
Accessibility Pi/O
Carlos Armendariz, Jorge Tamayo, Ji Chang

Problem Statement & Use Case

● Keyboard & mouse accessibility
● Disabilities, such as cerebral palsy

○ Most common form is spastic hemiplegia
○ Can use one arm and one leg

● Solutions are expensive and not open source
○ Or cheaper and very generic

● Limited keyboard/mouse combination options
● Designing solution covers software and circuitry

Common Typing Errors

LoPresti, Edmund F. et al. “Measuring Keyboard Performance for People with Disabilities.” (2006).

Correcting for most common errors

● Long key press errors
○ Most common kind of error for people with disabilities
○ Solvable using software as well as a toggle switch
○ Allow user to toggle long key press functionality on their keyboard

● Additional Key errors
○ Key guard and key size are key factors in minimizing this error
○ Optional keyguard allows the option to space out keys

● Missing key errors
○ Fixable through good key design and switch choice
○ using buttons that require minimal pressure

● Drop errors
○ Pressing two keys simultaneously treated as one
○ Shift key has both toggle and hold

Requirements

● 74 characters supported
○ 26 letters (upper and lowercase), 10 digits, space, enter, punctuation at minimum
○ desired punctuation: ():.,!?”-’

● Can interface with text-to-speech programs
○ Generally usable for standard text entry as well

● Can be used efficiently
○ Someone with one-handed use can type about 30 WPM

● Can use mouse and keyboard simultaneously
● Low Latency

○ key-press to USB latency of about 30ms
● Durable

○ Will not break if dropped from the height of a table
● Costs less than what is currently on the market

○ $200 at max
● Open source and reproducible

○ Good documentation and easy to obtain components

Technical Challenges

● Physical Layout
○ Effectively encoding 74 characters into a smaller number of keys
○ Simultaneous mouse and keyboard input that don’t interfere with each other
○ Maintain accessibility and typing speed while doing so

● Low Latency
○ Sensors for key presses must be fast enough
○ software must be efficient

● Encase the raspberry pi for durability
○ Creating a structure that is durable and easy to use

● Reproducibility
○ Ideally all parts used are easy to obtain and not prohibitively expensive

Solution Approach

● Raspberry pi with Python scripts
● USB to connect to Raspberry pi to PC
● Allow us hardware and software flexibility to solve

different problems
● Mechanical keyboard “switches”, because capacitor

keyboard can be finicky
○ Buy switches, make custom mount

● Foot operable switches
○ Shift key
○ Mouse

Testing Metrics

● For verification, we test with one hand and one foot
○ Could get a control group
○ How long does it take to get tired? How tired after five minutes?

● 30 WPM is normal for child unaccustomed to keyboard
○ WPM can be tested using an online tool

● Latency can be tested using software

Validation of Use Case

● Find someone with disability to test design
● Backup plan to test with CMU students
● Survey after use to measure Metrics

○ Comfort & ergonomics
○ WPM measurements
○ Common error avoidance

Tasks & Division of Labor

● Software - JT, CA
○ Receiving key signals from I/O and sending to external computer via USB

● Designing hardware - CA
○ Keyboard circuit design - JC, JT
○ Mount for Keyboard - CA
○ Mouse circuit design -JC, JT
○ Mount for Mouse - CA

● Build and Integration

Schedule

Final Thoughts

● There is a large number of solutions in the accessibility space
● Most designed to be applicable to the largest number of people
● Our design seeks to focus on a smaller area

○ People with spastic hemiplegia
○ Is the most common form that Cerebral Palsy takes

● Goal is to make a better input device for this group instead of a broadly
applicable one

● Ideally it will be open source
○ Can be recreated cheaply or potentially modified for more specific use cases

