
1
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

Hybrid Duophonic
Synthesizer

Tom Scherlis, Sam Zeloof, Graham MacFarquhar

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A full featured, hybrid, duophonic synthesizer. The
synthesizer will make use of digital oscillators and analog filters
and amplifiers. It will feature digitally implemented chorus, pitch
shifting, chords, and arpeggiators. The analog path will include
tunable low pass filters and an amplifier. Notes will be provided
separately with an external midi controller, and the whole
synthesizer will be built into a sturdy mechanical housing with a
strong focus on user experience.

Index Terms—Duophonic, Synthesizer, Wavetable, FPGA,
VFO, VCF, Envelope

I. INTRODUCTION

The classic analog synthesizers of the 1960s and 1970s set
precedents for the modern musical instruments that we refer to
as synthesizers. Even with the development of high speed
digital electronics which are capable of producing similar
sounds and effects, true analog instruments are still sought
after by many musicians. Improvements in DAC linearity and
signal processing have brought digital synthesizers to compete
very closely with analog ones; however many musicians still
prefer analog synthesizers for a collection of objective and
subjective reasons. Their interface is often more natural,
direct, and akin to an acoustic instrument but the complexity
of implementing a fully-featured synthesizer with analog
building blocks means that their material and parts cost is
high. For this reason original, reproduction, and modern
analog synthesizers are sold for tens of thousands of dollars.
Digital synthesizers can be minimally realized with a
microcontroller, DAC, and touchscreen interface which is
comparatively very cheap although may give an inferior user
experience. Some artists believe that the “warm tone”
produced by having an analog signal path (due to distortions)
cannot be reproduced in a digital synthesizer. Regardless of
the merit of these subjective arguments, we aim to fill this
large divide of performance, interface intuitiveness, and cost
with a hybrid synthesizer. Effects and oscillators will be
implemented with digital electronics (FPGA and Linux SoC)
and we will still have a physical front panel interface and
analog signal path to provide the “analog feel.”

II. USE-CASE REQUIREMENTS

As this project is building a musical instrument, the use
case-requirements are naturally split between qualitative and
quantitative requirements. Our main goal is to create an
inexpensive hybrid synthesizer with a large feature set. After
doing market research, we have the following minimum set of
features that we believe are essential to our synthesizer:

● 2 software controlled oscillators
● Paraphonic voicing
● Modulatable analog filters (resonance & cutoff)
● Modulatable analog amplification
● Effects

○ Pitch shifting
○ Chords
○ Arpeggiators

● Intuitive front panel with hardware knobs

We also wish to implement additional features, as time
permits, once we establish the core functionality.

The synthesizer must support multiple voicing modes, i.e.
when multiple notes are played simultaneously each tone
should be produced and the articulation/envelope behavior
should be selectable. This will add additional complexity in
software but will allow for better sounding chords and will
give the user more control over specific sound. We require that
the synthesizer support paraphonic voicing as well as
monophonic and stereo modes. Stereo voicing will require two
duplicate analog paths but will open a larger space for effects
such as chorus that we will implement given enough time.

We require that the synthesizer have two independent
software-controlled oscillators that have selectable wave
shapes such as sine, sawtooth, triangle, square, pulse, and
noise.

We require that the synthesizer have low noise and low
distortion analog signal paths consisting of
software-modulatable filters. A “mod matrix” can be used to
assign LFOs or envelopes to filter parameters such as low-pass
cutoff frequency and resonance amount. Each analog path
should have a VCF and VCA. Because the focus of this
project is to create a synthesizer capable of making lead
electronic sounds rather than brass or drum tracks, high-pass
filters are considered to be not necessary and we only require
that the synthesizer have tunable low-pass filters as this should
provide the user with enough satisfaction.

The synthesizer should also be intuitive to use and offer a
degree of portability (smaller than a microwave oven). To
create the best possible user experience, consideration should
be given to the layout and function of potentiometers/encoders
on the front panel.

