
18-500 Design Review Report - 2 March 2022 Page 1 of 6

Accessibility Pi/O
Ji Chang, Carlos Armendariz, and Jorge Tamayo

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Our goal is to create an inexpensive,
open-source keyboard and mouse set accessible to those
with cerebral palsy. Most dedicated accessibility I/O
tech currently on the market requires the user to assem-
ble it themselves, and pre-built one-handed keyboards
are much more expensive than standard keyboards.

Index Terms—Accessibility, Cerebral Palsy,
Keyboard, Mouse

1 INTRODUCTION

Cerebral palsy (CP) is an umbrella term for a group of
diseases that impair a person’s motor functions. Spastic
hemiplegia is one such form of CP, in which one side of the
body is impacted much more severely than the other. Since
modern computer use assumes the user has full mobility of
both hands, those who can only reliably use one side of the
body are forced to either use tech not designed for them,
assemble their own, or purchase expensive specialized key-
boards.

Our goal is to help those with Cerebral Palsy by design-
ing inexpensive I/O hardware that is operable with one arm
and one leg. Current solutions are either fairly expensive or
require additional hardware to achieve full use, and many
current accessibility input devices for computers are not
designed to allow simultaneous mouse and keyboard use.
We aim to create a design that will not be as broadly ap-
plicable to all motor disabilities, but will be a practical tool
for those with spastic hemiplegia specifically. This would
consist of a one-handed keyboard and a mouse operable by
foot, both of which connect to a programmed Raspberry
Pi that translates the inputs for a host computer.

To keep the design accessible to everyone, the project
will be open source and use inexpensive, ubiquitous compo-
nents. This allows people to easily and cheaply reproduce
our results, or improve upon them if need be.

2 USE-CASE REQUIREMENTS

The keyboard should allow a baseline level of proficiency
in typing. If users cannot type quickly on it, then it is not
worth using. So, users of our keyboard should be able to
type at about 30 WPM once acclimated to it. The key-
board should allow a baseline level of proficiency in typing;
it is only worth using if someone can type quickly on it. Our
goal is for users to type about 30 WPM once acclimated.

Also, to be usable for most tasks, a certain number of
characters must be supported. A total of 74 characters is

the baseline we will aim to meet, as this will allow most
tasks to be performed on a computer. This includes 52
upper/lowercase letters, 10 digits, space, enter, and punc-
tuation (‘.,”;()[]?!). Also, to be usable, other supporting
keys need to be present. The non-character keys we plan
on adding are: spacebar, left/right mouse click, backspace,
enter, shift, ctrl, alt, a toggle key for hold key presses (i.e.
if you press and hold a key, it will only read one press), and
a toggle key to type digits.

We also aim to make a comfortable design. The key-
board should be easy to use without much strain. The
design itself also needs to be durable; if it breaks within a
week of use, then it is not a very useful design. So for our
purposes, the switches used need to function after a large
number of presses, and the design itself should be able to
withstand some abuse.

The keyboard should also be usable to interface with a
text to speech program, in addition to standard text entry.
This is because people with cerebral palsy can sometimes
have issues with the fine motor control required for speech.
Also, the keyboard and mouse should be able to be used
simultaneously. This is a key requirement for anyone who
wants to play games or use certain CAD tools.

The quantitative metrics that we aim to test are how
well it reduces the rate of common errors while typing. The
most common type of error found in people with disabil-
ities (at a rate of about 10%) was a long key press error
[2]. This occurs when the user holds a key for longer than
intended after pressing it, resulting in extra characters be-
ing input. Long key press errors were also found to be a
non-issue for people without disabilities. Other common
errors in people with disabilities were additional key press
errors, missing key errors, dropping errors, and bounce er-
rors. We aim to create a design that implements hardware
and software features that can practically reduce the rate
of these errors to match the occurrence in people who have
full motor functionality.

The latency on the keyboard and mouse are also impor-
tant. Too much delay can render an input device unusable,
so any solution that introduces excessive latency should be
avoided.

Our final requirement is that the production cost for the
final devices should be below $200. This is to make it more
accessible to people with disabilities; most purpose-built
devices are significantly more expensive than this, and the
cheaper variants usually require additional hardware and
assembly for full functionality.

18-500 Design Review Report - 2 March 2022 Page 2 of 6

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our system works first by subdividing the tasks into the
keyboard, mouse, and Raspberry Pi.

