1 
gives a breakdown of the dimensions of the sensors we 
considered using for breath control. Both the width and height 
of the microphone we considered using are less than an inch, so 
we would be able to comfortably fit this sensor inside our 
controller. 

Table 1: Breath Sensor Dimensions, Source [3], [4] 

Sensor 
Dimensions (in) 

Width Height Length 

Microphone 0.62 0.18 0.95 

Physical Fan 1.06 1.06 1 

LED + Photodiode 0.38 0.23 0.23 

 Our final consideration is the ease that the sensor connects to 
the Arduino, which is the microcontroller we will be using to 
process our sensor data and send it to the RPi. The connection 
between the microphone and Arduino is simple, as the 
microphone only has pins for power, ground, and analog out. 
Therefore, the microphone would only take up one pin on the 
Arduino in addition to powering the sensor. 

2) Physical Fan 
The second sensor we considered was a physical fan the user 

blew on. This fan would be mounted on top of the mouthpiece 
of the controller and would rotate when the user blew 
downwards on it. To sense the airspeed, the Arduino would 
connect to an IR diode and receiver mounted on each side of the 
fan. Blowing on the fan would break the beam between the IR 
diode and receiver, and we could convert the rate at which the 
beam is interrupted to the speed the user is blowing. 

This sensor would have better accuracy than the microphone, 
as no signal processing is necessary to convert the signal to a 
speed reading. The user would not be able to move the fan when 
talking or shouting, but they might be able to move the fan when 
blowing at an incorrect angle (such as across the mouthpiece 
instead of down). To determine the speed the user is blowing, 
we would be able to use a more accurate reading from the 
interruption of the IR beam, instead of using the volume reading 
from the microphone. 

The difficulty with this sensor is the size. If we created a 
paper windmill out of a small piece of paper (0.75” x 0.75”), 

the pinwheel would be 1.06” in diameter, which is larger than 
what would fit on the inside of the PVC pipe. We could shrink 
the paper fan more, but it would be hard to work with a piece of 
paper smaller than 0.75” x 0.75”. 

Similar to the microphone, the IR sensor would only require 
an analog input pin on the Arduino, as well as power and 
ground. The circuit required would be a bit more complicated 
than the microphone, because both the IR LED and the IR 
sensor need to be connected to resistors to ensure the correct 
current is being drawn. 

3) LED and Photodiode 
The final sensor we considered, and the sensor we plan to use 

in our project, combines the small, portable size of the 
microphone and the accuracy of a physical fan. This sensor 
consists of an LED and a photodiode mounted across from each 
other on different sides of the mouthpiece. A latex barrier will 
be mounted overtop of the LED. When the user blows 
downward, the latex barrier blocks the beam of light between 
the LED and the photodiode, allowing the controller to sense 
the airspeed of the blow. 

This sensor would be of similar accuracy to the physical fan. 
The user would not be able to trigger the sensor while talking 
or shouting. The user also would not be able to blow incorrectly 
into the sensor to trigger it, as the latex barrier will be mounted 
horizontally and would need airflow downwards to break the 
beam. We have done a proof of concept with an LED and a 
photoresistor, and we have already found it to be able to 
differentiate between blowing softly into the mouthpiece and 
blowing harder. 

The LED and photodiode required for this sensor are both 
quite small and would be able to fit inside a mouthpiece-sized 
hole inside the PVC pipe. Table 1 gives the dimensions of this 
sensor. 

Finally, the connection to the Arduino would be simple. The 
LED requires a connection to digital output and ground, and the 
photodiode requires a connection to analog input and ground. 
This would only take an additional two pins off the Arduino. 

B. Bluetooth vs. Wired vs. Wi-Fi Communication 
There are many factors to consider when looking at how to 

facilitate the communication between the flute controller and 
the RPi. There were many options available to us, each with its 
own pros and cons, which we will discuss here. In order for the 
flute controller to feel the most natural and allow the most range 
of motion for the user, we initially only looked at wireless 
options. 

Bluetooth and Wi-Fi communication were both feasible 
options for this project, as the Arduino platform is compatible 
with many external modules that enable these types of 
communication. Additionally, there are Arduino boards with 
built-in BLE and Wi-Fi as well.  

