
1
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

CryptoHash
David Cheung, William Zhao, Lulu Shyr

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—CryptoHash is a system capable of algorithmically
choosing the optimal distribution of compute resources allocated
to mining from a selection of different cryptocurrencies. It
operates with performance measured in the number of hashes
comparable to that of conventional methods while maintaining
the benefit of flexibility. Through the use of customized
hardware, our cryptocurrency miner is able to maximize profits
even with a low initial capital investment. The design is scalable
and benefits from having multiple miners running in parallel.

Index Terms—Cryptocurrency mining, decision tree, FPGA,
hashing, proof of work, Raspberry Pi, SPI protocol

I. INTRODUCTION

The increase in retail interest in cryptocurrencies the past
five years has come alongside a volatile increase in prices as
well. While early miners were able to use standard laptops and
consumer-grade computers, current miners must adopt
specialized hardware such as ASICs in order to remain
profitable. Gone are the days where an individual could run a
Bitcoin miner on their CPU overnight and expect anything
more than a few pennies for their trouble. As their name
suggests, an application-specific integrated circuit or ASIC
miner targets a specific cryptocurrency running a specific
hashing algorithm. These miners are not customizable and
once a design is chosen, it cannot be reprogrammed. On the
other hand, GPUs are more generalized than ASICS and can
switch from mining one coin to another relatively quickly.

Our solution aims to be a fully customizable miner that
follows both interday and intraday price action in order to
select which cryptocurrency is best to mine. This approach no
longer suffers from the rigidness of ASICs while maintaining
a respectable hash rate comparable to that of a GPU.
CryptoHash is targeting both enterprise and consumer users by
designing a system that works with as little as one FPGA or
can be scaled to above ten. To support a one-in-all solution for
cryptocurrency mining, the user will also be able to view
metrics relevant to the system such as current hash rate, total
returns generated, and price charts for the various supported
cryptocurrencies.

II. USE-CASE REQUIREMENTS

The web app will be displaying metrics relevant to the user
such as the hash rate and current prices of mined
cryptocurrencies. These metrics will be updated every minute

such that they are frequent enough for the user to receive
real-time data but spaced out such that our communication
network can support it. The choosing algorithm will also make
its decision based on these minute by minute updates. In order
for the system to choose the optimal way to distribute compute
resources, the choosing algorithm will need to examine all
cryptocurrency pricing data from the preceding three months.
We chose three months as the target time frame because
decisions made in the present should be weighted more
heavily towards what has happened recently. However, too
short of a timeframe and there wouldn’t be enough data to
generate a meaningful trend to base our model on.

For this system to be profitable and users to purchase it, the
hash rate must be at least competitive with solutions currently
on the market. Thus, we will be comparing our system with
GPUs and their respective hash rate. Consumer-grade GPUs
have a hash rate around five million hashes per second (5
Mh/s). We are looking for at least 90% of this hashing power
but with the added benefit of automatic configuration
switching.

An important component of the system is having the
cryptocurrency miners react in real-time to the choosing
algorithm. Thus, the system will have to keep communication
overhead minimal by limiting the amount of time it takes for a
command to be reflected. At the instance when the choosing
algorithm makes a new decision, the miner should change its
configuration to reflect these new settings in less than 10
seconds. This ensures that our system is able to keep up with
market moving news.

One of the driving forces of cryptocurrency mining is the
opportunity to generate an income from it. Users will not
adopt our system if it results in a net loss every month. Thus,
after factoring in energy costs, the system must be able to turn
a profit.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our Raspberry Pi pulls the latest pricing data for our
targeted cryptocurrencies using an API provided by
cryptocompare which provides more accurate pricing data and
other current information about each coin’s blockchain. This
data is then inputted into our custom machine learning model
which decides the optimal percentage of computing power to
allocate to each cryptocurrency. The backbone of the inference
is the decision tree that is trained on historical data. The output
of the decision tree serves as an input to the recurrent
tendencies that dictate the spread of computing power. Other
factors such as number of transactions and changes in
difficulty will affect the tendency numbers before comparing
against threshold values to get the ultimate spread. The
historical data is obtained from Binance’s API because it
provides the historical data for free and allows the 10 second
granularity that we desire. The entire decision making process
takes into account a number of factors such as current price,

2
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

volatility and daily volume to name a few. Our web
application will also display this pricing data in an informative
way for the user.

