
1
18-500 Final Project Report: Team D1, 05/07/2022

Is Mayonnaise an Instrument?

Harry Fernandez, Tomas Vancura, and Min Gun Kim

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A MIDI Controller that generates MIDI messages
based on a user’s manipulation of household objects in their
environment. Our project aims to make sound synthesis and
electronic music production more accessible and easier to
interface with than standard types of controllers and software
interfaces. We accomplish this through an AR headset and a
sensing glove which utilize computer vision and signal processing
techniques to map the movement of various objects to different
MIDI signals.

Index Terms—Accelerometer, Algorithm, Augmented Reality,
Camera, Computer Vision, Contact Detection, Deep Neural
Network, Design, Display, Force Sensor, Gyroscope,
High-Definition Multimedia Interface, Interactive,
Inter-Integrated Circuit,, Musical Instrument Digital Interface
Controller, Motion Tracking, Music Production, Nvidia Jetson
AGX, Object Detection, Object Tracking, OpenCV, Real-Time
Processing, Sensor, Single Shot Detector, Sound Synthesis,
Universal Serial Bus

I. INTRODUCTION

Learning sound synthesis and music production can be very
intimidating to aspiring musicians who are unfamiliar with
unintuitive musical interfaces and the concepts behind them.
Studies show that individuals who did not grow up playing a
musical instrument struggle much more to learn musical
concepts in adulthood and to experiment with music [1].
There are various concepts to learn and understand, and the
most common ways of applying these concepts (Synthesizers,
Digital Audio Workstations, etc.) can be intimidating. Even
expert sound designers struggle when trying to experiment in
the studio, as changing parameters requires tediously setting
many different knobs and faders within software or hardware
interfaces. Oftentimes, unless one really knows what he or she
is doing, there is little room for play and creativity in digital
music production.

Our vision is to create a new type of MIDI controller that is
both intuitive and advanced enough to let anyone experiment
with music production. With our project, we hope to broaden
the definition of “musical instrument” to include regular,
household objects. Our controller, a system that incorporates
augmented reality, computer vision, and physical sensors, will
allow the user to generate and send MIDI signals to their
computer by interacting with their environment in real time.
Picking up a cup might generate one sound, while a jar of
mayonnaise would produce another. Moving these objects

around in space would then change the sound you’re
generating by augmenting the values of the MIDI signals.

Other XR technologies exist to help with music production,
but none of them allow for a tactile experience within the
user’s own environment. Our approach allows users to use
objects that they are already familiar with to explore sound
synthesis rather than dropping them into a virtual
environment.

Initially we conceived our project as a standalone MIDI
Instrument that would be used to both synthesize sounds as
well as play them with MIDI notes. However, over the course
of development we realized that most people who would
benefit from our product probably already own some kind of
MIDI device (such as a keyboard), and that our system would
in practice function better as a complementary device for
controlling effect parameters. Since the glove only requires
one hand, the other hand is free to play notes on the keyboard.
This means that the glove is solely used to augment the user’s
sounds rather than as the sole driver of MIDI output. This did
not introduce any new requirements, but did loosen some of
our initial constraints, such as the need for high note
granularity. More information on this decision can be found in
Section IV.

II. USE-CASE REQUIREMENTS

The use case that our system targets is manipulating
household objects to create sounds. There are a few
requirements that must be met to allow for this.

A. Detection & Classification
The system should be able to detect and classify multiple

types of household objects (and therefore controllable
parameters) to allow for creative freedom. Having at
minimum three detectable objects allows for a reasonable
variety of sounds that can be modified in a single session.
Additionally, the system only needs to be able to detect
objects within less than a one meter radius, as the camera is
mounted to the user’s head and they are thus limited by the
length of their arms. The object detection should be able to
successfully and stably classify objects with a success rate of
90% to ensure that the user’s interactions produce consistent
sound output.

2
18-500 Final Project Report: Team D1, 05/07/2022

B. Latency
When latency is introduced in electronic musical

instruments it can cause resistance for performers making
music. Delayed audio feedback is a significant problem in
networked music applications, and as such, this system must
minimize end-to-end latency. While research shows that some
performers can compensate for up to 100 ms of latency, the
average performer can only compensate for around 30 ms of
latency [2]. Therefore our system should hit this 30 ms target
in order to be accessible to a wide range of users.
Additionally, contact detection must be very responsive, so
the sensing glove must be able to correctly identify contact
with an object 99%.

C. Motion Tracking
The sensing glove is responsible for detecting rotational

motions of held objects, which will control certain MIDI
signals. Ultimately the user will want to feel that their actions
have a consistent effect on the sound they produce, so a stable
acquisition of positional values is required. It is significant
that data is consistent and accurate for the three rotational
degrees of freedom: pitch, roll, and yaw. Therefore, our
system must be able to track the glove’s rotational motion
with a standard deviation of 15 degrees based on the
population mean of 90 degrees. We believe this metric ensures
rotational data to be within the acceptable range of reflecting
the user's hand movement.

D. MIDI Mapping
The system’s MIDI processor must be able to retrieve signal

data from the CV detection output and sensors. It must then
quickly translate these signals into MIDI control messages
and transmit these messages natively over USB. All of this
must be performed fast enough such as to meet the latency
requirements described above. That is, the system must
behave as any ordinary MIDI controller from the perspective
of the user and any of their software.

E. Ease-of-Use
The user must be able to seamlessly use our device with as

simple of a learning curve as possible. The device will
connect to a display which will stream the camera output
along with a GUI. This must be rendered fast enough so that
the user does not experience a noticeable delay or become
nauseous. The target frame rate is therefore 30 frames per
second (fps).

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system architecture consists of three distinct
subsystems. Each subsystem accomplishes a different task in
the overall process of translating visual and physical sensor
data to MIDI signals. The three components are:

1. Computer Vision (CV)

2. Motion Sensing
3. MIDI Processing

The computer vision component (1) focuses on object
detection and potential contact detection. That is, this process
identifies which objects are in the webcam’s field of view, and
which object, if any, is currently, possibly being touched by
the user. The CV component consists of a headset with a
mounted webcam (for video input) as shown in Fig. 1. The
headset is powered by and communicates with the NVIDIA
Jetson Xavier AGX development board (the Jetson). On the
Jetson, we perform real-time image processing using a deep
neural network to answer the above questions regarding object
detection. We use fiducial markers attached to the glove for
potential contact detection. This inference information is then
sent upon serial request to the MIDI processing component to
help determine which type of MIDI signal should be output.
We also perform video drawover and display the output to an
external display to provide real-time feedback about what the
system is doing. Initially we had hoped that this display would
be mounted to the helmet itself, but quickly identified that the
benefits of this would not be worth the time we would need to
invest into getting it working by the project deadline.

Fig. 1. The final assembled helmet

The motion sensing component (2) focuses on concrete
contact detection and motion sensing. That is, this process
identifies whether the user is touching an object as opposed to
open air, and how the user rotates that object in space along
the three rotational dimensions. The motion sensing
component consists of a glove with a force sensor attached to
the index-fingertip and an accelerometer and gyrometer
mounted on the back of the glove. These sensors are
connected to an Arduino Micro (the Micro), which processes
the raw sensor data into a packet containing a
contact-detection flag and the values of the glove’s estimated
rotational position. This conversion is done with algorithms
based on physics and signal processing that we have
implemented. The output packet is sent to the MIDI

3
18-500 Final Project Report: Team D1, 05/07/2022

Fig. 2. Full-scale system block diagram, enlarged in Figure 22.

processing component to determine the corresponding MIDI
signal parameter values.

