Recap: Use Case/Application

GOAL: Improve usability of computer monitoring for those who have to look at a screen for long periods of time

PRODUCT: Projection that follows the movement of a user's head

- Head detection/calculation in real time (<30ms)
- Motor responds to head movement: 95% accuracy
- Projection placement: 95% accuracy
- Full pipeline (<0.2s)

Recap: Solution Approach

Approach:

#1: Pose calibration process

Camera detects head movement in order to align projection with user's line of sight

rotation and movement

#2: CV to calculate user's head

#3: Motor-controlled projector

Changes from Design Review

Calibration Design/Arduino Program:

- Calibration is now 3-phase process
- Lidar + calibration pipeline have been restructured to run only in setup() code

CV Pipeline:

- Tuning for accuracy
- Added translation calculations

Motor System:

• Replaced vertical motor/batteries

Changes from Testing: Robustness

Blurred user angle -> a delay between user locking the projector and then looking at the screen

Arduino-to-CV Communication:

<FIN, [user-to-wall], [user-offset], [user-height], [wall_distance]>

General Format: <[user_yaw], [user_pitch], [letter_code]>

The pairing process

Complete Solution

- Adhesive camera put on a wall of choice
- Projector secured to a pan-and-tilt system controlled by two high torque servo motors
- User goes through a 3 phase calibration process determine where the user is relative to the wall and projector (w/ LiDAR)
- Changes in head angle is translated to changes in motor(s) angles
- Motion of projector follows a cubic curve to match user's line of sight

Complete Solution: Quick Video

Test, Verification, and Validation

Requirements	Metrics	Test Plan
Gaze Estimation Speed	Real-time (< 30 ms)	Time from head movement to gaze estimation calculation
CV to motor pipeline latency	0.2 seconds	Time from when CV information is calculated to when motor moves
Motor responds to command	95%	20 Trials - Run function to move motor, respond incorrectly or not at all once
Projection placement accuracy	95%	20 Trials - Projection aligns with person's line of sight Error rate: 1 trial
System does not unnecessarily move	N/A	When user is making small movements (resulting in < 1 ft move in projection center), projection stays in place

Results

Requirements	Metrics	Results
Gaze Estimation Speed	Real-time (< 30 ms)	Yes
CV to motor pipeline latency	0.2 seconds	VPipeline XUser's Full Movement
Motor responds to command	95%	√ Yes
Projection placement accuracy	95%	pprox Dependent on calibration
System does not unnecessarily move	N/A	√ Yes

User Testing

Goal: Find the most natural, comfortable motion for moving the projection from point A to B

Method: Test the following motion on 10 users

Speed (x, y %): Slow: (30, 15), Medium: (45, 22.5), Fast: (60, 30)

Easing Function: Linear, Cubic, Quadratic

Results: The **fast speed** and **cubic easing function** resulted in the greatest user satisfaction

- Large panning distances were noted as very smooth
- Smaller panning distances were noted as a bit jerkier

Trade-Offs

Motor Smoothness vs. Lag Time

- Previously: Motor movement was jerky when following head pose but only had 0.3 second lag
- **Currently**: Motor movement is smoother but introduced 1 second lag when panning long distances because we wait to move the motor until the user has paused

*This trade-off goes against our initial specifications but has resulted in greater user satisfaction

Motor Movement

- Users found the fast speed to align best with their movement but found it to be slightly jerkier than other speeds
- However, users prioritized fast motor speed over smoothness

CV Program Robustness vs. Accuracy

- Previously: Yaw and pitch were solely dependent on current frame being processed
- **Currently:** Yaw and pitch are averaged with their previous 5 values which decreases their immediate accuracy but makes the program more robust to error

	2/7	2/14	2/21	2/28	3/7	3/14	3/21	3/28	4/4	4/11	4/18	4/25	5/2	
Project Planning														
Create presentation													ł	Key:
Define MVP													1	Rama
Define stretch goals													(Olivia
Work on Design Presentation													1	sabel
Work on Design Review													,	All
Ethics Assignment														
Work on Final Presentation														
Hardware														
Look for equipment/research														
Design projector stand														
Get equip/Test weight on joint														
Arduino code to control motors/Test speed	limits													
Build projector attachment														
Connect arduino functions to CV Comman	d													
Computer Vision														
Research library documentation														
Implement facial detection														
Estimate head pose														
Test facial landmark combinations for best	head pose es	stimation												
Implement eye tracking for calibration proc	ess													
Refine head pose estimation + integrate da	ay/night visior	n camera												
System Design and Usability														
Research Lidar/Projector Parts														
Research/Design Calibration														
Write pySerial Connector Code														
Integrate and test connector														
Write calibration code														
Integrate with Lidar														
Testing/Integration														
Testing pySerial with CV														
Combine headtracking/motor code														
Test and benchmark CV														
Test and benchmark calibration														
Prepare for Interim Demo: Retest														
Test and benchmark hardware performanc	e													
Refine calibration														
Conduct user studies														
Last minute refinements														