The machine learning model must predict the next best
configuration based on previous pricing data and the other
indicators mentioned above. In order to maximize profits, our
system is predicting which cryptocurrency will outperform
relatively in the next minute. If Cryptocurrency A falls by
0.10% but Cryptocurrency B falls by 0.05%, we want our
system to take advantage of this spread and adjust accordingly.
Depending on the training results of our model, this could
mean increasing our weighting towards A because mean
reversion says that A will eventually return to its long running
average or our model might select B because, in the short
term, it exhibits better performance.

Fig. 1. Annotated Photo the system running with two FPGAs

After the choosing algorithm selects an optimal spread, the
Raspberry Pi stores this data in its memory. The
communication software on the Raspberry Pi then has to
communicate this spread to the FPGAs as a sort of FPGA
controller, dictating which FPGAs need to change and to
which mining configuration. The changes in spread are
manipulated such that each change will only change one
board, both to allow margin of error for the predicting process
and as a restriction directly imposed by the Quartus
programmer. The margin of error exists so that if the spread
was changed due to a short period of time; in this scenario,
only one board would suffer the overhead of switching and the
loss of work done. Additionally, the Quartus programmer is
unable to parallelize putting different configurations at the
same time even as different processes. The communication
software has another aspect where it must serialize the data
from the internal buffers into a bit stream that can be
transmitted through the GPIO pins. Our system will connect
with established mining pools that allocate work for each of
the cryptocurrencies that we are interested in. The Raspberry
Pi will retrieve work from these pools and send this data to the
FPGAs by serializing the data and sending through the

aforementioned GPIO pins.
The entire system communicates using the SPI protocol

which requires four wires to implement. The four wires are
MOSI, where the inputs to the FPGAs will be sent , MISO,
where the inputs to the Raspberry Pi will be sent, SCLK,
where the clock from the Raspberry Pi is sent, and the select
lines to help control the FPGAs. The Raspberry Pi software
will generate clock transitions and assert select wires in
accordance with this protocol. The communication software is
primarily done through the spidev python library. This places a
limit on the clock speed that the FPGAs ultimately can run at
since the Raspberry Pi can only utilize the SPI protocol at
even divisions of 125 MHz.

Once the data reaches the FPGA GPIO pins, it is
deserialized to recreate the initial data packets. The
communication modules are responsible for performing this
deserialization and memory storage. The use of a Hardware
Description Language allows us to design the module with
minute detail and also enables us to model the system. The
FPGA will output a signal back to the Raspberry Pi once these
packets are received to acknowledge their full transmittal.
However, in the case that data transmission is corrupted, it will
inform the Raspberry Pi of this corruption and request it
resend the full packet.

The hashing modules on the FPGA are responsible for
taking each of the cryptocurrency proof of work puzzles and
solving them. For the majority of them, this consists of a
specific hashing algorithm being performed on a block of data
and comparing the resultant hash to some target. The objective
is to be the first to find this hash in order to receive a reward.
Once a valid hash is found, it is outputted from the hashing
module back to the FPGA’s communication module. There, it
will be serialized to be sent using the GPIO pins following the
SPI protocol.

When the Raspberry Pi receives this hash, it sends it to the
mining pool for final submission. The mining pool will
distribute a reward to each member if the hash was the first to
be accepted by the blockchain. There will be instances where
we will receive a reward even when we do not submit a hash
in time. This is because each member of the mining pool
submitting a valid hash rewards all other members. The
Raspberry Pi will keep track of our total rewards earned so far
to be displayed on the web application.

With all this said, many things have changed from the
Design Report. Most of the modes of communication we had
originally planned to use were not going to work whether it
was because the Raspberry Pi runs on ARM and our FPGA
boards only run on Intel processors or how the nonces are sent
back to the Raspberry Pi. The entire system was supposed to
be stand-alone, but due to the processor dependency, it had to
be connected to a separate machine to program configurations.
Some of the external factors such as relative strength index
never made its way into the decision making process. The
APIs we used for the historical data and current data had to
change because Binance’s API was not providing accurate
information for Ethereum despite having a valid API key.