Initially, we had planned to track translational data on the Z
and Y axes for our MVP and treated rotational data as a bonus
feature. However, in testing we discovered that rotational data
was more consistent, and we had difficulty getting
translational data to produce acceptable results. Additionally,
rotational data felt more intuitive to use as it mimics the
motion of turning an actual knob. As such we decided to only
use rotational data. More information about this decision can
be found in Section VII.

The MIDI processing component (3) focuses on
data-to-MIDI translation. It receives the processed sensor
data relating to which object the user might be touching, if the
user is touching an object at all, and the estimated position of
the glove. The Arduino Due (the Due) maps these values to
the appropriate MIDI signal parameters and acts as a USB
MIDI output controller.

To demonstrate our project at the ECE Capstone Expo, we
drove a pre-configured Ableton Live project with the MIDI
outputs from our device. Within this project the system’s
MIDI signals were mapped in such a way that each object
controls the parameters of a totally different sound. In other
words, each object can be played as if it is a distinct
instrument. Initially we planned to build a custom software
synthesizer using Max4Live, but while working on the

synthesizer we realized that relying on custom software meant
that the final hardware product would not necessarily be as
adaptable and easy to use as a general purpose MIDI
controller as we had initially hoped.

IV. DESIGN REQUIREMENTS

Initially when we had planned to create a standalone MIDI
device, we had considered a requirement for note granularity.
Note granularity describes the degree to which the user can
distinguish between successive beats in time (effectively a
measure of temporal resolution of the produced sound). We
believed that users would be tapping out individual notes with
our product, and as such we needed to detect these impulses
occurring within a very short time span (every 0.018 seconds).
However, as we shifted away from this use case, we no longer
needed this strict requirement. We still decided to enforce our
30 fps metric for video capture, as we still needed clear and
sharp frames to perform accurate object detection and hand
tracking. The computer vision detection must also be able to
operate at these speeds as well.

Another critical requirement of the system is latency. In
order to ensure that users are not disoriented by noticeable
audio delay the end-to-end latency must hit our target of 30
ms. We expected that computer vision detection and
board-to-board communication would be the biggest
bottlenecks in hitting this target. In initial testing with the
default pre-trained SSD model we observed a worst-case
processing time of around 11 ms. In order to give us some
slack room to account for the communication between boards

4
18-500 Final Project Report: Team D1, 05/07/2022

we therefore established a 15 ms latency requirement for the
acquisition of CV data by the MIDI Processing unit. The
performance capabilities of the Jetson combined with clever
optimizations of the model used allowed us to reach this
target. The communication protocol of the system needs to
perform at a high speed as well. Given how little processing
should be done for this, a target of 5% maximum latency for
communication was established. This works out to a 1.5 ms
maximum. The MIDI processing occurs extremely quickly,
and as such its impact on the end-to-end latency of the system
is considered negligible.

The computer vision detection as stated must be able to
distinguish between objects within the frame with a 90%
success rate. Accuracy shall be measured through the ability
to detect three distinct benchmark objects over various trials.
For the sake of variety, we will focus on identifying a cup, a
pair of scissors, and a jar of mayonnaise. Additionally, the
system must also be able to detect which object is the most
likely candidate for being touched with the same degree of
accuracy, and its success shall be gauged with the same
method.

The force sensor’s sensitivity threshold must be precisely
tuned such that contact can be detected within our 99%
accuracy threshold. The gyroscope broadcasts its output over
UART, and as such its data will be broadcast at a rate of up to
10 Mbps. It must be able to extrapolate new pitch, roll, and
yaw position accurately enough to meet the 15 degree
standard deviation threshold, and this will be measured
through successes over various motion trials.

The video streaming and drawover must occur at a
framerate of 30 fps at minimum to ensure a smooth viewing
experience for the user.

V. DESIGN TRADE STUDIES

Our project consists of multiple subsystems, each
encompassing various design choices and tradeoffs. Here we
have detailed our rationale for some of the most important
design choices in our system.

A. Hardware MIDI vs Software MIDI
There are two popular ways that a MIDI controller can

output signals. A hardware MIDI interface allows signals to
be sent over a MIDI cable to devices with MIDI input ports.
This approach would allow our MIDI controller to be
compatible with hardware synthesizers and instruments.
Alternatively, the MIDI protocol can be implemented over
USB, and almost all computers can immediately recognize a
MIDI device simply by plugging in its USB port. Ultimately
we decided to go with a software library that allows the Due
to run MIDI over USB. Most musicians who are new to
electronic music production will be using a computer to
produce music, so software MIDI was chosen to maximize

accessibility. As stated in Section II.F, ease-of-use is a huge
priority to us, and a plug-and-play product that is compatible
with most computers seems like the most sensible approach to
meet this goal.

B. Communication Protocol
Our system consists of three computers all communicating

with each other over a full-duplex system. As such we needed
to decide on a communication protocol. We considered four
options: I2C, UART, RS485, and Bluetooth (Table 1). Of
these, we decided upon UART.

Inter-Integrated Circuit (I2C) is a full-duplex
multi-controller protocol generally used for on-module
communication between devices. It has different speed modes,
supporting communication at speeds as high as 400 kbps on
the Jetson. I2C is also extremely simple to manage, as devices
can trade off being controllers or followers simply through the
use of STOP and START messages. However, I2C’s biggest
drawback is its short range of effectiveness. Due to the fact
that I2C relies on open-drain current to draw its logic levels,
its noise threshold is extremely low. The more cabling in the
system the higher the parasitic capacitance gets, and signals
can be missed or unreadable altogether.

On the other hand, Universal Asynchronous
Receiver-Transmitter (UART) is a hardware interface that
allows for bi-directional full-duplex serial communication. It
does not require any external hardware, but is generally not
rated for long distance communication. It also requires a
custom software protocol to be implemented, and arbitration
does not work out of the box like with I2C. However, UART
is exceptionally fast and can run at up to 2Mbps in some
contexts.

The next choice is RS485. This communication protocol is
implemented through differential voltage levels, and is
generally used in high-noise applications. It runs on the same
principles as UART, but requires additional hardware to
convert those logic signals into differential signals. It is very
stable even at our operating voltage of 3.3-5 V, and is rated for
distances of up to 800 m in some applications. It can achieve
transfer speeds of up to 10 Mbps, which is extremely
promising for our latency requirement. However, even though
it is a full duplex protocol, writing software to utilize the
protocol can be tricky, as there is still no built-in arbitration
like I2C has. It also is not directly supported by most
microcontrollers, and instead needs to be driven by hardware
TTL-to-RS485 converters running Max 485s.

Finally we have the option of Bluetooth 4.0. Bluetooth has
the significant advantage of being wireless, and would allow
the user to untether the headset and glove from the rest of the
system. Bluetooth can run at speeds of up to 3 Mbps
depending on which architecture version is used. It also has an
effective range of about 300 ft. However, Bluetooth also does

5
18-500 Final Project Report: Team D1, 05/07/2022

not handle arbitration particularly well, and is more
complicated to implement. We would have to consider more
frequently dropped packets, as this is quite common with the
wireless protocol. Additionally, we still would not be able to
make the headset wireless as a USB connection is required to
connect the camera to the Jetson.