2
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

Figure 4. System Block Diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The principle of operation of a typical hybrid synthesizer is
fairly straightforward. The instrument consists of a digital
processor and analog filter path with a DAC between them.
When the user presses a key on the MIDI input device, the
software oscillators are set to the correct frequency and any
effects, if selected, are applied. The user may have loaded a
“patch” which consists of settings and parameters which
describe a specific sound that was previously recorded. The
patch may be loaded and modified using the knobs on the
front panel. One important feature is the envelopes. These
have four parameters: attack, sustain, decay, and release. They
may be programmed to modulate some parameter in the
analog path such as filter cutoff or amount immediately after
the key is pressed on the MIDI controller. The effect is
programmable note articulation control.

From the top level, our architecture is simple and consists of
a front panel, MIDI input jack, Zynq 7020 FPGA, and analog
filter path. The front panel will have potentiometers, encoders,
buttons, and a screen to set and display the various sound
parameters and effects. The MIDI input will accept any MIDI
controller and make the synthesizer extremely flexible. The
Zynq FPGA is chosen because it has an integrated dual-core
ARM processor. A stretch goal is to include an HDMI pipeline
in the FPGA to control a screen on the front panel that can
display waveshapes, patch information, and knob positions.

The Zynq FPGA will give us extreme flexibility in
implementation because we can choose to put various parts of
the software stack in either the FPGA (written in Verilog
HDL) or the ARM processor (high level embedded C++)
depending on what is easiest or makes the most sense. This
will give us the opportunity to implement some effects that
would be extremely time consuming with only an FPGA. We
hope to maintain the productivity of working in a high
language with the real-time parallel capability of an FPGA and
having the two integrated on the same chip with shared
memory will be helpful. HDMI, oscillators, and modulator
control will be in the FPGA while voice allocation, envelopes,
MIDI interface, and miscellaneous effects will be
implemented in the ARM CPU. The FPGA and CPU will have
internal communication by writing to and reading from shared
memory and both devices will communicate with other chips
via various serial protocols.

The FPGA will drive the analog path via serial. There will
be a stereo audio DAC (I2S) and a 8-channel control signal
DAC (I2C) to modulate the filters. A paraphonic synthesizer
only requires one analog path but we will include a second
with switchable summing to support stereo and more
complicated voicing modes. Each analog path will be driven
from one channel of the stereo audio DAC and consist of a
controllable filter (VCF) and controllable amplifier (VCO).
Like in a traditional hybrid synthesizer, these filters and
amplifiers will be modulated by envelopes or LFOs selectable
on the front panel or in software. We also desire the ability to

3
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

output to two separate right and left line-level outputs (stereo
paraphonic) or sum the two analog paths for more complicated
voicing modes (duophonic).

A minimal set of cables will be required to use the
synthesizer. Power will be provided by a 12V DC adapter,
MIDI input will be over a standard 5-pin DIN connector, and
audio out will be either via two ¼” right/left jacks or a single
⅛” stereo headphone jack.

IV. DESIGN REQUIREMENTS

Our design has several qualitative requirements that are
essential for a simple synthesizer. These include oscillators,
low-pass filters, and amplifiers which will be modulatable
through the use of LFOs and ADSR envelope controls. The
entire project should fit neatly into an enclosure with a well
designed front panel. These are the minimum requirements for
a marketable synthesizer today. In addition to these very basic
requirements, our synthesizer will implement wavetable
synthesis, duophonic voicing, and multiple effects such as
pitch shifting, chords and arpeggiators.

Table 1 shows several quantitative requirements that should
be achieved to ensure a straightforward and pleasant user
experience. We require that the system is correctly tuned to
our input frequency. The precision of human pitch perception
varies from person to person. However, musicians are
typically capable of recognizing an out-of-tune note after a
deviation of ±10¢. Therefore, we have settled on an acceptable
±5¢. Also, we expect our off-the-shelf filter and amplifier IC’s
to maintain an even frequency response so that we retain all
desired frequencies. We chose a four-pole low-pass filter chip
to ensure greater attenuation than our discrete design would
achieve. Additionally, minimizing our harmonic distortion is
essential for achieving a pleasant sounding output. The input
to output delay should be imperceptible for users. Naturally,
the human mind can compensate for upto 12ms of latency.
Finally, we would like to have a competitive price point and
the entire project should be relatively portable.