3
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

Fig. 2. Block drawing of overall system, illustrating the dataflow between various subsystem

IV. DESIGN REQUIREMENTS

The web app must be responsive to user inputs. The latency
when a user switches a graph chart from one time frame to
another must be less than 100ms. This should be the case
whether the user goes from a month view to a week view or
from a year view to a day view. When the user changes the
graph to display another cryptocurrency, this understandably
takes longer to clear the current graph, fetch the new data
using Binance’s API, and create the new graph with this fresh
data. We are limiting the refresh time for this use case to be
less than 200ms.

Our choosing algorithm must fetch data frequently in order
to make an informed decision on the optimal distribution of
computing resources. In order to maximize profits, we want to
be aware of any sudden change in prices. Thus, the data
fetching must happen, at the latest, every minute to ensure our
system remains well-tuned to current events. The model we
create will also be expected to have 70% accuracy when
predicting the next best move. Some of this inaccuracy will
come from the fact that cryptocurrencies are inherently
volatile. We must also consider the fact that our model cannot
predict when a certain piece of news will impact one
cryptocurrency more than another.

Once the choosing algorithm has an optimal configuration,
it must send this information to the single board computer

(SBC) which in turn broadcasts it to each miner. From the
time that the choosing algorithm makes a decision to when the
first miner receives this configuration, no more than 10
seconds should elapse. This keeps our communication
overhead minimal and dedicates compute resources to the sole
task of mining.

Communication is a key component of our system. We will
be running six miners in parallel each with a set of wires
connected to the SBC. Any time there is a physical connection
to a wire or from a wire, there is the possibility that bits will
be dropped or that data could become corrupted. Our system
must be resilient enough such that 95% of all bits in packets
are sent properly.

As mentioned in the Use Case Requirements, our system
will need a competitive hashing rate in order to be a viable
alternative to GPUs. Hashing a block of 512 bits with
SHA-256 takes 64 clock cycles. For a 50 MHz clock, this
equates to one hash every 1.28 microseconds or ~781 kh/s. We
will need to modularize our hashing controller and generate
multiple smaller subsystems in order to improve this
performance. To achieve a hash rate comparable to GPUs of 5
Mh/s, our hashing modules will need to be compact enough
such that each miner will be able to support multiple copies
running in parallel.

Each of the hashing modules will also need a long enough

4
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

critical path such that they are able to complete a substantial
amount of work yet stay within one clock cycle. The design
must have the critical path of the system reside in the hashing
modules rather than communication. This allows the system to
take advantage of each clock cycle to the fullest extent
possible. The latency of the hashing module will be within
80% of the clock period.

V. DESIGN TRADE STUDIES

The trade-offs for our design lie primarily in the choice of
the hardware. At the most fundamental level, the hardware we
use includes a Raspberry Pi to facilitate communications and
FPGAs so that we can configure the system. The main driving
factors that influence what hardware we select are the
performance and the component cost. Other trade-offs include
ones between profitability and the supported coins and model
complexity and accuracy. These trade-offs influence system
level complexity and communication complexity. This also
encapsulates the trade-offs made between hash rate and the
reduced tendency to invoke switching overheads, which we
will call robustness.

A. FPGA Trade-Offs
At the very core of our design, we want to meet the

performance requirement of our system while still allowing
for each miner to be customized. We recognize that FPGAs
will not be able to achieve the same hash-rates as specialized
hardware, yet we choose to use them anyways because they
can be reprogrammed quickly. FPGAs are a good candidate
for satisfying our requirement of a design being able to switch
under 10 seconds. To close the gap between achievable hash
rates of FPGAs versus ASICs, we use multiple boards to
model a multicore system. In this essence, we are also limited
by our allocated budget that needs to be shared with other
components. This fundamentally pushed us to use the
components already listed in the Inventory, where we
ultimately made a decision between the DE0-CV and DE2-115
boards. The DE0-CV differ primarily in the number of logic
units and the price. DE0-CV boards are relatively cheap when
compared to DE2-115 boards, but they have much fewer logic
elements. We ultimately chose to go with the DE0-CV boards
since they’re smaller and multiple of these boards would be
easier to assemble.