1) BLE 
When looking specifically at BLE, we see that it fulfills many 

of our requirements. One, it is very energy efficient, especially 
compared to regular Bluetooth. This is achieved via a 
combination of longer sleep times and shorter transmission 
bursts (from seconds/minutes to milliseconds). This helps us 
achieve our goal of a 3-hour battery life on a single 9V battery. 
Since we are not constantly streaming large amounts of data 
(such as music), the data transmission rate for BLE –which 



18-500 Design Project Report: March 4, 2022 
 

5 

maxes out around 1 Mbit/s—satisfies the design requirements, 
as we are only sending a couple of bytes twenty times or so a 
second. The BLE connection is also a direct wireless 
connection to the RPi. 

For cons, there is always a chance of dropped packets or lost 
data in wireless communication, which could be better managed 
by recommending the user stay within five feet of the RPi for 
the smoothest experience.  

2) Wi-Fi  
We also considered using a Wi-Fi connection and ended up 

not choosing it as our preferred wireless option. For one, this 
would require the user to connect the flute controller to their 
local Wi-Fi connection and depend on that network to transmit 
data to the RPi. We felt that this was not necessary especially 
since we are currently planning on hosting the application 
locally on the RPi. Additionally, more power and data would 
have to be used/sent compared to BLE, which would send four 
bytes at a time. 

3) Wired Connection 
We are also considering a wired connection between the flute 

controller and the RPi as our mitigation for not getting either of 
the wireless connections working, and this has its own pros and 
cons to consider. The biggest downside of this option is the 
potential to affect the use case for the feel of the controller, as 
the user’s motion would potentially be greatly inhibited by the 
presence of a cable attached to the end of the flute controller. 
However, this could be slightly improved by using a longer 
cable that is a couple of feet long.  

In terms of the pros, a wired connection would be the most 
stable and fastest communication option since it would be the 
most direct connection to the RPi. This would ensure that our 
accuracy and latency goals were met in our mitigation case. 

After looking at these three options, we decided to go with 
BLE communication between the flute controller and RPi for 
the energy benefits and direct connection, with the wired being 
our backup for reliability. 

C. Communication between RPi and Web Application 
Sensor data from the controller is first communicated to the 

RPi and then the web application. This is an essential 
communication line which means the design choices made are 
important. One such choice was between hosting on AWS 
versus hosting locally.  

AWS would provide a platform for user interaction, as well 
as more security and scalability. We ultimately decided not to 
use AWS and host locally instead. User interaction would add 
a social media feel to our web application. Registered users 
would be able to communicate with each other and see others’ 
learning progress. For a first implementation website, we did 
not feel that user interaction was needed. It is something that 
we can consider for the future. Similar to user interaction, 
scalability is not necessary for the initial implementation and 
would be a valid reason to switch when we add more 
instruments. AWS’s best benefit is security for data-driven 
projects. While our project is data-driven, we will be able to 
enforce the safety of our users’ learning data, private logins, and 
progress with Django’s built-in protections.   

Overall, the main reason for choosing hosting locally over 
AWS is the latency. Our latency requirement is 500 
milliseconds, so the user receives audio and visual feedback in 

a reasonable amount of time. Hosting on AWS would add an 
additional latency of 500 milliseconds varying by region. This 
along with the latency from the Arduino to RPi communication 
would not be efficient for our system.  

VI. SYSTEM IMPLEMENTATION 
Our system implementation, briefly described in section III, 

is broken down into three sections: physical controller, 
communication, and user interface. In this section, we describe 
these subsystems in greater detail. 

A. Physical Controller 
Our physical controller consists of a collection of sensors 

encased in a PVC pipe. 
To sense the note the user is trying to play, the controller will 

have nine pushbuttons mounted in the device. These nine 
buttons will be arranged in the same locations as the buttons and 
keys on a real flute. The Arduino mounted inside the controller 
will read the button values and combine them into a 9-bit array 
to eventually send to the RPi. 

To determine whether the user is holding the flute controller 
at the correct angle, the controller will also have a gyroscope 
sensor mounted inside. This gyroscope will output angle 
readings for each of the three axes, sending them to the 
Arduino. The Arduino will combine those sensor readings to 
determine the angle difference between how the user is holding 
the controller and the correct position (parallel to the ground). 