Metric Quantitative Goal

Pitch Correctness ±5¢

Filter Cutoff <5% off ideal

THD <1%

Latency <12ms

Competitive Pricing <$500

User Enjoyment >70% +ve feedback

Portability >= toaster, < microwave

Table 1. Design Requirements

V. DESIGN TRADE STUDIES

A. Analog Filters Design
Through exploring alternative designs for the analog filter

architecture we came to the conclusion that implementing
analog filters and amplifiers using discrete components and
switched capacitor architecture would be too difficult within
the time-span required for our project.

As a more efficient alternative, the synthesizer will now
implement low-pass filters and amplifiers using VCF and
VCA ICs. These ICs are a cheap solution to simplify the
design of our analog path and allow us to focus more efforts
on FPGA programming and components of sound synthesis.

B. Voicing Complexity
After much thought and a very productive conversation with

our faculty mentor, Tom Sullivan, we made the decision to
decrease the voicing complexity of our system.

Previously, we desired a 6 voice polyphonic synthesizer,
hence the name ‘PROGNOSTICATOR-6’ however, we soon
came to understand that we would need six separate analog
paths with 4 control signals for each set of filters. This
introduced worries with filter consistency, I/O and general
complexity requiring a larger enclosure and more components.

We explored alternatives such as a paraphonic synthesizer,
with only one VCF and VCA for all 6 voices. This design was
much more feasible, however it fell considerably short of our
goals. We have now settled on a duophonic synthesizer with 3
voices per analog path. Each set of voices has modulatable
ADSR envelopes, low-pass filter cutoff and amplifier. This

4
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

design has reduced complexity to an acceptable level that we
believe we can handle within our build phase.

C. PYNQ Z2 FPGA
Our choice in FPGA is a PYNQ Z2 FPGA development

board. The PYNQ Z2 integrates the Xilinx Zynq 7020 SoC.
We will exploit the benefits of programmable logic and
microprocessors in Zynq to build a more capable and exciting
synthesizer. Essentially, having the SoC provides us with the
capability to implement effects programmed in python. There
are also several notable I/O elements on the board that will
allow us to more easily integrate different components of the
project. General purpose GPIO pins on the board make MIDI
UART input more simple. An audio output will allow us to
test the difference between our sound before and after
filtering. Additionally, the HDMI output could allow us to add
a screen in the future to visualize waveforms.

There are so many advantages to our choice in FPGA,
especially the fact that it is owned by one of our teammates so
we will not need to disassemble the project after completion.
The very notable downside is that none of us have experience
programming such an FPGA using the necessary toolchains.
There are many resources online to guide us through these
tasks, and we have endeavored to learn from them in the past
two weeks.

Figure 2. Zynq Architecture

VI. SYSTEM IMPLEMENTATION

A. Analog Filters
As described earlier, each of two analog paths will contain a

DAC, VCF, and VCA (Figure 2). The DAC (UDA1334A) will
be driven by the FPGA via I2S, a streaming serial protocol
designed for audio applications. The FPGA will also drive an
8-channel DAC (DAC7578SPQR) via I2C to generate control
voltage for the voltage controlled filter and amplifiers.

Figure 3: Analog Path Block Diagram

Since the synthesizer is to support duophonic and stereo
voicing modes, the two filter paths will be followed by a
switchable summing amplifier (controlled by the FPGA/SoC)
that will either sum the two VCA outputs or send each to a
separate audio line-out.

Figure 3 shows the completed schematic with a stereo audio
DAC, two independent VCFs, a single 4-channel VCA (we are
only using 2) and the 8-channel control signal DAC. The large
text shown in blue delineates the functional blocks within the
schematic.

Figure 4. Analog Filter Schematic

The VCF and VCA integrated circuits are the SSI2144 and
SSI2164, respectively. They are monolithic filter and amplifier
ICs and are manufactured by Sound Semiconductor as
reproduction of vintage 70s synthesizer analog paths. We
originally planned on building the filters from discrete
components and evaluated this idea in simulation but
ultimately decided to opt for off-the-shelf filter and amplifier
ICs so that we can focus on parts of the project that will
require more attention.

5
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

Figure 5. SSI2144 Functional Block Diagram

The SSI2144 VCF uses voltage-controlled transconductance
cells to implement a four-pole low pass filter. The chip has a
differential audio input, although we are only using the
noninverting input and leave the other at ground. It also has a
voltage controlled cutoff frequency pin and a current
controlled resonance pin. Both are driven from the control
signal DAC and a series resistor is used to convert the
voltage-proportional signal to a current-proportional signal for
the resonance control.