B. SBC Trade-Offs
To make the design portable and have the connections be

more easily understood, the communication command center
is implemented as a single board computer. In particular, our
design uses a Raspberry Pi Model 4. Once again respecting the
allocated budget, we wanted to take a look at the inventory
first before making any purchases. The Raspberry Pi Model 3
was not worth the price for the small amount of computing
power it would be able to provide. The Raspberry Pi Model 4
also came in differing sizes of RAMs, which struck a tradeoff
between performance and cost, but seeing as we didn’t need
that much computational strength from the single board
computer, we settled with 4 GB of RAM. The largest tradeoff

analysis came down to the Raspberry Pi Model 4 and the
RockPi. We compared the cores, the I/O, and the operating
system/documentation. The Raspberry Pi has a quad-core
while the RockPi has a six-core, but there are 4 main things
the SBC needs to continuously do, so any number of cores
greater than or equal to 4 would suffice. Both Pi’s were
capable of supporting GPIO I/O, which is the direct
communication between the FPGA and the SBC. The largest
factors that played into choosing the Raspberry Pi was that the
documentation for it was more established than for the Rock
Pi and that we wanted the faster cores on the Raspberry Pi so
that tasks would not get scheduled onto the slower cores on
the Rock Pi for no benefit.

C. Supported Cryptocurrencies Trade-Offs
The objective of the project is being able to mine multiple

cryptocurrencies at the same time and have a choosing
algorithm that can choose between the coins to maximize
profit. However, there exists a plethora of coins, with only a
subset of which can be mined with a proof-of-work system
such as ours. The coins that are proof-of-work also tend to not
share the same algorithms. Thus, adding support for a coin
means needing to have configurations for that algorithm
implemented and compiled in the FPGA. This system allows
for easy scalability, but the modules have a significant
overhead in data size and communication because the headers
would have to change. For example, adding functionality for a
currency like Litecoin, would require implemented Scrypt
modules for the FPGA, which would also necessitate
recompilation.

Our implementation focuses on Bitcoin and Ethereum, the
two most popular cryptocurrencies. While maximizing profit
is one of our project’s requirements, we needed to make a
tradeoff where instead of mining some altcoin that could have
some more potential to give us higher returns, we mine a coin
that is well established. Again, our primary focus is greater
than just making the most efficient miner that makes as much
money as possible. Our focus includes that, but is also
constrained under the selection of the coins. As well
established coins, the protocols of how Bitcoin and Ethereum
work are more understood and there exists more
documentation and research on mining these coins. It also
serves as a more welcoming setup where people can mine the
currencies they are more familiar with.

D. Selection Model Trade-Offs
The choosing algorithm is modeled as a decision tree that is

trained every month and inferred from every minute. There are
a few trade-offs that exist here, in choosing the type of the
model and the hyperparameters.

In choosing the decision tree, the model we selected had to
run very quickly and without much computational power
because we don’t want the entire system to constantly be
under great stress. The model is trained and inferred on the
Raspberry Pi, which also has to deal with all of the
communication coming from the webapp, mining pools, and
the FPGAs. It is imperative to keep other computation low so

5
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

that computing power for the communication is not
compromised. The training process for a decision tree also
does not take very long either since there aren't any weight
updates in the form of back propagation or gradient descents.
This allows for the model to be retrained quickly on a large
data set containing three months of data. The largest drawback
that decision trees have is that they’re usually not as accurate
when compared to something like a Deep Neural Network.
The neural networks usually pay for this accuracy with the
longer time it takes to converge. Due to the nature of
cryptocurrency volatility, it is hard to predict the behavior
especially since it is so sensitive to current events, or other
events that price and price trends tend to not explain very well.

The hyperparameters for the model include the three months
of data for training, the frequency that the model or inference
is updated, and the history of mining pool rewards. For the
training data, we have access to a lot of data from the Binace
API, but if we train with too much data, then the model will be
very flawed where it tries to use very old data to predict the
future. However, we can’t settle on too little since it wouldn’t
be enough to paint a good picture of the climate of the prices
due to the inherent price volatility. The monthly model update
was a trade-off between performance and weight updating.
The model needs to update its weights so that it doesn’t
become obsolete. Updating it every month is also a way to
amortize the cost of training. The one minute switching allows
the FPGAs to have some leeway in switching between the
cryptocurrencies. We also want to track the more recent
rewards from the miners to try and implement the greedy
algorithm, biasing the decision based on which mining pools
provided more taste.