Ultimately we decided to use baseline UART. While it is
possible to increase the transmission distance of I2C using
buffers, we were worried that doing so would dramatically
increase our latency, and we did not want to force the user to
chain multiple buffers off of the glove to the Due. We had
initially planned to use RS485, but after attempting to
implement it, we had trouble getting the system to perform at
high speeds with sufficient stability and synchronization. We
had decided not to consider baseline UART due to concerns
about noise over the distance we were working with, but after
running some tests we realized this was not an issue. With
regards to Bluetooth, we felt that supporting a wireless system
and the issue of arbitration for multi-directional
communication were too complex to make the benefits
worthwhile. If it were possible to make the camera wirelessly
communicate with the Jetson we would reconsider, but as
such Bluetooth does not provide enough of a benefit to
outweigh the costs. UART is fast, stable, and works perfectly
with our distance range. Ultimately it is the most robust
option for our application.

TABLE 1. COMPARISON OF COMMUNICATION PROTOCOLS

Name
Protocols

Bandwidth Maximum
Distance Arbitration?

I2C 400 kbps (Fast Mode) 8 in. Yes

UART 2 Mbps 20-40 ft No

Bluetooth 3 Mbps 300 ft No

RS485 10 Mbps 2600 ft No

C. Serial Arbitration Method
The custom built software protocol to facilitate

board-to-board communication has a huge impact on the
latency of the overall system. In choosing to use UART as our
communication method we needed to decide how to organize
our requests. Since the Due acts as the host in our system, we
had to choose between various methods it can use to get data
from the other two boards.

The first method we considered was requesting data from
both boards on every loop iteration and aggregating the results
to generate signal data. This has the benefit of ensuring
stability in that no single serial transaction depends on another
transaction happening first. However, it has the downside of

being slower, as it requires waiting for each end of the
transaction before the MIDI signals can be generated.

The second method we considered was requesting data from
the Micro every loop iteration, but only requesting data from
the Jetson in the event of contact detection. This has the
significant benefit of not having to wait for CV detection on
every frame, significantly reducing latency. However, this has
the potential to propagate any erroneous “blips” in the
computer vision data as missed inputs for the system.

Ultimately we decided to proceed with the second method.
In the few tests we did run to compare methods the
advantages of only running one Jetson transaction per object
contact were strongly reflected in our latency results. We
managed to account for potentially erroneous data by
modifying our potential contact prediction procedure in the
computer vision subsystem to stop tracking new objects once
contact is detected and only resuming detection once contact
is lost.

D. Complementary Filter vs Kalman Filter
MEMS (Micro Electro-Mechanical System) sensors are

generally designed to be low-cost, and thus tend to introduce
erroneous drift over time. Also, when the spinning axis is
aligned with any other axis of freedom it will create gimbal
lock. Several filters such as low pass filters, complementary
filters, Kalman filters, and Extended Kalman filters can be
used to account for this. The Kalman filter is an adaptive
filter, which is powerful but has high computational
complexity. It uses correlation between prediction and what
actually happened to estimate the prediction error. The flow
diagram of this filter is divided into four steps as shown in
Fig. 3. Firstly the initial value is given, then the prediction
step, then the gain of the filter is computed, and finally the
estimation is done. The advantage of the Kalman filter is that
it can run on devices with very small amounts of memory. On
ther other hand, the complementary filter uses a relatively
simple algorithm which requires less computation and is easy
to implement. Such a feature makes it preferred for embedded
systems. High pass and low pass filters are used in
coordination to remove accelerometer spikes and gyroscopic
drift, respectively.

All of the forces working on the object are measured by the
accelerometer, and the long term measurement becomes less
reliable as the small forces create disturbances in
measurement. So, for the accelerometer, a low pass filter is
needed for noise correction. In the gyroscopic sensor, as the
integration is done over a period of time, the value starts to
drift in the long term. Thus, a high pass filter is needed for
gyroscopic data correction. The complementary filter consists
of both a low and high pass filter and it is the filter that best
suits our system. Fig. 4 is the block diagram of the
complementary filter.

6
18-500 Final Project Report: Team D1, 05/07/2022

Fig. 3. Kalman filter flow chart

Fig. 4. Block diagram of complementary filter

We have found a research paper [3] that illustrates how
Kalman filtering does not provide a good solution to the
problem of human posture tracking. Since our project also
requires consistent tracking of hand motion, we believe that
the usage of complementary filters is ideal for our case. The
paper mentions that unlike traditional Kalman filter problems,
such as aircraft attitude estimation, the process model and
control inputs, are difficult or impossible to estimate.
Furthermore, it states that different parts of the human body
may require different process models or parameter values.
This is a crucial consideration for the case that our project can
be further developed in the future to have two gloves. It is
important to note that the assumption of a process model
governing the motion of a body part causes the Kalman filter
to produce incorrect estimates when the process model is
inaccurate. Complementary filtering, as it has no assumptions
of process dynamics, does not suffer from these problems.
Also, complementary filters, due to their low complexity,
require significantly less processing resources than Kalman
filters. We have found that some applications of Kalman
filters require a 32 bit MCU (Microcontroller Unit) and this
requirement doesn’t fit our decision of using the Micro, which
is a 8 bit MCU. Therefore, we will be using complementary
filters over Kalman filters.

E. Object Detection and Tracking
Machine learning has become a common approach for

object detection in images in recent years due to its robustness
and accuracy. Deep learning models using convolutional

neural networks, such as the Single Shot Detector (SSD) and
YOLO, have proven that object detection can be done in
real-time at high frame rates, with sufficiently powerful
computer hardware (SSD at 59 fps, YOLO at 45 fps) [4,5].
The drawback of such a method is that the types of objects
that can be detected are restricted to the data with which the
model was trained.

It is also possible to track objects algorithmically. For
example, the Lucas-Kanade Tracking algorithm [6] can detect
optical flow in an image to effectively update the position of
predetermined tracking points. From prior experience, this
approach is computationally efficient in real-time settings, but
the drawback is that the tracking points must be either
manually or automatically initialized prior to tracking. In our
case, this would likely require a calibration phase for tracking
each object. Furthermore, the tracking points would be lost
should an object leave the frame, and would have to be
reconstructed.

Since our use-case involves a moving camera and physical
handling of the tracked objects, we determined that robustness
and reliability are the most important metrics for detecting
and tracking objects. With the Jetson processing board
available through the course inventory, we ultimately decided
on using the deep learning approach.

C. Deep Learning Models for Object Detection
Time was the main consideration we had when deciding on

which deep learning model to use. We concluded that
implementing and training our own model, even if based on
common architectures, would be infeasible given the
timeframe for this project and the other subsystems that would
need to be implemented. For that reason, we chose to make
use of the Jetson-Inference library [7], an AI library for
computer vision, provided by NVIDIA and specifically
designed for use with Jetson boards. The library provides a
pre-trained SSD model with a MobileNet base model. It has
been trained on over 300,000 images to detect 91 object
classes, including household objects. The library also provides
an API for performing inferencing, the step of deep learning
where a model is applied to create a prediction.