Figure 6. SSI2164 Functional Block Diagram

The SSI2164 VCA chip has four programmable gain
amplifiers. For our stereo synthesizer, we only require two
channels so the remaining two have grounded inputs to reduce
power consumption. The audio input is scaled using a resistor

divider to the appropriate range to avoid clipping and
distortions. The output of the IC is a current rather than
voltage, so the VCA is followed by two operational amplifiers
configured as transimpedance amplifiers to convert it to a
voltage output. That is scaled with another operational
amplifier to line-level before going to the audio output jack.

B. Front Panel
We plan to put considerable thought into the front panel

layout to make the synthesizer fun and intuitive to use.
Options for typical front panel interfaces include buttons,
potentiometers, switches, and encoders. There are many
parameters which we wish to control from the front panel,
such as attack/sustain/decay/release envelopes, oscillator
shape, oscillator octave, voicing modes, LFOs, mod matrix,
and save/load patch. We plan to implement all of these
features with a carefully assigned set of 26 quadrature rotary
encoders, 3 buttons, and 1 potentiometer. The potentiometer
will be used for master volume control. The 3 buttons will be
for patch control (loading, saving) and navigating menus on
the screen, if implemented.

The main challenge with front panel design is how to
interface with a large number of rotary encoders. First, we
chose to use rotary encoders over potentiometers for the
majority of knobs because it would be easier than having 26
analog channels and ADCs. After some research, we found an
off-the-shelf board that uses a microcontroller to “convert” the
encoder pulses to a I2C interface (fig 6). This will allow us to
chain all 26 encoders together on the same 2-wire serial I2C
interface and easily read values from all of them on the FPGA
and SoC.

Figure 7. I2CEncoder V2.1 - DUPPA on tindie.com

C. MIDI Controller Interface
In addition to encoders and switches on the front panel, we

will utilize a MIDI controller in the form of an off-the-shelf
keyboard for user input of notes. This controller will interface
with the FPGA and notes must be interpreted in the linux SoC.

6
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

Our keyboard has 5-pin DIN output and USB output. We
will only be using the 5-pin DIN output in order to avoid
designing or sourcing a USB controller. The DIN connector is
included for MIDI controllers in the official MIDI technical
specifications. The DIN connector utilizes one pin for serial
output that we will stream directly to the UART input port on
the FPGA. The inputs will be sent as bytes to a MIDI decoder
written on the SoC.

D. Software
Synthesizer software will be implemented with C++ and Qt.

The software will run on the ARM core on the Processing
System. (PS) The software will implement all synthesizer
behavior aside from the oscillators. This includes midi
parsing, voice allocation, ADSR envelopes, modulation via
mod matrix, and the user interface.

The software is implemented on top of PetaLinux, Xilinx’s
linux image for the Zynq PS. PetaLinux includes framebuffer
drivers for video out and drivers for I2C to communicate with
the encoder knobs and filter control DAC. We will need to
implement kernel drivers for the oscillators which are
implemented on FPGA fabric on the Programmable Logic
(PL).

Qt was chosen as the C++ software framework, since it
provides a convenient threading/callback model
(Signals/Slots) as well as a well documented and understood
GUI framework for visualizers.

E. Voicing
The synthesizer supports true duophony, but there are many

ways to voice notes using that. We have decided to implement
Mono, Single, Paraphonic, and Duophonic modes. These
modes vary based on gatiing, oscillator allocation, and stereo
support. Gating refers to how the ADSR filter envelopes are
reset.

Single voicing is monophonic and triggers the gate on every
key press. Notes can be voiced with one analog voice, two in
chorus, or two in stereo.

Mono voicing is monophonic and triggers the gate when no
keys are pressed. Notes can be voiced with one analog voice,
two in chorus, or two in stereo. Pressing notes in close
sequence without lifting the first will not reset the filter
envelopes and allows notes to blend using portmanteau and
glides.

Paraphonic voicing is similar to monophonic, but allows for
multiple tones to be played simultaneously by making use of
multiple oscillators. The gate is triggered when all keys are
lifted. Chords and polyphonic melodies can be played, but
only one filter envelope can be used. Notes can be voiced with
one analog voice, two in chorus, or two in stereo.