E. Number of Board Trade-Offs
Due to the number of logic elements present in the DE0-CV

boards, and the innate need of multiple boards to switch
between, our project utilizes multiple FPGAs. The innate need
lies in the fact that the proof of work mining process is
deterministic in the nonces that it cycles through to determine
a correct nonce; switching configurations would require the
process to start over from its programmed beginning and
saving where the board left off of is unnecessary added
complexity that may not be relevant if the mining puzzle is
now different. We were able to avoid the bottleneck of the
limited number of GPIO pins with the Pi Wedge, but
connecting a large number of FPGA boards to the Pi Wedge
still had a space bottleneck. We requested a total of 10 FPGAs
from the ECE inventory, so we tested configurations out based
on our supply as well.

The setups we tested were two boards, six boards, and ten
boards. Our ultimate goal at the beginning was to utilize ten
boards at the same time to produce our desired hash rate. The
two board setup would be our base case where we would
ultimately do most of our testing. The six board setup was
decided seeing as six is the midpoint between two and ten.
With more boards, there comes increased hash rates because
there is simply more processing power and more logic
elements. However, more boards also means that there is more
communication overhead and the thresholds for the spread that

the decision making process outputs are closer together. If the
thresholds are closer together, then there will be more
switching that happens resulting from very temporary gains.
This results in an overall decrease in the robustness of the
entire system where a few predictions of one coin can waste
time and resources switching from one configuration back to
itself, ultimately having to start from scratch for the proof of
work process. This switching overhead is compounded by the
time necessary for Quartus to load the mining configuration
onto the board and wait for a reset signal to begin mining
again.

From testing with the three different number of boards, we
found that having fewer boards in the system allowed for a lot
of robustness, but the hashrate for either coin was poor given
our unoptimized hashing algorithms and that FPGAs are not
streamlined for hashing like ASICs can be. The opposite
results were observed when testing the system on ten boards,
where the overall system, even when it entered the phase
where it heavily favors one coin, was experiencing a few bouts
where it decided to mine the other coin for one or two
iterations. Having ten FPGA boards was able to significantly
multiply the hash rate. The six board configuration was the
setup we decided to use in the final video and demo since it
was able to strike a balance while also lessening the load on
the shared communication buses.

Fig. 3. Chart depicting the switching for different board configurations

VI. SYSTEM IMPLEMENTATION

A. Web Application
The web application will be built using the Django

framework in Python and will be deployed onto the cloud
using the Amazon EC2 instance. Django provides an
authentication system which handles user accounts, groups,
and permissions. We will use this to implement our login and
registration page. When the user first accesses the web
application, they will be greeted by our login page, they will
then input their username and password to log in. If they do
not have an account already, they can click registration and be
redirected to the registration page to register for an account.
Later on, if they are already logged in, they will be redirected
to the home page. On the top of every page, there will be a
navigation bar where users can choose to logout or go to a
specific page.

6
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

On the home page, the user will see a table of the current
cryptocurrency prices, price and percentage changes within
the last 24 hours, high and low prices, and quote volume. In
addition to the statistics displayed in the table, the user will
also be able to see the candlestick charts and the line charts for
the cryptocurrencies to get a better sense of the trends in
cryptocurrency. The statistics for the cryptocurrencies will be
obtained by using Binance’s API.

We will also be displaying the current spread ratio the
miners are using based on the decision from our choosing
algorithm and the revenue made from the FPGA on the top of
the home page in a profile section. The web application will
refresh every minute such that the metrics will be updated
frequently enough for the user to receive real-time data.

Fig. 4. Diagram of Screenshot of Web Application

B. Raspberry Pi and Mining Pool Communication
Acting as the communication center, the Raspberry Pi needs

to communicate with the mining pool for each respective
cryptocurrency. The Raspberry Pi will obtain work, or the
puzzles, from the mining pools primarily through the stratum
tcp protocol that modern mining pools use. While the reward
for mining alone would be much higher, we decided not to
attempt this so that we do not have to compete with miners
sporting high hash rates that we can not achieve. Connecting
and communicating with the respective blockchains also
incurs unnecessary overhead in communication and resources
that is beyond the core concept of our project. This topic will
be revisited in the future work section.