The drawback of relying on this pretrained model is that we
will only have the ability to detect the object types on which it
was trained. Transfer learning is an approach for retraining an
already existing neural network model on a new dataset with
different labels, while taking advantage of many of the
already-tuned parameters [7]. Theoretically, this approach can
produce a model trained on fewer images, within a shorter
amount of time, while retaining much of the accuracy of the
parent model. We could thus expand the object classes of our
deep learning model on a new dataset, such as a subset of the
OpenImages database, which contains 1.9 million images of
600 types of objects [8].

7
18-500 Final Project Report: Team D1, 05/07/2022

C. Glove Tracking
The glove can be considered as an object to be tracked by

the same neural network used in object detection. However,
there are drawbacks to this approach. First, the appearance of
the glove is augmented with the sensors and processing
boards that are attached to it. Therefore, we would need to
retrain the model on a custom dataset including images of the
finalized glove design. This would have introduced a new
critical path into our schedule. Second, it is possible that the
user may pick up an object in such a way that the object they
are holding is visible, but the glove is obstructed, and cannot
be detected using the network.

ArUco markers are fiducial markers (Fig. 5) that are
physically printed NxN binary images used as reference
points in AR applications [9]. These markers can be used for
overlaying virtual images onto a physical space, or in our
case, for tracking an object physically labeled with them.
OpenCV provides an API for detecting these markers in an
image, which we have tested to run in real-time [10].

Fig. 5. A set of 10 arUco makers [10]

VI. SYSTEM IMPLEMENTATION

Our project is implemented as an AR headset and
motion-sensing glove that uses computer vision to convert a
user’s manipulation of objects in their environment into MIDI
signals. A full block diagram of the system is shown in Fig. 2.
The fully assembled system is depicted in Fig. 6, and the
details of each of the subsystems within the project are
detailed below.

Fig. 6. The fully implemented system

A. MIDI Processing
All incoming sensor packets are transmitted to the Due. It

utilizes the Control Surface library [11] to act as a native
MIDI USB device. It uses this library to map the incoming
sensor data to MIDI signals. This results in five distinct

parameters for our MVP: The ID of the object currently being
touched, contact detection, pitch, roll, and yaw (Table 2).
Each object has its own distinct set of contact detection and
rotational signals, and there are global signals for these
parameters as well, for a total of 16 signals. All of these
values are output as integers between 0 and 127 with MIDI
Control Change messages as per the MIDI protocol.

TABLE 2. MIDI SIGNAL MAPPING SCHEMA

Sensor Parameter
MIDI Messages

MIDI Message Message Data
Type

Contact Detected Note On/Off Event Binary

Object Type ID Control Change Integer (0-127)

X Position Control Change Integer (0-127)

Y Position Control Change Integer (0-127)

In order to perform this mapping, the Due constantly
requests force sensor data from the Micro. Upon detection of
contact, the Micro responds with all current rotational data to
the Due until contact ends. Once the Due has received the
contact data it requests a numeric ID from the Jetson
corresponding to the object it believes is currently being
touched. A new MIDI signal for the rotational coordinates
will only be generated while contact is actively occurring.
Initially we had planned to record the last-known rotational
positions of objects so as to preserve their state between
contacts, but in testing we discovered that this led to poor
accuracy. Instead we reset the rotating frame of reference
upon each contact, which has led to more consistent results.
All incoming signals from the Micro will be passed through a
logic converter as the Micro’s operating voltage is 5V and the
Due’s is 3.3V.

B. Board-To-Board Communication
The Jetson, Micro, and Due communicate via full duplex

UART. All of our processing boards support TTL over UART
communication. The Arduino Due acts as the controller, and
uses its multiple serial ports to facilitate communication with
the Micro and the Jetson. The Due requests sensor packets
from the Micro and computer vision output packets from the
Jetson. As stated in Section V.B UART does not support
hardware arbitration, and as such we perform arbitration in
software on the Due.

The Micro and the Due do not have the same operating
voltage (5V and 3.3V). To resolve this, we route all serial
signals on this bus through a 3.3V to 5V logic stepper that
converts digital signals between these two threshold voltages.

C. Computer Vision
The CV subsystem performs object detection and potential

contact detection. The goal of this component is to sense and

8
18-500 Final Project Report: Team D1, 05/07/2022

interpret which object the user might currently be interacting
with, based on the relative locations of the glove and any
objects in the view. As such, object detection defines which
objects are identified and classified within the webcam’s
view; potential contact detection provides a “best guess” for
which object the user might currently be touching, if any.

The hardware for this component consists of a headset
mounted with a webcam, as well as the NVIDIA Jetson
Xavier AGX, an AI-accelerated CV processing board as
shown in Fig. 2.

Real-time object detection is performed using the
SSD-MobileNet deep neural network, a convolutional neural
network designed for embedded computing applications that
meets our latency requirements on our hardware. We use an
implementation of this network provided by the
Jetson-Inference library, as well as the included pre-trained
classification model [7]. We had planned to improve upon
this model by first retraining it on a subset of 6000 images
from the Open Images dataset using transfer learning.
Retraining the model on these images failed to meet our
accuracy requirements, and we decided that improving on it
would not be worth the time investment needed. For that
reason, we also decided against taking time to collect our own
data and merge the datasets.

To account for this and maintain high robustness for object
detection, we fixed a lower confidence threshold for the
output of the neural network at 30%. This decision however
imposes a tradeoff between consistency and accuracy: with a
lower threshold, it is more likely that an object will be
identified by the neural network, but less likely that it will be
assigned the correct class.

Fig. 7. Object aliasing graph. The mouse and book classes are
remapped to the mayo jar class, and the remote and toilet classes are
remapped to the cup class.

To mitigate lower accuracy resulting from the lower
confidence threshold, we implemented an object aliasing
procedure for remapping unused objects in our neural network
model to our chosen objects that are consistently and uniquely
misclassified as those objects (Fig. 7). For example, we found

that the cup class was often misclassified as a TV remote
when in a horizontal orientation, but no other objects were
misclassified as a remote; therefore, we could interpret any
classification of a remote object as being a cup, since we
wouldn’t expect the system to see remotes in the first place.

Fig. 8. Two ArUco markers 3D-printed and attached to the glove at
multiple locations.

Potential contact detection is implemented by tracking the
position of the glove, and identifying the nearest detected
object to the glove.

The position of the glove is determined through the
frame-by-frame detection of the fiducial markers attached to
the glove (Fig. 8). This step is delegated to the OpenCV
ArUco library, which performs image segmentation and
thresholding to identify square shapes, and validates correct
markers by analyzing the inner marker codification [10].
From this information, the pose of the marker (and thus the
glove) is estimated, as is the distance between the camera and
the glove.

Since the accuracy of object detection depends on varying
characteristics such as lighting, orientation, and obstruction,
the following tracking and remembering procedure is
implemented to improve the robustness of potential contact
detection.

A dynamically sized region around the glove is determined
using the fiducial marker pose information. When this region
overlaps with that of a detected object for longer than one
second, a potential contact with that object is determined to
have occurred (Fig. 9).

After a potential contact is determined, that object is
“remembered” (tracked) for the next 5 seconds. After 5
seconds, the tracked object is “forgotten” and tracking resets.
While an object is tracked, and the force sensor from the
glove is activated, object detection is halted and the currently
tracked object continues to be tracked until the force sensor is
released. The point of this step is to not falsely detect a new
object as being a potential contact while a different object is
still being held.