To determine whether the user is using the correct 
embouchure to play the given note and is blowing with 
sufficient speed to produce the note, we will have a breath 
sensor also mounted inside the controller. Our breath sensor 
consists of an LED and a photodiode mounted across the 
mouthpiece from each other, as well as a latex barrier mounted 
on top of the LED (Fig. 2). When the user blows downward into 
the mouthpiece, the latex barrier will curl down and obstruct 
some of the light entering the photodiode. The analog output 
from the photodiode will be sent to the Arduino, where the 
Arduino will determine the airspeed that the user is blowing 
with. 

 

 
Fig. 2: Breath control sensor 

Finally, the Arduino will construct a packet to send to the RPi 
via Bluetooth. This packet consists of the 9-bit array containing 



18-500 Design Project Report: March 4, 2022 
 

6 

the buttons currently depressed, the angle with respect to the 
horizontal that the user is holding the controller, and the 
airspeed with which the user is blowing.      

B. Communication 
Once the Arduino Nano creates the bytes representing the 

flute fingerings, breath control, and position it will broadcast 
this data as a peripheral device in the BLE scheme, with the RPi 
acting as the central device. In BLE, members act as either of 
these types of devices to either generate and post data using 
services and characteristics or to read/write to said data. That is, 
the central devices interact with the peripheral devices that 
generate the data that they want. A diagram of central devices 
and peripheral devices showing their relationship graphically is 
located below (Fig. 3).  

On the Arduino Nano, we will be making a new service 
associated with the flute controller, and three characteristics for 
each type of data that we want to send (fingerings, breath 
control, orientation). The fingering characteristic will be 
represented as a short, the breath control will be represented as 
a byte, and the orientation will also be short.  

Once the Arduino updates a characteristic in the flute 
controller service, a notification is sent out, allowing the RPi to 
quickly get the updated value when it changes (in a couple of 
milliseconds). Additionally, the Baud Rate will be set to 9600 
bits/s initially, but can easily be scaled up to 115200 bits/s. 

 

 
Fig 3: BLE Diagram, Source: [5] 

Once the RPi receives a BLE notification from one of the 
three characteristics, it will then write the updated values to a 
text file for the purpose of sending the data to the application. 
It will also determine which note is being played based on the 
fingerings and breath control amplitude and play it out loud 
using an audio library, such as SonicPy. This will allow the user 
to get auditory feedback as quickly as possible. This note 
mapping will be implemented using a dictionary that is 
prepopulated with the fingering combinations. If the fingering 
is invalid, no note will be played. 

C. User Interface 
The web application is the main view of the user interface. 

We will use Django, a high-level Python web framework. This 
framework consists of several languages including HTML, 
CSS, and JavaScript. The Model-View-Controller system in 
Django will allow the construction of four different modes for 
our system: “free play”, “learn”, “test”, and the scale book. 

The scale book mode is the simplest of the modes. It will not 
require the flute controller to be connected. On this page, there 
will be options to view and listen to the seven major scales that 
are available to learn. A static flute fingering chart of all the 
notes is also displayed. And finally, there will be links to 
resources for additional education.  

The purpose of free play is to give the user a space to practice 
what they learned. It is similar to the experience of playing the 
flute for fun or practicing a musical piece. The UI for this page 
will be more relaxed, and there will not be any user feedback. 
However, it will ensure that the controller is active before 
starting.  

The learn mode is the core of our web application as 
referenced in Fig. 4. The user will not be able to start if the 
controller is not enabled. This mode is similar to a private flute 
lesson. On this page, the user will first choose one of the seven 
major scales to play. Each scale will go through the notes with 
displayed flute fingerings. The UI will consist of visuals of the 
flute fingering with the note on the staff. The user is learning 
basic music theory through this mode as well. When the data 
from the user is received, this mode will provide user feedback. 
These will be displayed as red keys for incorrect hand positions 
and green keys for the correct hand positions. Additionally, 
feedback about the overall flute position will show. The user 
will only receive audio feedback, in the form of a given note, 
when they use the correct embouchure. This page will have the 
most computations and will be done by reading a text file with 
sensor information from the physical controller. Specifically, 
the Controller, in Django’s MVC system, will have the 
functions for processing the sensors: the gyroscope, buttons, 
and breath.  