The GPIO pins on the Raspberry Pi will be used to
receive the key-press signals from the keyboard. Since a
large number of keys are required, we will employ a tech-
nique called matrix scanning, which is commonly used for
other keyboards [1]. Matrix scanning allows keys to be
detected in a row and column format as if they were laid
out in a grid. Usually, the physical layout is a grid, but
this is not a requirement for matrix scanning. So, a small
number of GPIO pins can be used to detect a large num-
ber of keys. For example, if eight pins were used, 16 keys
could be distinguished from each other (four rows and four
columns).

So, using matrix scanning, the Raspberry Pi will be
able to determine when and which keys are pressed. Then,
it will send the corresponding key over USB to the host
computer. The mouse will use standard USB input as well.

Our keyboard also contains four keys that will change
how the Pi reads the input: two shift keys, a num lock, and
a hold press lock. The first three are meant to allow the
same key to be mapped to multiple characters; shift turns
lowercase into uppercase and num turns certain letters into
numbers. The two shifts operate differently; one works like
a standard keyboard and will be activated for as long as it
is pressed, and the other works like a phone keyboard and
will capitalize the first letter only. The num lock will work
like a normal lock key, where pressing it on will turn all the
letters into numbers until it is pressed off. Num lock will

override shift.

The last key, the hold press lock, is meant to help with
the long key press error (when the user presses a key longer
than they mean to, resulting in a longer string of letters).
While the hold press key is off, pressing and holding a key
will only count for one press, and while the hold press key
is on, holding the key will be treated as multiple presses.
We give the user the option of turning the hold press on
and off because there are some cases where repeated presses
are desirable, such as playing a video game. Like num lock,
pressing the hold press lock once will turn it on until pressed
again.

4 DESIGN REQUIREMENTS

For ergonomic purposes, the individual keys on the key-
board can be increased in size relative to that of a standard
keyboard. Increasing the size of and distance between keys
is a common fix for people with dexterity issues. However,
the key size is limited by how fast we expect people to be
able to type; if the keys are too big or are spaced too far
apart, then typing speed can suffer. A size that appears to
be a good balance is a minimum of 20mm on both sides of
the key cap, approximately 30% larger than usual. We will
also be using linear key switches because they are easy to
make and comfortable to press.

Due to the limited number of GPIO pins on a Raspberry
Pi, and the total number of characters that we want to
support (74 at minimum), the keyboard circuit is a matrix
circuit. This determines which key is pressed by actively
scanning the columns and seeing which row “reacts”.

The diodes are necessary to prevent unwanted current

Figure 1: System block diagram.

18-500 Design Review Report - 2 March 2022 Page 3 of 6

paths. The forward voltage on the diodes used in the ma-
trix circuit are required to have a forward voltage that is
less than 1.8V. This is because the Raspberry Pi would in-
terpret any voltage above this threshold as a high digital
signal. The circuit works by pulling the row pins low when
a key is pressed. This means that if the voltage across the
diode is more than 1.8V, it would not read any change at all
in the rows, even when keys are pressed. The total number
of diodes that we will need will match the total number of
key switches that are on the board.

Since the computer will see our device as a standard
keyboard, the requirements for being able to interface with
a text-to-speech program will come for free. Any keyboard
is usable for these programs, so ours will be no different in
this area.

In order to reduce the rate of common errors while us-
ing the keyboard, a combination of hardware and software
solutions will be employed. There will likely need to be
software that recognizes when a key is being held uninten-
tionally in order to avoid long key press errors. Also, a re-
movable keyguard will likely be required to prevent missed
key errors.

To keep latency low, there are a limited number of ac-
tions we can perform in software between detecting a key
press through matrix scanning and sending the key press
to the computer. The exact limit here will require testing.

5 DESIGN TRADE STUDIES

5.1 Designing a Mouse Alternative

For our implementation of mouse functionality, we had
many considerations to make. Most current solutions in-
volve a mouse alternative such as a ball mouse or a roller
mouse, or for the Microsoft adaptive controller, a large joy-
stick to control mouse functionality. We went over many
iterations of ideas but ultimately decided that these solu-
tions were not in line with what we wanted to implement.

All of these solutions have the added downside that the
control of a cursor would be very complicated and would
require very difficult movements to use. We wanted some-
one to be able to preserve the same precision as a typical
mouse. This compounded with our second criteria, which
was that we wanted the mouse and the keyboard to be us-
able at the same time. It is a simple feature but one that
is not typically seen.