9
18-500 Final Project Report: Team D1, 05/07/2022

So, when the CV subsystem is polled by the MIDI
Processing Unit for an object ID, the currently tracked
object’s ID (or a null value) is sent as a response.

Fig. 9. Visualization of the tracking procedure for detecting potential
contact with an object. In the left frame, the cup object is not tracked.
After one second of holding the position of the glove, the cup object
becomes tracked.

D. Motion Sensing
The goal of this component is to examine whether a user is

touching an object or not, and detect any rotational movement
of that object. This is crucial for our overall system because
contact and movement are the factors that change the sound
produced by the software synthesizer.

For the implementation of motion sensing, we used a
fingertip force sensor, accelerometer, gyroscope, and the
Micro. As shown in Fig. 10 all the sensors are connected to
the Micro and the board is placed on the back of the glove.
The board is held within the 3D-printed casing that protects
the Micro as shown in Fig. 10 This 3D-printed case is
attached to the back of the glove using epoxy.

Fig. 10. Arduino Micro and its 3D-printed case mounted on the glove

When implementing a force sensor as shown in Fig. 11, the
sensor datasheet [12] suggests that we connect a measuring
resistor to maximize the desired force sensitivity range and to
limit current. The plot of sensitivity in regards to different
resistance values is shown in Fig. 12 According to the graph,
we used a resistor with a value of 10K to achieve the widest
range of sensitivity.

Fig. 11. A simple circuit implementing a force sensor [12]

Initially, the force sensor outputs voltage measures in the
range of 0V to 3.3V. The maximum voltage is 3.3V as the
supply voltage to the sensor is the 3.3V power supply from
the Micro. In order to determine whether an object is touched
or not, we considered a threshold voltage of 0.33V. This value
is 10% of the supply voltage and we were confident that the
value lets us know of the concrete contact with an object.
Also, we tested this threshold value during testing and the test
mentioned in Section VII confirmed our assumption. Once the
output voltage above the threshold is obtained on the Micro,
the board converts the data into a binary representation of 0
representing no contact, and 1 representing concrete contact.
We did not notice any drift or error with the force sensor data
as they are not heavily dependent on the function of time,
which is not the case for the accelerometer and gyroscope.

Fig. 12. The plot of sensitivity-based on five measuring resistor values
[12]

Raw data is obtained from the gyroscope and accelerometer
utilizing the Arduino-MPU-6050 library [13] and is
post-processed. Since the accuracy of these parameters are
influenced by a number of errors which are a function of time,
we first identified the errors in the sensors and applied a
signal processing approach to minimize the errors.

The gyroscope drift occurs mainly due to propagated error
from the integration of two components: a higher frequency
noise variable called angular random walk (ARW) and a slow
changing, near-DC variable called bias instability. A good
portion of the pitch and roll axis gyroscope drift is removed
using accelerometer feedback to monitor position relative to

10
18-500 Final Project Report: Team D1, 05/07/2022

gravity. Filtering the gyroscope output using a low-pass filter
canceled a portion of the drift error. The cutoff frequency of
the low pass filter was determined by taking the average of
output signals and checking its frequency response. We chose
the cutoff frequency to be 5 Hz based on the observation that
significant information that formulated the rotational data was
below 5 Hz. This observation was made based on the
frequency response of roll data shown in Fig. 13.

Fig. 13. Frequency response of roll data based on multiple 90 degrees
rotation trials.

The filter applied to the rotational data has its
characteristics described in Fig. 14 and an example, filtered
rotational signal is shown in Fig. 15. This filter is an IIR
(Infinite Impulse Response) filter. Our intuition with using IIR
over an FIR (Finite Impulse Response) filter was to create a
smoother interpolation of rotational position data with a
smaller order. Such filters however often do not have a linear
phase. In fact, non-linear filters are used widely in noise
removal applications, especially in circumstances when there
are spike noises - that affects only a small percentage of the
samples. In our case, the type of corruption was additive noise
resulting from the electronics.

Fig. 14. The magnitude and phase of the filter applied to rotational data.

Fig. 15. Filtered roll-axis data of three trials of 90 degrees rotations using
the filter shown in Fig. 14.

We cancel long-term drift by implementing a zero angular
velocity update to the gyroscope. Any time the device is
known to be completely stationary, the gyroscope offset is
nulled to zero for that respective axis. We implement this
method by resetting the rotational data to zero when there is
no contact made with the force sensor. This allows the sensor
to correct for the bias instability.

Even though the translational data was not implemented
into our glove, we believe that describing our attempts at
acquiring and processing translational velocity are worth
noting. In the case of an accelerometer, there are three major
errors to take into account: constant bias, velocity of random
walk, and vibration rectification error (VRE). To tackle the
constant bias, the glove is required to have a calibration time
of approximately 5 seconds to capture bias occurring when
the glove is supposedly in a stable/rest state. This time allows
the Micro to measure the average of the initial bias of the
output data in the resting state, which can be subtracted in all
incoming acceleration data due to hand movement. Then, to
account for the velocity of random walk and VRE, we used a
moving average filter with a cutoff frequency of 5 Hz and an
order of 40 to attenuate signals between the stopband and the
passband, which is 0.5 Hz. The low-pass filter was
implemented utilizing the BasicLinearAlgebra library [14]
removes noise (normally high-frequency) affected by the
sensor noise of the electronics. This velocity random walk
error is important to be minimized as noise grows
proportionally to the square root of time. The filter applied to
the acceleration data is shown in Fig. 16. Refer to Fig. 17 and
Fig. 18 to observe that the filter denoises the data significantly
compared to the original acceleration data.

11
18-500 Final Project Report: Team D1, 05/07/2022

Fig. 16. The magnitude and phase plot of the filter applied to
translational acceleration data

Fig. 17. Unfiltered Z-axis acceleration data for a single up and down
movement.

Fig. 18. Filtered Z-axis acceleration data for a single up and down
movement.

Once we have the filtered acceleration data, we came up
with a method to detect directions per Y and Z axis: left, right,
up, and down. Normally, acceleration data looks very similar
to a sine curve as a single movement consisting of
acceleration and deceleration. An example of acceleration
data is shown in Fig. 18 As acceleration data is sinusoidal, we
set thresholds to detect directional changes. Often, an up
movement will create a positive peak sinusoidal wave
converging to zero after reaching the negative peak. A down
movement works in a similar fashion, but with the positive
and negative peaks switched. To detect directions, we set
positive and negative thresholds to check whether a
movement was in an up or down direction for the Z axis and
left or right direction for the Y axis. This is an important
process as we only allow the calculation of integrating
acceleration data during the directional movement. If we were
to perform integration continuously, the integrated velocity
data would drift due to errors in the sensor data.

Using the acceleration data, we integrated them with respect
to time once in order to acquire the velocity data. To perform
the calculation of integration, we used a method called a Fast
Trapezoidal Rule Integrator, which uses the trapezoidal rule to
integrate acceleration data and to result them into velocity
data. The signal flow graph of this calculation is shown in Fig.
19.

Fig. 19. Signal flow graph of an order N fast trapezoidal rule integrator

We implemented these error reduction methods in the Micro
as soon as raw data from all the sensors are captured. As
mentioned above, a short calibration period is crucial for more
accurate and efficient error correction. After the raw data is
processed, acceleration and rotational data are packaged with
the binary data from the force sensor to deliver over to the
MIDI processing board.