The information needed to connect to different mining
pools, including different usernames and passwords will be
stored in a configuration file. The Raspberry Pi will read the

file and connect to the mining pools and start to receive work
from the mining pools. The work that the mining pool
provides will have to be processed and placed into a PUZZLE
packet to be sent off to all of the FPGAs. The FPGAs are
configured to perform the check themselves and will only send
the Raspberry Pi their solution in a SOLUTION packet when
they have a valid solution. Since the packets are assumed to be
valid, the Raspberry Pi will parse the packet and send the
solution to the mining pool as soon as possible to maximize
the rewards. Therefore, the Raspberry Pi will have to
continuously stay in connection with the mining pools, which
also allows it to receive new puzzles when the puzzle changes
for the currency.

The communication between the Raspberry Pi and mining
pools is most commonly encapsulated in the Stratum TCP
protocol that runs on JSON RPC. The mining client on the
Raspberry Pi has threads that house miners for each currency
each of which connect to the respective mining pools and
communicate with the appropriate responses. The replies and
parameters from the mining pools are also different based on
the coins and are treated as such in the respective miners.

C. Coin Choosing Algorithm
The choosing mechanism will automatically switch between

what cryptocurrency our setup mines for. It is also the default
configuration that seeks to optimize which cryptocurrencies
are mined in an effort to maximize profit. At a high level, it is
a trained model that is trained every month with the past three
month’s worth of historical data from Binance’s API. It will
perform inference, and thus switch between cryptocurrencies,
conducting inference on a ten second basis, which does not
equate to switching between configurations every ten seconds,
but checking to switch every ten seconds. The model takes as
input the current price of the cryptocurrencies, the current
price trend for the past ten minutes, and the recent rewards
from the different mining pools, among other parameters. The
model will have a greedy algorithm that will bias the model to
want to mine more of the cryptocurrency that has higher
payouts. The model strikes a balance between the price and
trend where if a coin grows in price with a favorable trend, it
will attempt to bias its weights to switch some portion of
mining power to that coin.

The fundamental algorithm that the choosing mechanism is
based on is a decision tree, where we use each input and
calculated input as nodes. Every month, the model will be
trained with three months of historical data from Binance so
that the decision tree can keep up with the most recent data..
Throughout the month, the model will run inference every ten
seconds where it runs through the model with the current
price, current trend, and earnings history from the mining
pools. The decision tree result is stored and compared with the
next time to generate test results that will later be used as
accuracy checks for the testing and validation portions. The
decisions will also have some threshold value that changes
every ten minutes, which is also the time frame of data we
keep track of as inputs. The most recent earnings from the
different mining pools will also be stored in addition to the

7
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

fractional share of the mining power corresponding to the time
of the earnings.

D. Raspberry Pi and FPGA Communication
The system uses a Pi Wedge with one end inserted into the

40 GPIO pins found on the Raspberry and the other end into a
breadboard. The FPGAs will receive their inputs by
connecting jumper wires from their GPIO pins into the
breadboard. Using a Pi Wedge breadboard implementation
allows us to scale the system without being limited by the
amount of pins available on the Raspberry Pi.

The Raspberry Pi uses four GPIO pins to output to the
FPGAS. The first is a data wire that sends the mining pool
puzzles bit by bit. Next is a data ready wire that is asserted
when there is valid data being sent. The last two wires send
the clock signal and the reset signal respectively. The
Raspberry Pi clock operates at a higher frequency than the
FPGAs so we need to sync both components to a common
clock signal. One issue we ran into was having the Raspberry
Pi use a clock signal sent from the FPGA. The SPI protocol
requires specific clock frequencies so this approach did not
work. One of the ways to fix the issue was instead of having
the FPGA send in the clock, the Pi would be the one that sends
in the clock signal. There will also be an asynchronous first in
first out (FIFO) buffer that stores the nonces that need to be
sent into the Pi. The nonce will be stored into the buffer with
the FPGA clock signal. When the Pi is requesting a nonce, it
will read from the buffer using the Pi’s clock so that it is
outputting at a rate that the Pi can process. In the end, the
design was too big and it wasn’t able to fit on the DE0-CV
board that we choose when compiling on quartus. In the
future, we can choose a bigger board or refine our whole
design so that it can fit on the board

After the choosing algorithm on the Raspberry Pi
determines that a configuration switch is necessary, the FPGA
must receive a reset signal in order to initialize internal buffers
and begin mining. All cryptocurrency configurations on the
FPGAs will be expecting a single type of data packet from the
Raspberry Pi, namely a PUZZLE packet. This contains an
eight bit header and the proof of work puzzle received from
the mining pool. The header has five bits which indicates the
FPGA the packet information is meant for, and three bits for
the cryptocurrency the puzzle is for. Different coins have
different puzzle sizes so we need to handle variable length
packets. For the two coins we have planned, the Bitcoin block
header is 80 bytes and the Ethereum block header is 64 bytes.
This puzzle is stored in the Raspberry Pi and serialized in
order to transmit as a single bit through the GPIO pins.