We opted then to do a foot controlled mouse, which we
felt was a good alternative since we maintain the finer con-
troller of a typical mouse, without sacrificing the one hand
use we planned to implement for the keyboard.

5.2 Designing a Keyboard for a One
Handed User

The general layout of our design was going to be a one
handed keyboard. We felt this was an easier and more prac-
tical decision than designing a keyboard for two handed use

in which one hand’s mobility is limited.

Designing a one handed keyboard from scratch is likely
impractical, as one handed layouts already exist and have
likely not only been established for much longer, but also
been more thoroughly tested than any completely new lay-
out we could come up with. Considering this, we decided
to base our custom layout on a pre-existing design, but
modifying certain aspects to make it more useful for our
particular user and use-case.

By designing a keyboard that is meant to be used with
one hand, we also felt we create the potential for someone
to gain good typing speed with the device, despite having
SH.

5.3 A Keyboard for CP and SH

With the general design of the one handed keyboard al-
ready established, we needed to find a way to attend to the
particular difficulties of someone with CP. We went through
sources of people with CP to try and gauge what the typical
difficulties with CP, and more specifically SH, were. Among
these issues were keys being too small or being placed too
closely together. While these might seem like relatively mi-
nor issues, for someone with SH these issues are very real
and are the most common cause for accidental error input.

These are the particular considerations that were kept
in mind and should be addressed when designing the er-
gonomics of our device. These are the primary inspirations
for our choice to use 20mm keycaps and including a key-
guard in our design. Our feedback from Professor Carring-
ton also confirmed the importance of these elements in our
design.

We also decided on linear key switches as they are the
easiest kind of key switch to press down on. Other key
switches include tactile and click switches. We opted to go
with linear as opposed to these because linear key switches
have smooth travel as they are pushed down, while the oth-
ers have a kind of push-back part way through the motion.

5.4 Possible Further Considerations

One thing we did not consider when making our design,
but may be useful when considering economics in the fu-
ture, are the parts of the body which we are not designing
for. Our feedback from Professor Carrington gave us much
insight into the kinds of details we might have overlooked.

For one, although our design is intended to be used for
the side of the body that is high functioning, that does not
necessarily mitigate the problems present from the other
side. The less functional side of the body is prone to spas-
tic behavior which can affect the comfort and ease of use of
the side of the body that is high functioning through indi-
rect means. We can resolve this issue likely through having
a more considerate picture of the kind of person we are try-
ing to create this device for and stresses the importance of
finding a person with CP to consult.

18-500 Design Review Report - 2 March 2022 Page 4 of 6

6 SYSTEM IMPLEMENTATION

6.1 Keyboard PCB Specification

In Figure 2, the matrix scanning circuit is shown. To
determine which keys are pressed, an individual column is
set to low by the Raspberry Pi. Then the value on each row
is read. If the row has a value of 0 (less than 1.8V across
the diode), then the key in the column that is set low and
that row is pressed.

This is the primary mechanism with which the keyboard
operates, with each column we are not scanning set to high,
and the one we are scanning set to low. Quickly scanning
through each column is virtually undetectable to people
and is a typical mechanism for any keyboard. This means
that for n pins we get (n2)

2 possible inputs.
The diodes on the keyboard help to stop current from

flowing in a direction that isn’t desirable. While techni-
cally they are optional, most if not all standard keyboards
include them because it makes them less prone to error.

The PCB is a fairly standard matrix scanning circuit as
mentioned prior, with spacing between the switches allow-
ing for our non-standard 20mm key caps. The outputs of
the keyboard are then fed to the Pi by way of male header
pins. The Pi also includes male header pins and we plan to
have a female-female cable connecting the Pi to the Key-
board PCB.

Figure 2: Matrix scanning circuit diagram[1].

6.2 Typing Behavior

The keyboard operates in a slightly non-standard way
due to it being a one-handed keyboard, as well as hav-
ing some particular features which makes typing for people
with disabilities much easier. The typical combination keys
(num, shift, fn, ctrl, etc.) are modified by our software to
behave in a way that is atypical for a keyboard.

As an example: when the shift key is pressed, it will tog-
gle on, if pressed again, it will toggle off. If the shift key is
toggled and a letter is pressed, it will be typed as a capital
letter and then shift will be automatically de-toggled.

