Team D3 - WoodWindMania

Angel Peprah, Vivian Beaudoin, Judenique Auguste

Add your 12 slides after this slide... [remember, 12 min talk + 3 min Q/A]

For more information about formatting or importing slides see:

https://gsuite.google.com/learning-center/products/slides/get-started/

Make sure to cover (refer to the Design Review Guidance):

- Use Case / Application
- Use-Case Requirements, especially quantitative
- Solution Approach (include Design Requirements here)
- System Specification / Block Diagram
- Implementation Plan (include Design Trade Study(ies) here; i.e why choose that implementation)
- Test, Verification and Validation Plans (including quantitative metrics with target values)
- Project Management

Consider that this slide already works as a introduction slide so use your first slide wisely

Use Case

- Problem: Learning woodwind instruments has a high cost associated with it and may not be practical to do in most environments
 - Lessons plus Instrument, which can cost around \$1000
 - Not beginner friendly
- Solution: A digital woodwind learning tool that allows users to learn fingerings on a realistic woodwind controller, in this case a flute
- **Areas**: Hardware Design & Software Systems

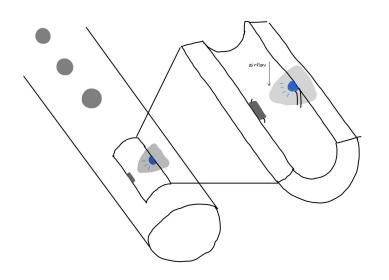
Requirements

• User Experience

- Comparison to real instrument
 - Physical dimensions: 1.3lbs, 26"x1"
 - User satisfaction: 4/5
- Beginner friendly
- Portability

Accuracy

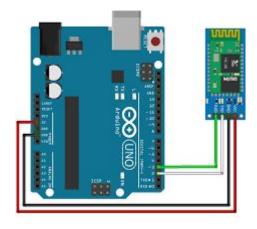
- Note feedback, orientation feedback, breath control feedback >= 90%
- Speed
 - Latency <= 500ms</p>


26"

Solution Approach: Hardware

Physical controller

- Use PVC pipe and 9 tactile buttons to detect notes
- Gyroscope sensor mounted inside
- Breath control
 - Obstacle detection using LED, photodiode, and a piece of latex to obstruct light
 - User must blow downward correctly to break beam
 - Air flow can be determined in photodiode reading by how much light is obstructed
- Arduino nano mounted inside processes sensor input



Solution Approach: Hardware

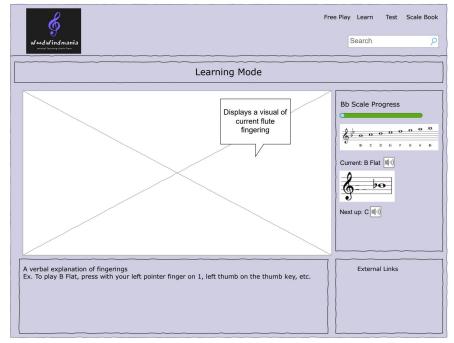
Wireless Connection

- Bluetooth, sends information in four bytes
 - 1 bit per button, 1 byte for gyroscope, 1 byte for breath control
- HC06 Bluetooth Module
- Serial.write()
 - 4 bytes/1200 bytes per second (9600 Baud Rate)

Solution Approach: Hardware

Raspberry Pi

- Receives data from controller (fingerings, breath control, gyroscope)
 - Maps fingerings to note
 - Plays note based on incoming data
 - Sends data to application
- Serial.readline()
- Write to a .txt file that the application reads from