12
18-500 Final Project Report: Team D1, 05/07/2022

VII. TEST, VERIFICATION AND VALIDATION

In order to ensure that we meet all of our outline
requirements we have defined methods of testing and
measurements of success for the various aspects of our
project.

A. Video Display
The only metric in our use case and design requirements for

the video display relate to the refresh rate of the drawn-over
video. We used the Jetson-Inference display API to confirm
our goal of 30 fps.

B. Board-To-Board Communication
The success of our communication protocol entirely hinges

upon its latency and stability. As stated earlier we established
a goal of 30 ms for the total end-to-end latency to ensure that
system outputs are responsive from the user’s perspective. In
order to test the latency of our system we recorded timestamps
at the beginning and end of each board-to-board transaction.
This involved measuring the time from the start of a loop to
the acquisition of sensor data from the Micro, then the time
between receiving that data and receiving Object ID data from
the Jetson, and finally the time taken to package and send this
data as MIDI signals to the host computer. We recorded these
timestamps over 10,000 trials and averaged the results for
each stage of the process. As shown in Table 3, by the end of
the project we had more than achieved our goals. The average
end-to-end latency ranged from 0.8 ms before MIDI
transmission in the best case, and 2.5 ms before MIDI
transmission in the worst case. In the worst case scenario,
contact is detected and the single request for an Object ID to
the Jetson is sent. Because the Jetson may not have the value
at the ready, at least one full loop of CV detection can occur at
this stage. This leads to a higher potential average time, but
this ultimately does not affect end-to-end average latency that
much because this case occurs so rarely.

TABLE 3. LATENCY TEST RESULTS

Subsystem Goal Actual (Average)

Due ↔ Micro 1.5 ms 0.8 ms

Due ↔ Jetson 15 ms 1 ms

Due ↔ Host Computer 1.5 ms 0.9 ms

End-to-End 30 ms 0.8 ms-2.5 ms

C. Object and Potential Contact Detection

To test the accuracy of object detection, we conducted a
series of 9 trials of 60 seconds each. In each trial, we placed
one of the three objects in our classification set on a table, and
pointed the headset-mounted camera at it from a distance of
0.5 m. The accuracy of object detection is defined as the

percentage of frames in which the correct object was
identified. To determine the robustness of object detection, we
also varied the motion of the camera across the trials. Table 4
summarizes the configuration and results of each trial.

TABLE 4. OBJECT DETECTION TRIALS

Environment
Parameter Object Accuracy Average

Accuracy

Stationary
Camera

Coffee Cup 100%

99.3%Mayo Jar 99%

Scissors 99%

Moving
Camera

Coffee Cup 72%

87.3%Mayo Jar 93%

Scissors 97%

Object Held
in Hand

Coffee Cup 65%

67.6%Mayo Jar 71%

Scissors 67%

As can be seen, we met our goal of 90% accuracy for all of
our objects with a stationary camera, and we nearly met it for
a moving object. We fell far short of this goal when the object
was held in the hand, achieving only 67.6% average accuracy.
This result was expected, since holding the object can
partially obstruct the camera’s view of the object, a case that
was likely not reflected in the pre-trained neural network
model’s image dataset. Since picking up and holding an object
is nominally our expected use-case, we needed to improve the
accuracy for this situation.

The tracking and remembering procedure (described in
Section VI.D) is our solution to this issue, which effectively
loosens the constraint for the held object to be detected in
every frame. We repeated the testing procedure described
above for picking up an object with this new algorithm to test
the accuracy of potential contact prediction. Fig. 20 compares
all results across our three objects.

13
18-500 Final Project Report: Team D1, 05/07/2022

Fig. 20. Contact prediction accuracy improved using the track and
remember procedure compared to simple object detection.

The average accuracy for potential contact prediction
following this procedure is 90%, exactly our target metric.
This shows that the tracking and remembering procedure was
successful in improving the robustness of potential contact
prediction as opposed to simply relying on the object
detections alone. The coffee cup and mayo jar individually
performed slightly below this bar, which can be partly
explained by the fact that these two classes were often
misidentified as one another from higher angles by the object
detection model.

D. Motion Sensing

We tested two measures to determine the success of motion
sensing in our system. First, we checked for force sensor
functionality. Since we had electrical tape holding the sensor
onto the glove, we needed to consider if the tape was going to
obstruct the sensor from capturing data. To test this, we
pressed the tester’s index fingertip a total of 100 times and
checked if the touch was recognized. The test resulted in a
98% success rate of recognizing a fingertip touch, just shy of
our 99% goal.

Along with the force sensor, we tested gyroscope
sensitivity. When starting the testing procedure, we placed our
right hand in front of our body with the palm facing down to
calibrate and set a starting point. Then, along the roll-axis, we
rotated our hand 90 degrees. We acknowledge that the tester’s
interpretation of a 90 degrees rotation is subjective, and could
vary from trial to trial; however, our goal metric of 15 degrees
of standard deviation is large enough to account for this error.
The sampled test value was the maximum degree of rotation
observed in each trial. After 49 trials, we found out that the
standard deviation for roll-axis data with the population mean
of 90 degrees was 8.34 degrees. This shows that by fitting our
results to a Normal Distribution to our data, one would expect
95% of rotations to fall within ± 2 × 8.34 = 16.68 degrees.
The distribution of all trials is shown in Fig. 21.

Fig. 21. The distribution of maximum angle per trial of 90 degrees
rotation.

E. User Validation

In addition to quantitative testing to ensure our design
requirements were met, we also performed user validation to
ensure that all of our use case requirements were met. We
reached out to three electronic music major students with
varying degrees of proficiency in sound synthesis and had
them demo our product. To ensure that each test was the
same, we created a preset in the software synthesizer Serum.
This preset had two rotational parameters (roll and pitch)
mapped to two macro knobs in Serum. These macro knobs
can be assigned to any synth parameter within Serum, and are
used for extraneous MIDI control. We mapped the Detected
Object ID to a third macro knob and set this knob to affect the
position of the synthesizer’s primary wavetable. This ensured
that each object would produce a different waveform for the
synthesizer to work with.

After setting up the preset we divided the test into two
sections. First, we explained how the system works to the user
and pre-mapped our rotational parameter macros to some
parameters with very obvious sounding effects. This allowed
the users to familiarize themselves with how their actions
change the sound. In the second section we removed these
pre-mappings and allowed the users to map their rotational
macros to whatever they wanted. We interviewed participants
both as they were using the product and once again with a
Google Form afterwards.

Most of the comments from participants during the
validation tests were positive. All of the musicians expressed
enjoyment in using our product with the glove’s
responsiveness being the most liked feature by far. We
received comments in real time about the thresholds of both
the force sensor and rotation detection, as users were unsure
as to how intense their interactions needed to be. A very
common observation was an increase in productivity and

14
18-500 Final Project Report: Team D1, 05/07/2022

positive sentiment with the device after roughly 10 minutes
acclimation.

We also examined the ergonomics of the glove. We
expected that the wire connecting the force sensor and the
Arduino may not provide enough room for a person to move
their fingers freely. In order to test for any discomfort, we
asked our three testers during user validation about how
comfortable the glove is to use. All users felt comfortable
having the glove on their hand and did not encounter any
obstacles when trying to move their fingers. However, we did
notice that testers had difficulty taking off the glove, due to
the positioning of the circuitry.

