Team D3 - WoodWindMania

Angel Peprah, Vivian Beaudoin, Judenique Auguste

Add your 12 slides after this slide... [remember, 12 min talk + 3 min Q/A]

For more information about formatting or importing slides see: https://gsuite.google.com/learning-center/products/slides/get-started/

Make sure to cover

(refer to the Proposal Presentation Guidance):

- Use Case
- Use-Case Requirements, especially Quantitative
- Technical Challenges
- Solution Approach
- Testing, Verification and Metrics
- Tasks and Division of Labor
- Schedule

Consider that this slide already works as a introduction slide so use your first slide wisely

Use Case

- **Problem**: Learning woodwind instruments has a high cost associated with it and may not be practical to do in most environments
 - Lessons plus Instrument, which can cost around \$1000
 - Not beginner friendly
- **Solution**: A digital woodwind learning tool that allows users to learn fingerings on a realistic woodwind controller, in this case a flute
- Areas: Hardware Design & Software Systems

musical learning starts here

Requirements

• User Experience

- Comparison to real instrument
 - Weight (1.3lbs)
 - 1" PVC pipe: .7lbs
 - Arduino Nano: .01lbs
 - 9V battery: 0.1lbs
 - Length (26") x 1"
 - Arduino Nano: .7"
 - 9V battery: 1" width
 - User satisfaction: 4/5
- Beginner friendly
 - Intuitive web application
- Portability
 - Wireless

Requirements

• Accuracy

- Note feedback (>= 90%)
 - Absolute Pitch (from human ear)
- Orientation feedback (>= 90%)
 - Could notice a += 10° change in angle
- Octave feedback (>= 75%)
 - ~2000Hz range in flute, with octaves ~500Hz apart

Requirements

• Speed

- Time between user input and feedback (<= 1s)
- Turnaround time between notes (<= 1s)

Challenges

• Speed

- Bluetooth latency (Sensors -> Arduino -> RPi)
- Wireless communication latency (Wifi)

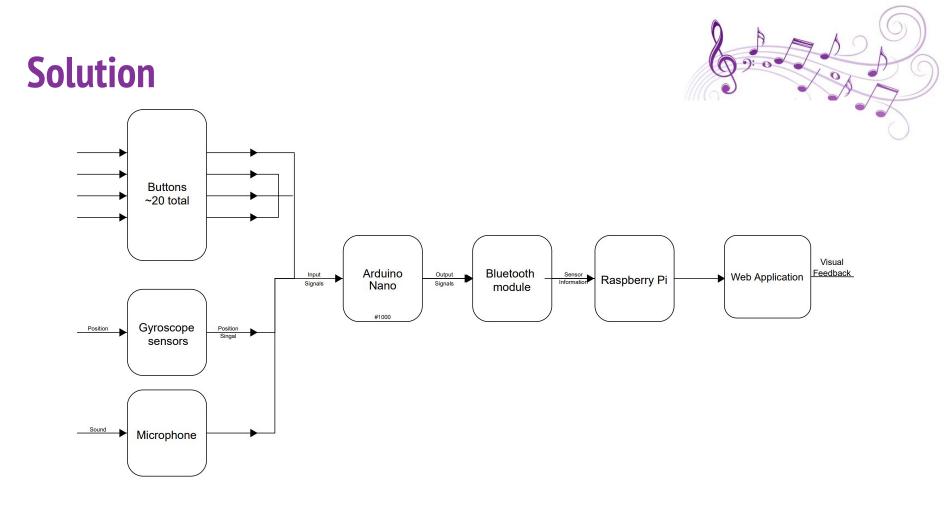
• Accuracy

- Sensors
 - Buttons on device
 - Microphone for detecting user breath
 - Gyroscope for controller position
- Wireless Communication (Dropped Packets)
 - Bluetooth communication
 - Wifi communication

Challenges

• User Experience

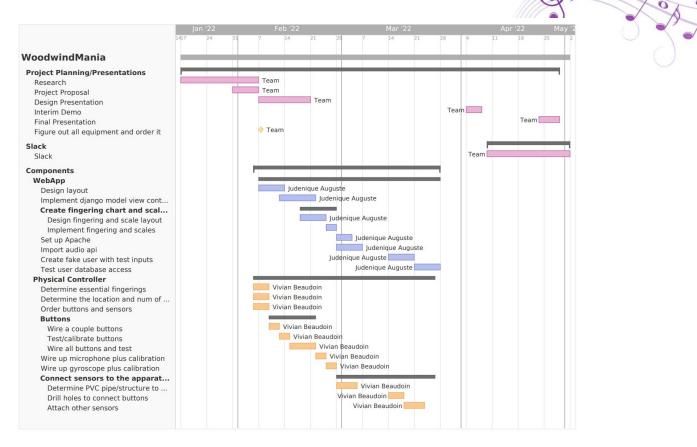
- Weight
- Dimensions
- Battery Life
 - Wireless communication + arduino + ~20 buttons + microphone + gyroscope
 - Battery should last 3 hours of practice


Challenge Mitigations

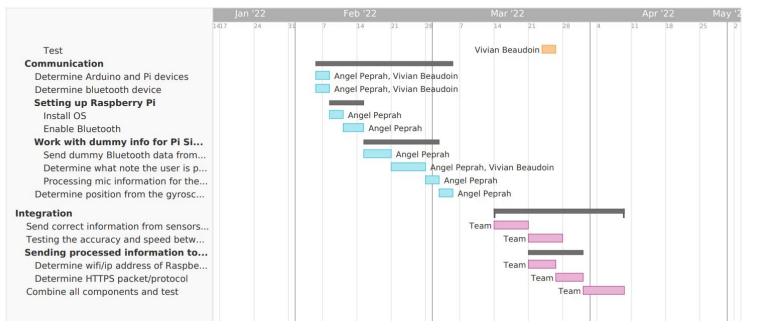
• Speed

- Use wired communication
- Play note off of Pi instead of web app
- Accuracy
 - Test variety of sensors to determine most accurate
- User Experience
 - Use wired communication and remove components from inside device
- Battery Life
 - Use wired communication

Testing, Verification, and Metrics


Requirement	Testing Strategy	Metric
Working Sensors	Test feedback of accurate and inaccurate note fingerings	>= 90% accuracy
Tilt Detection	Test feedback in a variety of different positions	>= 90% accuracy
Breath Detection	Compare note played on real flute to sensor reading	>= 75% accuracy
Visual Feedback	Record latency between user input and feedback	Feedback in <= 1s
Comparison to real instrument	Record measurements, user survey	1.2-1.3 lbs, ±0.5", 80% user satisfaction

Tasks/Division of labor


Vivian	Angel	Judenique
 Physical Component Research best sensors Test and calibrate sensors with Arduino Assemble apparatus 	 Communication Research best Arduino, bluetooth, and RPi models Send sensor packet from Arduino to RPi Send processed info to web app 	 User Interface Design web application layout and modes Create scales and fingerings for instruments Giving feedback based on user input

Schedule

Schedule

