Use Case/Application

GOAL:

Improve usability of computer monitoring for those who have to look at a screen for long periods of time

PRODUCT:

Projector screen that follows the movement of the user's head

APPLICATIONS:

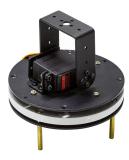
Medical Technicians, IT Professionals, Netflix and more!

Solution Approach

Camera detects head movement in order to align projection with user's line of sight

- Face calibration process
- CV to calculate head movement
- Motor controlled projector
- Caters experience of working to the user

Specification: Central Hardware

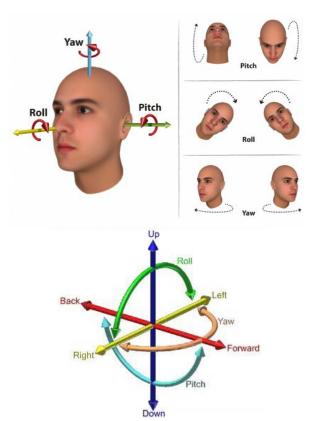

2 DOF Servo motor, can simultaneously move up to 180 degrees horizontally, 90 degrees vertically

Motor linked to an Arduino to receive commands

Stable projection, no vibration

Estimated battery life: 3 hours

Estimated weight: 8 lbs


Specifications: Computer Vision

User's head rotation detected and calculated in real-time (< 30 ms)

From centered position, head rotation can be detected up to ± 45 ° for each DOF (yaw, pitch)

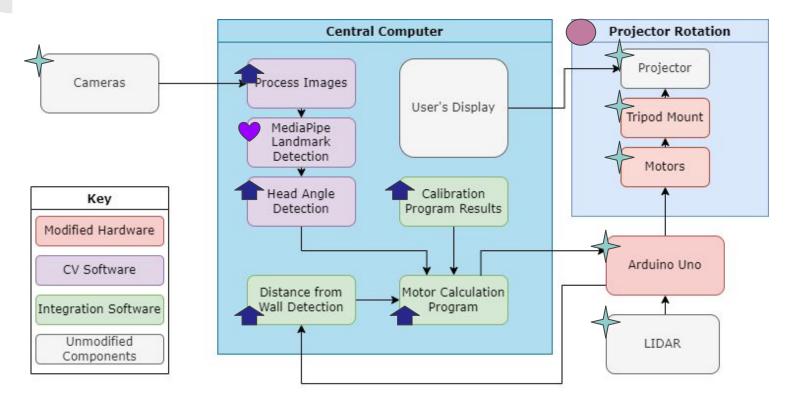
System can handle head movement up/down, left/right, and backward/forward up to 4 feet from initial, calibrated position

Small head movements, resulting in < 1 foot change in projection center, ignored by system

Specification: System and Calibration Components

Full Pipeline will be built to respond < 0.2 seconds

Pipeline will communicate using pySerial


Projector will be within 10 meters of the wall

Calibration system relies on user camera input (CV) and LiDAR < 0.125 of projection away from central head view

LIDAR range shall be > 10 meters, and accuracy must < 0.05 meter error

Camera must be responsive enough for CV specification in dim lighting

System Diagram

Implementation Plan

- 1. Gathering the pieces: CV, pySerial, Hardware
 - a. Hardware
 - i. Tripod with servo controlled "joint" that holds projector
 - b. Software
 - i. Use MediaPipe to identify facial landmarks
 - ii. Calculate head rotation based on yaw and pitch of head
- 2. Testing and Connecting the Pieces
 - a. Hardware
 - i. Arduino code to translate movement calculations to motor speed and direction
 - ii. Cap motor speeds to avoid jerky movements
 - b. Software
 - i. Calculations to connect head movement to projector movement (based on gaze estimation, position of person, position of projector)
- 3. Calibrating and Refining

Risks and Mitigations

Risk #1: Calibration program will need a lot of refining

- Aim to get a running version of pipeline before break
- Use hard coded estimation to start, and then refine and test different methods

Risk #2: Difficulties with distinguishing between unintentional and intentional head movements

- Research ways of making CV program robust to ignore unintentional small movements (ex. averaging the head pose between frames)
- Test different methods in calibration phase if necessary
- Introduce lock/unlock gesture so that user can opt for projection to not move

Risk #3: Difficulties with dim lighting

Research cameras that can work well in our setting

Test, Verification, and Validation

Requirements	Metrics	Test Plan			
Gaze Estimation Speed	Real-time (< 30 ms)	Time from head movement to gaze estimation calculation			
CV to motor pipeline latency	0.2 seconds	Time from when CV information is calculated to when motor moves			
Motor responds to command	95%	20 Trials - Run function to move motor, respond incorrectly or not at all once			
Projection placement accuracy	95%	20 Trials - Projection aligns with person's line of sight Error rate: 1 trial			
System does not unnecessarily move	N/A	When user is making small movements (resulting in < 1 ft move in projection center), projection stays in place			

Work Distribution

Isabel - Integration/Calibration

Integrating CV and hardware with PySerial for projector movement, calibrating + refining + testing

Rama - Hardware

Obtaining motor and arduino, connecting arduino to motor and CV, calibrating + testing

Olivia - Computer Vision

Facial landmark detection, calculating gaze estimation, calibrating + testing

	2/7	2/14	2/21	2/28	3/7	3/14	3/21	3/28	4/4	4/11	4/18	
Project Planning												
Create presentation												Key:
Define MVP												Rama
Define stretch goals												Olivia
Work on Design Presentation												Isabel
Work on Design Review												All
Ethics Assignment												
Work on Final Presentation												
Hardware												
ook for equipment/research												
Design projector stand												
Get equip/Test weight on joint												
Arduino code to control motors/Test	speed limits											
Build projector attachment												
Connect arduino functions to CV Co	mmand											
Computer Vision												
Research library documentation												
mplement facial detection												
Track head movement												
mplement eye detection												
Track eye gaze												
ntegrate head and eye tracking for	gaze estimation											
Add eye-tracking focus feature												
System Design and Usability												
Research Lidar/Projector Parts												
Research/Design Calibration												
Write pySerial Connector Code												
ntegrate and test connector												
Write calibration code												
ntegrate with Lidar												
Testing/Integration												
Testing pySerial with CV												
Combine headtracking/motor code												
Test and benchmark CV												
Test and benchmark calibration												
Prepare for Interim Demo: Retest												
Test and benchmark hardware perfo	rmance											
Refine calibration												