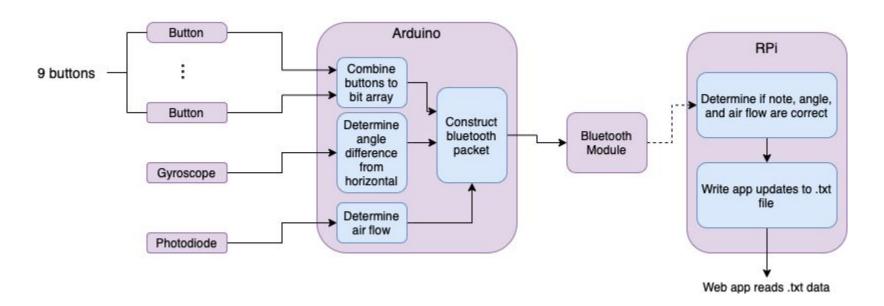
Solution Approach: Software

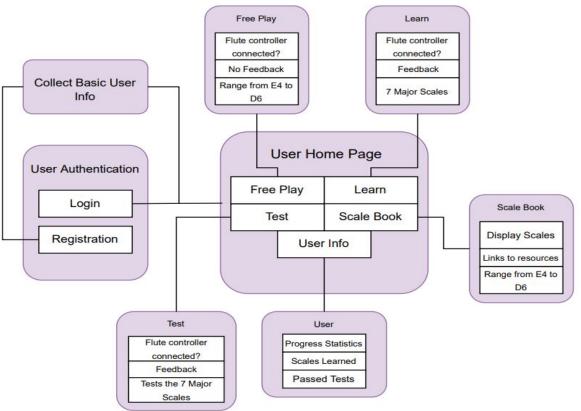
Web Application

- Interprets data from the Raspberry Pi
- Apache web server
- SQLite for user database
- Django framework used to display information
 - 7 major scales, flute fingerings ranging from E4 to D6
 - Feedback to the user such as correct positioning

Implementation Plan

- Data Pipeline
 - Controller -> Bluetooth -> Pi ->Webapp
- Buying hardware and connecting to Arduino
 - Arduino Nano, Bluetooth Module, Raspberry Pi, Buttons, Diodes/LEDs, gyroscope
 - Building flute controller out of PVC
- Writing Code
 - Writing code to process and send data to Raspberry Pi
 - Write code on Pi to process information, play note, and send to application
- Web Application
 - Hosted locally on pi


Total Cost: \$50 + RPi

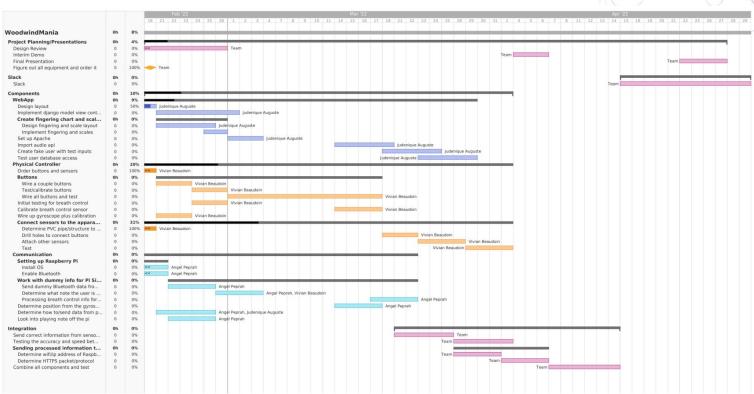


Hardware Block Diagram

Software Block Diagram

Testing and Verification

Requirement	Metric	Testing Strategy
Accurate Feedback	Note, orientation, breath control feedback >= 90% accuracy	Give correct/incorrect notes/orientations and determine feedback Use correct/incorrect breath control, comparing to an actual flute
Speed	<= 500ms	Record time from user input to feedback
User Experience	1.3lbs, 26"x1" 80% user satisfaction	Measure weight, width, length Survey beginners on user experience


Risks/Unknowns/Mitigations

- Issues with hardware (sensors malfunction, broken connection)
 - Mitigation: Testing systematically, changing sensors for best fit
- Unstable communication
 - Mitigation: Send dummy data once hardware is implemented
- High latency
 - Mitigation: Analyze communication speeds and optimize as soon as possible
- Very different feel from real flute (breath control, buttons, weight)
 - Mitigation: Prioritize testing components when adding

Project Management