This allows for more comfortable one handed use of a
keyboard while also being a particular benefit to those with

SH. The keyboard also includes keys to replace left and
right click, which is also typical for one-handed keyboards.
This feature complements our mouse alternative which only
performs the cursor tracking function of a mouse.

6.3 Keyboard Ergonomics

The Ergonomics of our Keyboard is largely based on the
typical complaints from people with SH. Although people
with SH are capable of using both hands, the one that is
affected is seldom used, and most are relegated to typing
with one hand on a two handed keyboard.

We found that people with SH and CP tended to prefer
keyboards with larger keycaps because it was much easier
for them to type. A common error was also the acciden-
tal pressing of multiple keys, which people with SH often
tolerate but dislike. The feature of a keyguard is not of-
ten seen in keyboards made for adults, and is something
that people with CP often prefer. Our keyboard then, will
have non-standard 20mm keycaps, as well as an additional
keyguard which will be optional.

6.4 Mouse Implementation

The mouse will operate as a typical USB mouse but
with less features. Since left and right click are relegated
to the keyboard, the mouse only needs to perform cursor
trying. We tried to come up with a way for the user to
move the cursor while also being able to use the keyboard
at the same time. As such, the mouse will be controlled
with one foot.

The implementation of the mouse is fairly simple. We
will purchase a mouse and replace the housing with our own
custom design, made to be strapped to the underside of a
flat shoe. While implementing an entirely custom mouse
PCB was an option, it seemed impractical, especially since
our mouse does not have any unique features apart from
its unique ergonomic design

7 TEST, VERIFICATION & VAL-
IDATION

When it comes to testing an input device there are some
fairly common problems that arise. We hope to be atten-
tive to these considerations and build a thorough testing
plan for our device. We are limited by the availability of
people with CP to test the device with, which could be a
potential shortcoming in the future.

Regardless, we have tried to implement a survey based
testing plan to try and gauge the quality of our device from
comfort and ergonomics to ease of use and error prevention.
Ideally, we will observe people with CP using both our key-
board, and their standard input device for a computer.

The verification testing in this context would be seeing
if the keyboard and mouse combination is functional, and
validation testing is checking if people with CP can use our
keyboard to improve their input speed and/or accuracy.

18-500 Design Review Report - 2 March 2022 Page 5 of 6

7.1 Tests for Ease of Use/Ergonomics

In order to evaluate whether or not the ergonomic re-
quirements of the design are met, we plan to provide a sur-
vey to those who have tried using our design. There will be
two sections of text that we ask participants to type. One
will have simple sentences, and another will have more com-
plex sentences. The survey will ask the following questions:

1. Rate your usual typing ability from 1 to 10.

2. How comfortable would you say it was to type?

3. If you could/can only use one hand, how confident are
you that you could get used to using this keyboard?

4. How much harder would you say the complex text
was to type than the simpler text

5. Are there any mistakes you encountered while typ-
ing? (Example: Did you press a key you were not
intending to?)

6. Were there any inputs in particular that you felt were
too difficult to perform? For example, was it more
difficult than necessary to press the comma key?

7. Do you have any suggestions for improving the lay-
out?

Questions one through four are ranked on a scale of one
to ten, and we aim to average a score of at least seven
on all four of these. The remaining questions are meant
to provide qualitative feedback on the practical use of our
keyboard.

7.2 Tests for Determining Error Reduc-
tion

When we have users perform the typing task referenced
in the previous testing section, we will also monitor the
types of errors that they make. This, along with using ex-
ternal research that cites the most common types of errors
(and their rate of occurrence), will allow us to determine
how our design impacts error rates while typing.

7.3 Tests for Simultaneous Keyboard and
Mouse Use

To test the practicality of this feature, we will also have
participants play Minecraft (or some other software that
they are familiar with that can utilize simultaneous mouse
and keyboard use) before completing the survey.

7.4 Tests for Latency

Latency tests may require external tools to perform ac-
curately. Measuring the latency of the software strictly
within the Raspberry Pi can be done within the software
itself. However, measuring key-press to on-screen character
appearance may require other methods. The most accurate

method is likely using a video to record both the keyboard
and the screen. Then the time between both can be mea-
sured. However, the camera would need to be recording at
a higher frame rate than normal for this to work. There
can also be some testing by hand, where we try typing on
the keyboard and see how the latency feels.