Duophonic voicing allows the two analog voices to be used
independently, allowing true polyphony (both notes get their
own filter envelope.) Gating happens on every key press, and

if more than two notes are held, the oldest note will not be
voiced. This mode will not support stereo since both hardware
voices are being used independently.

F. Oscillators
Oscillators will be implemented on the FPGA fabric on the

PL. We plan on programming them using Vivado. We will
either implement oscillators using wavetable synthesis or
pre-defined saw/sin/tri/square wave shapes depending on time
and complexity.

Wavetable oscillators present a significant number of
challenges for implementation. Wavetables need to be stored
in memory, and multiple wavetables need to be
generated/blended depending on pitch to prevent aliasing. If
this proves too complex to implement, we will implement
sine, sawtooth, triangle, and square waves analytically instead.
This still gives us significant timbre flexibility, but removes
the ability to interpolate between wave shapes or modulate
wave shape on the fly.

We will interface with oscillators using the Xilinx AXI
Memory-Mapped interface. This allows the linux software on
the PS to control the oscillators using register read/writes.
Oscillator outputs will be streamed directly off of the FPGA
via I2S to the stereo audio DAC.

VII. TEST, VERIFICATION AND VALIDATION

A. Total Harmonic Distortion
Total Harmonic Distortion (THD) is an important metric for

describing sound quality. Harmonic distortions are variations
in current and voltage due to frequencies within circuitry.
THD is an important metric for sound quality. We are aiming
for <1% THD with our synthesizer. This is the ideal goal, but
we may run into trouble considering how tightly packed and
noisy our system may be. We will measure THD using an FFT
on an oscilloscope to see what harmonics arise in the
frequency domain. Hopefully we can mitigate some of these
frequencies by rearranging and separating components of the
synthesizer.

B. Analog Filter Attenuation
The analog filters are four-pole low pass filters built into ICs

by Sound Semiconductor for the very purpose of replicating
analog synthesizer components. We should hopefully have
very little trouble verifying the behavior of these filters.
Nevertheless, we will construct BODE plots using the
oscilloscope to verify their cutoff frequency and attenuation.

C. Pitch Correctness
To Verify our correctness of pitch within ±5¢ we will use a

regular instrument tuner. The cent is a logarithmic unit of
measure for music intervals. Cents are measured as the
interval between a desired note frequency and a generated note
frequency. The octave is divided into 12 semitones of 100

7
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

cents each.

¢ = 1200 • 𝑙𝑜𝑔
2

𝑓
1

𝑓
2

()
An app or a physical tuner will do just fine when testing this
metric.

D. Latency
Our final metric, latency, can also be measured on the

oscilloscope. Using two inputs we can detect an original input
through the midi controller or encoder and then observe the
time taken for a response to be generated from our audio
output. This will suffice for ensuring our latency does not
exceed 12ms.

VIII. PROJECT MANAGEMENT

A. Schedule
Our Gantt Chart in Table 2. has been updated recently. After

the initial construction, we added time to design the system
before beginning our build phase. Our software became more
complex and our hardware has become less complex so we
shifted responsibilities to focus on the FPGA.
These past two weeks have been highly focused on nailing

down an allocation for encoders and focusing on altering the
design to fit our capabilities.

B. Team Member Responsibilities
Shown in Table 2, team member responsibilities are

separated between the three teammates based on experience.
Lately, Tom has been focused on the FPGA toolchain, Sam is
assigned to work on the Analog filter architecture and Graham
has created a MIDI interpreter and is designing the Front
panel.

In the near future, we will all be working together on the
FPGA and doing our best to integrate the analog filters and
implement oscillators and software effects on the synth,

Tom Scherlis Sam Zeloof Graham
MacFarquhar

Software: Voice
allocation

Analog Filter Design FPGA: I2S Drivers

Software: Interface PCB Design FPGA: Oscillators

Software: Envelopes FPGA: Filter Drivers Software: MIDI

FPGA: Video FPGA: I2S Drivers Software: LFOs

FPGA: Oscillators FPGA: Oscillators Enclosure design

Toolchain Toolchain Front panel design

Table 2. Team Member Responsibilities

Tessttt

Table 3. Gantt Chart

8
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

C. Bill of Materials and Budget
We have been able to keep a relatively low budget despite

the massive chip shortage resulting from supply chain logistics
and perhaps other issues in China. Our low costs are due to
our previous ownership of the PYNQ Z2 board and the high
quality MIDI keyboard both provided by Tom.