Comments from the post-test survey were also helpful. We
asked users to report both their enjoyment of the product as
well as how straightforward learning to use the product was
on a scale of 1 to 5. After analyzing our results we discovered
that users overwhelmingly enjoyed the product and that
learning how to use it was straightforward (both averaged a
4.5 rating). The most common complaint we received in the
survey was that having the external monitor be detached from
the helmet was a significant detriment to the experience, as it
required the user to be looking in two different directions at
once. While we did not have time to implement this given the
constraints of the project, after receiving this feedback we’ve
identified it as a high priority for future work. Overall in spite
of this complaint our users were very satisfied with our
project, with comments stating that they were “so impressed”
and that the project was “super cool!” After reviewing all of
the feedback, we believe that we have successfully validated
our project, even in its current state, to be both satisfying and
useful.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule is divided into four sections: Project

Logistics, CV Detection Implementation, Sensor Board
Implementation, and MIDI Board Implementation. Fig. 22. is
the Gantt chart that the team followed and reflects the four
sections. Notice some task descriptions have ’T-‘, which
means that the task is related to the testing of a specific
component in the system. For all the sections, we acquired
and processed data in each individual board before the start of
Spring break. After the break, the team focused on
communicating that processed data between the boards and
integrating the subsystems. Towards the end of the semester,
we used our time to add more features after the Interim Demo
and perform extensive usability tests.

B. Team Member Responsibilities
Harry worked on configuring the Due as a MIDI device,

MIDI output mapping and its signal generation as well as

designing the board-to-board communication protocol. Harry
also 3D printed the ArUco markers for the glove and made the
Ableton project file used for the Final Demo.

Min Gun had the responsibility of implementing the
physical sensor processing board. He was also in charge of
wiring the Micro and the accelerometer/gyroscope, and
assembling the glove. Lastly, he 3D printed the cases for
mounting the Micro and the accelerometer/gyroscope.

Tomas worked on CV algorithm implementation on the
Jetson. Along with implementation and testing of the
algorithm, he assembled the helmet to hold the webcam in
position. Furthermore, he used laser-cut in an acrylic tray to
hold the Jetson and the Due in place.

C. Bill of Materials and Budget
Table 5 is the bill of materials that keeps track of all the

parts that we have purchased and used during research and
development, as well as in the final product (highlighted). Our
total cost came to $374.45, 62% of the $600 budget.

TABLE 5. BILL OF MATERIALS

Item Description Model
Number Manufacturer Qty. Cost

Force Sensor (38mm
wire)

 30-49649
Interlink
Electronics

1 $7.84

Force Sensor (30mm
wire)

SEN0297 DFRobot 1 $3.00

Force Sensor (20mm
wire)

 34-00004
Interlink
Electronics

1 $10.97

3.3V Voltage
Regulator

 LD1117V33
STMicroelect

ronics
1 $3.80

Arduino Due N/A Arduino 1 $40.30

Arduino Micro N/A Arduino 1 $20.70

USB A-C Adapter N/A Syntech 1 $8.99

Accelerometer/Gyrosc
ope breakout board

SEN-11028 SparkFun 1 $29.95

Logitech C922X
Webcam

960-001176 Logitech 1 $79.99

Safety Work Gloves 100320013
MUVEEN

CO.,LTD
1 $12.99

Helmet HH1000
Malta

Dynamics
1 $16.49

Logic Level Shifter
B07LG646V

S
KeeYees 1 $9.59

I2C Buffer TCA4307 Adafruit 1 $4.95

2 x Thin Pressure
Sensor

Walfront9sn
myvxw25

Walfront 1 $11.09

5 x Max485 Chip No
Arbitration

IC179 JiuWu 1 $6.99

5 x Max485 Chip W/
Arbitration

TTL to
RS485
Module

Songhe 1 $7.88

4 x Pressure Sensors SEN-09375
 Interlink
Electronics

4 $43.68

Amphenol Clincher
Jacks

COM-14195 FCI 5 $10.50

15
18-500 Final Project Report: Team D1, 05/07/2022

Item Description Model
Number Manufacturer Qty. Cost

Protoboards PRT-13268 SparkFun 5 $44.75

Jetson Xavier AGX N/A NVIDIA 1 Inventory

Subtotal before tax + shipping $374.45

D. Risk Management
The first challenge that we faced was not receiving the parts

that we needed on time. In particular, there was a shipping
delay for the force sensors and IMU sensor. Despite ordering
these parts early in advance, we were not able to acquire them
until a week prior to Spring break. In order to mitigate this
risk, we did our research on working the sensors and prepared
all the groundwork before the sensor arrived. Also, we used
our own IMU sensor to check if the developed code was
working. By the time sensors arrived, we were able to acquire
sensor data and work on refining the data.

We faced some difficulties working with
accelerometer/gyroscope data. At the beginning, we identified
two modes of input: translational acceleration and rotational
data. Thus, we wanted to obtain data about an object’s
translational and rotational movement. Specifically, we
wanted to transform acceleration into velocity data for it to be
used to manipulate the sonic parameters. During
implementation, we noticed instability of detecting directions
when calculating velocity. In order to mitigate this risk, we
made sure that the rotational data worked for our system.
Once we were confident that the rotational data was working,
we spent more time trying to refine the velocity data to add it
as an extra feature.

For the CV implementation, we planned a step-by-step
process figuring out which CV model is the most suitable for
our system. In particular, we had the option of either working
with a pre-trained or our own model. We scheduled to
implement the subsystem with the pre-trained model first,
then compare it with that of our own model. By starting with
an implementation that we knew would work, we had a
fallback in the event that our model did not work well enough.
Eventually, we figured out that training our own model was
impractical due to lack of time and low accuracy results.

IX. ETHICAL ISSUES

We had multiple discussions about the ethics of our project,
whether the existence of our product would have broader
implications on society as a whole, and what could result from
misuse of our product. Due to the artistic nature of our
product as a MIDI instrument we do not believe that our
product can intentionally be used to cause harm in a way that
is unique to our system. Our system only outputs MIDI data
which cannot be used to harm individuals. We discussed the

idea of privacy issues given that there is a webcam mounted
to the helmet, but felt that this is not a concern since the video
data is only made available to the user through the live HDMI
output. We also do not believe that there will be any broader
societal impacts from the release of our work, as many MIDI
controllers already exist and ours does not endanger the
existence of other products or industries.

The only real ethical concern that we have involves user
safety. In our testing we discovered that it is quite easy to
accidentally injure people or things in the user’s immediate
vicinity. Especially given that one of our currently supported
objects is a pair of scissors, we feel that it is extremely
important to provide adequate safety warnings to users in the
event of an actual product deployment. Users should be
reminded to keep their environment clear and that large
sweeping motions are not necessary to augment their sounds.
While this would constitute misuse of our product, as ethical
designers it is important for us to address this possibility.