The test mode is where the user will have a chance to show 
mastery over the seven major scales. The physical controller is 
required in this mode. The user will first choose the scale to get 
tested on, and then choose whether to display the scale on a 
staff. Regardless of choice, there will be a metronome that sets 
the pace of the scale. The user will play as normal from the 
“learn” mode, however, if they do not have the correct breath 
control, there will not be audio. Once the user completes the 
scale, their score is shown, and with a score of 95, they will 
pass. The score is calculated based on the correct fingering 
positions, breath control, and overall flute position. The priority 
in the test mode is breath control, correct position, and finally, 
overall flute position. On the processing side, the user inputs 
from the constantly updating text file are compared with the 
correct fingering in the scale. As with the learn mode, the sensor 
information from the breath controller will produce the note. 
The test results, regardless of a passing score, will be saved 
inside the user’s database.  

 To have a complete web application, we will have to 



18-500 Design Project Report: March 4, 2022 
 

7 

deploy it on a server. We decided to use Apache to process our 
requests. Additionally, a database is needed to store user 
information, like usernames, passwords, and progress. There 
are many databases Django supports, and we have chosen 
MySQL due to familiarity. 
 

 
Fig. 4: Mockup of ‘Learn’ Mode 

VII. TEST, VERIFICATION, AND VALIDATION 
We separated our use-case requirements into three 

categories: accuracy, speed, and user experience. Below we 
break down our testing plan for each requirement. 

A. Accuracy 
We aim to have 90% accuracy in the feedback from our 

project. This accuracy relates to the feedback provided for note 
fingerings, instrument posture, and breath control. 

To test the accuracy of our note feedback, we will provide a 
series of correct and incorrect note fingerings when prompted. 
For example, when prompted to play the note G5, we will 
provide inputs that include the correct fingering, a correct 
fingering for a separate note, and a fingering that does not 
produce a valid note. We will provide this series of inputs for 
each note our project supports, aiming for 90% accuracy 
overall. 

Similarly, to test the accuracy of our posture feedback, we 
will hold the controller at the correct angle (parallel to the 
ground) and a series of incorrect angles. We will then test that 
the project visual determines if the user is playing in the correct 
posture with 90% accuracy. 

Finally, we will test the accuracy of our breath control sensor. 
First, we will test that our sensor does not interpret talking or 
blowing with incorrect form (such as blowing across the 
mouthpiece instead of blowing downwards) as an attempt to 
play a note. Second, we will test that the breath sensor senses 
the octave the user is playing correctly. We will test this by 
blowing at the correct speed to produce the note and blowing at 
the incorrect speed to produce the note (either too soft or too 
hard). We will compare our blowing speeds to an actual flute so 
we can determine if our feedback is correct. Again, we aim to 
reach 90% accuracy on this feedback. 

B. Speed 
We are aiming for a latency of 500ms between the user 

producing a note and our project providing feedback. We will 
test this by recording the time between an input change and 
visual feedback.  

Our input change can come from any of our three sensors. 
Changes in note fingerings, controller orientation, and breath 
speed should all provide a visual change in less than 500 
milliseconds. 

C. User Experience 
The primary goal of this project is to replace the cost of 

buying a real flute. Therefore, we need to continually ensure the 
feel of our flute controller when adding components. The 
controller should not weigh too much more, and the size should 
be similar to the real instrument. We will test this by measuring 
the length, width, and weight, and ensuring the measurements 
remain below 26”, 1”, and 1.3 lbs. respectively. 

We also want to ensure that the overall feel of the controller 
is not too clunky or uncomfortable to learn on. To test this, we 
will survey beginner flute players and record their rating on the 
feel of the controller and the likelihood they would use it to 
practice. We are aiming for 4/5 or 80% of users to feel satisfied 
using this controller to learn to play the flute. 

VIII. PROJECT MANAGEMENT 

A. Schedule 
Our schedule was based on individual team member 

responsibilities and how our different components would 
connect. The physical controller and web application are 
separate components and can be developed largely in parallel 
before needing to be tested. The communication chain between 
the Arduino, RPi, and web application is dependent on partial 
completion of the physical controller or web application. 
However, the communication chain can be tested by receiving 
dummy data or sending dummy data. The first integration 
milestone is sending correct data from the RPi to the web 
application. The schedule leaves time near the end of the 
semester to focus on full integration, testing, and verification.  

Refer to Appendix A for our Gantt chart. 

B. Team Member Responsibilities 
Angel Peprah is primarily responsible for the communication 

chain in the system. Her responsibilities include sending sensor 
information from the Arduino in packets to the RPi and 
transferring that processed information from the RPi to the web 
application. Angel will work with Vivian to determine what 
note was played based on fingerings and breath input from the 
flute controller. 