8 PROJECT MANAGEMENT

8.1 Schedule

Our plan for implementing our accessibility based input
device begins mainly with the keyboard itself. In general,
whatever hardware we make has a complementary piece of
software which can be worked on in parallel. So the first
step of implementing the software and hardware of the key-
board is the first step. What follows is a design phase, in
which the practical aspects of our design have already been
thought through and we need only to deal with the physical
ergonomics of what we make.

At this stage we begin work on the mouse input de-
vice, which is less complex and requires only the design of
a new housing for mouse internals. This is why it is part of
the design phase and not the initial hardware and software
implementation phase.

See figure 3 for a graphical representation of our planned
schedule.

8.2 Team Member Responsibilities

There are mainly four different aspects to our division
of labor, hardware, software, design work, and design im-
plementation. For Hardware, Jorge and Ji are primarily
responsible. The software has typically been Carlos’ re-
sponsibility, but we are all capable of working on it. The
design work is a shared collaboration between everyone and
the actual implementation (3D printing, and construction)
will also be a shared responsibility.

8.3 Bill of Materials and Budget

Our budget of six hundred dollars is more than enough
to implement what we are planning to make. The highest
cost item will likely be the custom PCB, which we plan to
order from Oshpark. This board will likely cost a signif-
icant amount as it is quite large and there will likely be
a minimum order number of at least three boards. The
materials we will need are listed in table 1.

8.4 Risk Mitigation Plans

Our primary risk is implementing an input device which
is unhelpful. We have mitigated this already by meeting
with a specialist in accessibility devices and are making ac-
tive plans to seek out and consult someone with the relevant
target disability.

18-500 Design Review Report - 2 March 2022 Page 6 of 6

Table 1: Bill of materials

Description Quantity Cost Per Item Total
Custom PCB 3 $50 $150
Diode - 1N4148 42(min) n/a $5
Mouse Internals 1 $20 $20
3D Printing n/a n/a $50

$14.00

The more logistical risks of a custom PCB not working,
can be mostly mitigated by prototyping our keyboard cir-
cuit before committing to ordering the board. Other parts
such as the linear key switches can have delays, but that
risk does not seem very likely. All our components, even
the Diodes are available through many sites, even amazon.

9 RELATED WORK

There are currently many related accessibility input de-
vices on the market. Since we plan our use-case to be
video games (Minecraft) it is important to note Microsoft’s
adaptive controller. Like many of the alternatives currently
available, it is a generalized controller that can be adapted
to multiple disabilities. Our design differs from this in that
we are focusing on a very specific subgroup which could
benefit from a more niche input device.

There are a number of pre-existing devices which are
often used by people with CP but which are not tailored
to them. Examples of these devices include ball mouses,
roller mouses, and one handed keyboards. Our device has
the benefits of a one handed keyboard but with particu-
lar considerations for limited mobility, and common user
experience problems for people with spastic hemiplegia.

10 SUMMARY

Our accessibility input device is a one handed keyboard
with particular considerations for people with SH. This in-
cludes larger key sizes (20mm) as well as keyguards which
prevent unintentional input. We also include a mouse
which can be controlled with one foot, allowing people to
use the keyboard and mouse at the same time, a feature
that is rare in the alternatives already available on the mar-
ket.

Our challenges moving forward have to do with the par-
ticular challenges when designing for someone with SH.
Despite the fact that our design focuses on the high func-
tioning side of the body, the other side is prone to spastic
behavior which can affect comfort and ease of use, even if
our design is not intended to interact with that particular
side.

It is important that we think of the device as a gen-
uine improvement upon pre-existing alternatives and try
to design something which is attentive to all the problems
associated with CP and not just ignore the side of the body
that is not in use.

Glossary of Acronyms

• CP - Cerebral Palsy

• RPi – Raspberry Pi

• SH - Spastic Hemiplegia

References

[1] Input matrix scanning. url: http : / / www .

openmusiclabs . com / learning / digital / input -

matrix-scanning/index.html.

[2] Edmund F. LoPresti, Heidi Horstmann Koester, and
Richard C. Simpson. “Measuring Keyboard Perfor-
mance for People with Disabilities”. In: 2006.

18-500 Design Review Report - 2 March 2022 Page 7 of 6

F
ig
u
re

3:
G
a
n
tt

ch
a
rt

th
a
t
d
et
a
il
s
o
u
r
p
la
n
n
ed

sc
h
ed
u
le

fo
r
th
is

p
ro
je
ct
.