X. RELATED WORK

There are two types of already existing technologies that aid
music production in immersive environments. First, Sound
Playground in VR is a project that allows a user to play
pre-determined musical instruments in a virtual setting. The
major difference between this project and our controller is
whether one is interacting with objects in a virtual reality or in
an augmented reality. Our goal is to help users work with
tangible objects in the real world, bringing about an intuitive
sense to one’s sonic experience. Second, Concordia is a
musical instrument that allows users to generate and explore
transparent sonifications of planetary movements rooted in the
musical and mathematical concepts of Johannes Kepler.
Concordia highlights harmonic relationships of the solar
system through interactive sonic immersion. Unlike
Concordia’s approach of providing fixed sounds for each
planet, our system delivers a wider range of freedom to users
as they can map any real objects to MIDI controlled
parameters. Our aim is to bring forth a tool that can be used
with any software synthesizer to furnish an easy and flexible
approach to music production.

XI. SUMMARY

We created a new class of MIDI controller that utilizes
computer vision and various sensors to translate a user’s
interactions with objects in their environment into MIDI
messages. With this project, we set out to enable more
musicians to quickly jump into electronic music production,
while also providing a tactile and experimental experience for
seasoned producers. This second point was validated with
students in the Music Technology program at Carnegie
Mellon University, who gave positive feedback on both the

16
18-500 Final Project Report: Team D1, 05/07/2022

concept and implementation of our project.

A. Future Work
There are a number of areas of our project in which we

could see possible improvement. These areas of improvement
largely fall into two categories: system improvements and
feature extensions.

System improvements are the possible solutions to the
shortcomings of our project that we have already identified.
For example, future work could involve implementing a
headset-mounted display, replacing the tabletop monitor used
for MVP. A headset-mounted display could make the process
of tracking objects feel more natural, contrasted with having
to look over a tabletop display. Additionally, given more time,
we would attempt to collect our own large dataset of our
chosen objects, to improve the robustness of CV tracking, as
discussed in section VI.D. Finally, adding tutorialization and
safety warnings to our video draw over could address some of
the ethical safety concerns discussed in section IX.

Feature extensions are new ideas for improving the
functionality of our project that we thought of during
development and that were suggested to us during user
validation testing. Firstly, tracking translational movements as
additional MIDI parameters is a feature that we worked on
during the course of the project, but never quite got working
to the degree of accuracy and robustness that our use-case
requires. Future work would likely involve finishing
development in this area. Additionally, we learned that our
system could be even more useful in complementing existing
digital audio workflows by providing inputs on the glove for
toggling a record button or switching between different modes
of operation. Finally, implementing and refining Bluetooth
connectivity between our system components could be a large
improvement for user experience.

B. Lessons Learned
Throughout this project, our team learned the importance

and value of proper planning and communication throughout
every stage of the design process. By creating extensive
back-up plans for each subsystem as part of our
risk-mitigation strategy, and by communicating nearly
everyday, we only ever fell behind schedule by one week,
and we had plenty of time for refining our system prior to the
final demo.

Furthermore, we learned the value of working in an
interdisciplinary team such as ours, to which each member
brought different experiences. Due to this diversity of thought
and background, we were able to come up with solutions to
problems that blended our disciplines within ECE.

GLOSSARY OF ACRONYMS

API – Application Programming Interface
AR – Augmented Reality
ARW – Angular Random Walk
FPS – Frames per second
CV – Computer vision
Due – Arduino Due
ECE – Electrical and Computer Engineering
FIR – Finite Impulse Response
HDMI – High-Definition Multimedia Interface
I2C – Inter-Integrated Circuit
IIR – Infinite Impulse Response
IMU – Inertial Measurement Unit
Jetson – NVIDIA Jetson Xavier AGX
MCU – Microcontroller Unit
MEMS - Micro Electro-Mechanical System
Micro – Arduino Micro
MIDI – Musical Instrument Digital Interface
MVP – Most Viable Product
SSD – Single Shot Detector
TTL – Transistor-Transistor Logic
UART - Universal Asynchronous Receiver-Transmitter
USB – Universal serial bus
VR – Virtual reality
VRE – Vibration Rectification Error
XR – Mixed reality
YOLO – You Only Look Once

REFERENCES

[1] Wesseldijk, L. W., Mosing, M. A., & Ullén, F. (2020). Why is an early
start of training related to musical skills in adulthood? A genetically
informative study. Psychological Science, 32(1), 3–13.
https://doi.org/10.1177/0956797620959014

[2] Gu, X., Dick, M., Kurtisi, Z., Noyer, U., & Wolf, L. (2005, June).
Network-Centric Music Performance: Practice and experiments. IEEE
Communications Magazine, 43(6), 86–93.
https://doi.org/10.1109/mcom.2005.1452835

[3] Young, A. D. (2009). Comparison of orientation filter algorithms for
realtime wireless inertial posture tracking. 2009 Sixth International
Workshop on Wearable and Implantable Body Sensor Networks.
https://doi.org/10.1109/bsn.2009.25

[4] Liu W. et al. (2016) SSD: Single Shot MultiBox Detector. In: Leibe B.,
Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016.
ECCV 2016. Lecture Notes in Computer Science, vol 9905. Springer,
Cham.

[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only
look once: Unified, real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
779-788).

[6] Lucas, B. D. and Kanade, T. An iterative image registration technique
with an application to stereo vision. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence - Volume 2,
IJCAI’81, pp. 674–679, 1981

https://doi.org/10.1177/0956797620959014
https://doi.org/10.1109/mcom.2005.1452835
https://doi.org/10.1109/bsn.2009.25

17
18-500 Final Project Report: Team D1, 05/07/2022

[7] Franklin, D (2022) Jetson-Inference [Source code].
https://github.com/dusty-nv/jetson-inference

[8] OpenImages V6 - Description. Open images V6 - description. (n.d.).
Retrieved March 4, 2022, from
https://storage.googleapis.com/openimages/web/factsfigures.html

[9] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., &
Marín-Jiménez, M. J. (2014). Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition,
47(6), 2280–2292. https://doi.org/10.1016/j.patcog.2014.01.005

[10] OpenCV (2022) [Source code]. https://opencv.org

[11] Control Surface Library (2022) [Source code].
https://github.com/tttapa/Control-Surfa

[12] Interlink Electronics. FSR Integration Guide. Retrieved from
https://www.digikey.com/en/pdf/i/interlink-electronics/interlink-electron
ics-fsr-force-sensing-resistors-integration-guide

[13] Arduino-MPU-6050 (2022) [Source code].
https://github.com/jarzebski/Arduino-MPU6050

[14] BasicLinearAlgebra (2022) [Source code].
https://github.com/tomstewart89/BasicLinearAlgebra

https://github.com/dusty-nv/jetson-inference
https://storage.googleapis.com/openimages/web/factsfigures.html
https://doi.org/10.1016/j.patcog.2014.01.005
https://opencv.org
https://github.com/tttapa/Control-Surface
https://www.digikey.com/en/pdf/i/interlink-electronics/interlink-electronics-fsr-force-sensing-resistors-integration-guide
https://www.digikey.com/en/pdf/i/interlink-electronics/interlink-electronics-fsr-force-sensing-resistors-integration-guide
https://github.com/jarzebski/Arduino-MPU6050
https://github.com/tomstewart89/BasicLinearAlgebra

18
18-500 Final Project Report: Team D1, 05/07/2022

Fig. 22. Full-scale system block diagram

19
18-500 Final Project Report: Team D1, 05/07/2022

Fig. 23. Final Gantt Chart Schedule with color-coded teammate
responsibilities