Judenique Auguste is primarily responsible for the 
construction of the web application and user interface. Her 
responsibilities include designing the layout of the website, the 
scales, flute fingerings, and processing user feedback. 
Judenique will collaborate with Angel to send/process the 
sensor information in the communication chain between the 
RPi and the web application. 

Vivian Beaudoin is primarily responsible for the construction 



18-500 Design Project Report: March 4, 2022 
 

8 

of the flute controller. Her responsibilities include crafting the 
PVC pipe to size, wiring and soldering the buttons, and 
combining the breath control components. As stated previously, 
Vivian will work with Angel for note determination. 

C. Bill of Materials and Budget 
Please see Appendix B for a full list of the equipment we will 

use and their costs. 

D.  Risk Mitigation Plans 
The largest risk we face in this project is in the 

communication between the RPi and the Arduino inside the 
controller. If this communication has high latency, users may 
begin to feel frustrated using our project. If the communication 
is unstable, the accuracy of our feedback could be greatly 
impacted. It is also important to the feel of the controller that 
the controller remains wireless if possible. We only plan to 
switch to wired communication if we are unsuccessful in all 
wireless communication attempts. 

To combat this risk, we began researching and prototyping 
on this area of the project early, and we dedicated a group 
member’s responsibility solely to this communication. We plan 
on attempting this communication first with Bluetooth, then 
with Wi-Fi, and finally, with USB wired communication as the 
last resort. We plan on attempting communication with both 
Bluetooth and BLE, prioritizing low latency at a short-range 
(about five feet). 

Another risk we face in this project is having inaccurate or 
inconsistent readings from our sensors. Our physical controller 
combines a lot of different analog sensors, and therefore we are 
going to need to do a lot of calibration and testing to find 
sensors that are accurate and reasonable for our use case. The 
three sensors we will have inside our flute controller are 
pushbuttons, a gyroscope, and a breath control sensor. Because 
a large use-case requirement for our project is the accuracy of 
our feedback, it is vital that our sensors are accurate. 

Our mitigation plan for this risk is to again begin prototyping 
early and dedicate a group member to focus solely on this area. 
We will test a variety of different sensors and select the most 
accurate and consistent sensor that can be calibrated to our 
needs. For the pushbuttons and gyroscope, we are confident that 
we will be able to find sensors that are accurate and consistent, 
as there exist many different sensors we can try and test. The 
riskiest sensor we plan to use is our breath control sensor, 
because we are mainly creating this sensor from scratch and 
breath control is an important part of playing the flute. To 
combat this, we will begin testing our LED and photodiode 
breath sensor early, trying a bunch of different subcomponents 
together (different LEDs, photodiodes, and latex barriers). If we 
do not have success with this sensor, we plan to use a 
photoresistor instead of a photodiode. We have already created 
a working proof-of-concept with this sensor, so we believe we 
would be able to calibrate this sensor to fit our use-case. We can 
also use a microphone volume reading as a secondary backup if 
we run into issues with the photoresistor. 

 The last risk we have identified for this project is ensuring 
the feel of our controller is similar to the feel of a real flute. This 
is important to our use-case, as our project is meant to be a 
replacement for purchasing a real instrument and getting 

lessons. If the controller is too heavy or clunky to hold, users 
may feel uncomfortable practicing on it. 

Our plan to mitigate this risk is to try a bunch of different 
sensors and consistently check the dimensions and comfort of 
our controller as we add them. There are a variety of different 
buttons we can use, so we are able to order new ones if we find 
the size or feel of our current buttons does not match the buttons 
on the flute. We also plan to compare our controller to a real 
flute our group has access to, and this should help us adjust the 
design as we build our controller. We do not think our controller 
will end up as the incorrect dimensions or weight, because we 
are using a 1” PVC pipe to contain our electronics and most of 
our sensors are light. However, if we find that our device is too 
heavy and cannot change to lighter sensors, we can move our 
battery and Arduino outside of the controller and use wired 
communication to the RPi. 