The components we have purchased or are required to
purchase include: digital encoders, knobs, a MIDI port, a
custom PCB, I2C, I2S, DACs and VCA and VCF ICs. The
total cost of these components is currently an estimated $400.
We plan to purchase an HDMI display as well as part of our
display stretch goal, which is an additional $100-150.

D. Risk Mitigation Plans
We are facing the risk of overdeveloping our user

experience and PCB integration and failing to implement the
synthesizer wavetables. We may have to settle for wired
connections and a simple front panel if we fall behind on the
elements of sound synthesis that really make or break our
synthesizer.

Furthermore, our decision to use the PYNQ Z2 may be
hazardous to some of our effects if we cannot build a
Petalinux image on the Zynq. Instead, we may need to rely on
the actual Python productivity for Zynq and sacrifice some I/O
which will cost us a few encoders, and further simplify the
complexity of our system.

IX. RELATED WORK

In our research on the topic of synthesizers, we have
discovered that FPGAs are often the way to go for developing
DIY synths. We have found many projects with similar
architecture: MIDI input, wavetables, etc. However, there
seems to be much less information on DIY analog synthesizer
architecture. This is certainly due to the availability of analog
components and the increased complexity of implementation.

Specifically, some useful resources we found include an
FPGA Lab from Berkeley EECS “Introduction to FPGA
Development + Creating a Tone Generator”. This lab requires
students to create a tone generator using a PYNQ Z1. This is a
very useful resource for understanding how Vivado may be
used in simulation to analyze our implementation.

We also realized early on that several of our predecessors
from 18-500 in 2019 built their own Wavetable synthesizer on
an Altera FPGA and included analog filters too. This was
remarkably similar to our project, however we have elected to
add more complexity to user interface and effects. Their
project documentation has been a useful reference as we have
learned to prepare for issues with noise in our analog filter
architecture.

X. SUMMARY

Our proposed system will meet all of our design
requirements. Any musician familiar with synthesizers will be
able to understand our interface and manipulate our
synthesizer to create rich and interesting sounds. Our main
challenges in reaching our design goals and use-case
requirements are complexity in the core voicing system and
toolchain challenges. We need to implement FPGA oscillators,
setup and use PetaLinux, interface between the PS and PL of
the Zynq, and design a functional analog filter circuit to even
produce a tone. This is a very complex system with a lot of
inherent risk that cannot be descoped.

However, we believe we have studied and de-risked the
trickiest parts of this system and are confident that we can
implement a synthesizer that can produce rich complex
sounds. We hope to implement voicing modes, modulators,
and filters that sound good and work like a real consumer
synthesizer. As musicians ourselves, we are highly motivated
to produce an instrument that we actually want to use.

GLOSSARY OF ACRONYMS

ADSR - Attack Decay Sustain Release
DAC - Digital to Analog Converter
FPGA - Field Programmable Gate Array
GUI - Graphical User Interface
IC - Integrated Chip
LFO - Low Frequency Oscillator
MIDI - Musical Instrument Digital Interface
PL - Programmable Logic
PS - Processor System
SoC - System on Chip
THD - Total Harmonic Distortion
VCO - Voltage controlled oscillator
VCA - Voltage controlled amplifier
VCF - Voltage controlled filter

REFERENCES

[1] MIDI Specifications https://midi.org/specifications
[2] FPGA Lab Spec

https://inst.eecs.berkeley.edu/~eecs151/sp18/files/fpga_lab2_spec.pdf
[3] Team A0 ECE Capstone, Spring 2019

http://course.ece.cmu.edu/~ece500/projects/s19-teama0/2019/05/09/final
-project-report/

https://inst.eecs.berkeley.edu/~eecs151/sp18/files/fpga_lab2_spec.pdf

9
18-500 Design Project Report: PROGNOSTICATOR-6 3/4/22

Gantt Chart Section VIII.A