IX. RELATED WORK 
While researching sensors and requirements for our project, 

we discovered that there does not currently exist a woodwind 
controller that accurately mimics a flute. The current flute 
controller on the market [2] is modeled to be a generic 
woodwind instrument, so the breath control required is closer 
to a clarinet or saxophone than a flute. This controller supports 
output with headphones, a USB cable, or wirelessly to an 
optional device. This instrument retails for 800€ (~$888) and 
does not offer any feedback on note playing, posture, or breath 
control.  
 Our design will be more specialized for flute playing, 
including a more accurate breath control sensor, and requiring 
the user to hold the controller at the correct angle. We will be 
outputting sound from the RPi wirelessly, and our controller 
will be significantly less expensive than this one is. 
 The closest project we have found to our design is a YouTube 
project [1]. In his design, he uses conductive paint instead of 
buttons and uses specific buttons to change the octave the flute 
is currently playing. Our breath control sensor is modeled off 
his breath sensor, but his flute controller is connected to his 
laptop via a USB cable and does not provide any feedback. 
 Our design will use tactile buttons and a wireless controller 
to resemble the feel of a real flute. We will model our breath 
control sensor off of this sensor, but we will use the reading of 
the breath speed to test the user’s octave instead of simply 
changing the note volume.	

X. SUMMARY 
Our goal is to create an effective woodwind learning tool for 

beginners to start learning the flute at a low cost. Therefore, it 
important that our physical controller mimics the playing of a 
real flute as much as possible, including the dimensions of our 
instrument, the breath control system, and the feel of the 
buttons. It is also important that our controller communicates 
wirelessly to our feedback application and does so quickly and 
accurately.  
  



18-500 Design Project Report: March 4, 2022 
 

9 

GLOSSARY OF ACRONYMS 
AWS — Amazon Web Services  
BLE — Bluetooth Low Energy  
IR — Infrared 
LED — Light Emitting Diode  
RPi — Raspberry Pi 
UI — User Interface 

REFERENCES 
[1] KontinuumLab. “KontrolFreak DIY cardboard MIDI flute. Worlds first 

flute mouthpiece emulator?” YouTube, Jun. 29, 2019 [Video file]. 
Available: https://www.youtube.com/watch?v=HkaP1IJqq98. 
[Accessed: Mar. 4, 2022]. 

[2] “Buy the Sylphyo – electronic musical instrument – Aodyo.” [Online]. 
Available: https://www.aodyo.com/sylphyo-produit-157.html. 
[Accessed: Mar. 4, 2022].  

[3] “Electret Microphone Amplifier - MAX4466 with Adjustable Gain.” 
[Online]. Available: 
https://www.adafruit.com/product/1063?gclid=CjwKCAiAo4OQBhBBE
iwA5KWu_2fry14Pa8Jg-
PhUIAVv299KjdJ6InrgVb7P4s4mAHMuBUoFaqL4AxoCKR0QAvD_
BwE. [Accessed: Mar. 4, 2022] 

[4] “LED Size Chart: Types & Dimensions,” 2022, [Online]. Available: 
https://evandesigns.com/pages/information-about-led-sizes. [Accessed: 
Mar. 4, 2022] 

[5] SM.  ‘ble-bulletin-board-model’, 2019 [Online Image] Arduino. 
Available: 
https://www.arduino.cc/en/Reference/ArduinoBLE?_gl=1*z9dbj6*_ga*
MTQyOTAyOTg5Ni4xNjQ0MDIzODk5*_ga_NEXN8H46L5*MTY0N
jI3MDU0Ni4zMC4xLjE2NDYyNzA1NDguMA [Accessed: Mar 4, 
2022] 
 

 

 
  



18-500 Design Project Report: March 4, 2022 
 

10 

Appendix A: Gantt Chart 

 

 



18-500 Design Project Report: March 4, 2022 
 

11 

Appendix B: Bill of Materials 

Description Model # Manufacturer Quantity Cost @ Total 
Raspberry Pi 4 SC15184  Labist 1 $159  Borrowed 

16GB Micro SD SDSQUNC-016G-GN6MA SanDisk 1 $7.89  $7.89  
Arduino Nano 33 BLE ABX00034 Arduino 1 $22.50  $22.50  
3ft PVC Pipe (1 in diameter) 

 
Ventral 1 $12.59  $12.59  

16mm Momentary Pushbutton (set of 
10) 

B07SVTQ7B9 Twidec 1 $7.99  $7.99  

Silicon PIN Photodiode (set of 5) BPW34 Comimark 1 $6.49  $6.49  
     

$57.46  
 