When an FPGA finds a valid nonce from mining, it couples
this nonce with an eight bit header to send to the Raspberry Pi.
Similar to the previous header, it has five bits for the FPGA
the packet information came from, and three bits for the

cryptocurrency the nonce is for. Bitcoin uses a 32 bit nonce
while Ethereum has a 64 bit nonce. The Raspberry Pi will
need to be able to parse the input packet and determine how to
submit this nonce to the mining pool.

E. FPGA Hashing Module
We designed custom FPGA mining controllers to handle the

puzzle input and distribute work to the numerous hashing
modules. For Bitcoin mining, there are eight of these hashing
modules. Each of them takes in the 80 byte block header and
replaces the last 32 bits with a 32 bit nonce. Hashing module
one starts with a nonce value of 0x0, module two starts at
0x5555555, module three at 0xAAAAAAA, and etc.

Bitcoin uses SHA-256 as its hashing algorithm which we
implemented in SystemVerilog. The block header with the
replaced nonce is inputted into SHA-256 which pads the data
such that it is a multiple of 512 bits. The output hash of this
first round is inputted to a second SHA-256 module which
performs a hash of a hash. The hashing module takes this
second hash and compares it with a hash target.

We now describe how this hash target is calculated. Each
Bitcoin block header contains a 32 bit difficulty field. The first
24 bits of this field is left shifted by the value of the last 8 bits
of this field. This creates a 256 bit hash target to compare
against. If the output of the second hash from SHA-256 is
above this target, the nonce used for the block header is
incremented by one and the process repeats. If, however, the
second hash is below the target, this means that the nonce is
valid and the FPGA sends this nonce to the Raspberry Pi. With
232 and 264 number of nonces to try for Bitcoin and Ethereum
respectively, this hashing process represents the proof of work
process of mining.

Ethereum uses a completely different hashing process to
find a valid nonce. One of the fields inputted in the 64 byte
block header is the current block number. The FPGA mining
controller takes the block number and generates a seed from it
by hashing 0x0 with Keccak-256. The output of this is hashed
again with Keccak-256 in a process whose length is dependent
on the block number. This seed is then used to create a cache
of random values. The first value of the cache is the
Keccak-512 hash of the seed with subsequent values of the
cache being the Keccak-512 hash of the previous value.

Once the cache is filled, the hashing module then begins the
proof of work hashing process. The block header, a 64 bit
nonce, and the cache is combined and hashed together. Due to
the relatively obscure nature of Keccak, we were unable to
find good documentation outlining its hashing process. Thus,
we referenced an already implemented SystemVerilog version
and used that in our Ethereum mining controller.

As soon as either the Bitcoin or Ethereum hashing modules
finds a valid nonce, it will communicate this back to their
respective mining controllers. The controller will take the 32

8
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

bit or 64 bit nonce and serialize it in order to send to the
Raspberry Pi.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for Web Applications
The most basic validation method for the user interface on

the web application will be clicking through each button and
tab making sure the page loads according to user input. For
example, clicking on the logout tab and submitting the
registration information should bring the user back to the login
page and inputting the correct username and password on the
login page should bring the user to the home page. We can
print out the information stored in the profile model in the
terminal to make sure all the information is stored correctly.
On the home page there will be five options for the mining
ratio that the user can choose from. After hitting the submit
button, the page should refresh and we can utilize a print
statement that prints out the option selected to make sure the
data is stored correctly and ready to send to the FPGA. For the
table and graphs that are generated from Binance’s API, we
can compare the numbers to the values displayed on the
official Binance website to make sure we are getting the
correct data from the API database and parsing it correctly on
the web application. Similarly with the graphs, we can
compare them with the graphs on the official website to make
sure the general trend is correct.

B. Results for Model Accuracy
Validation of the choosing algorithm is difficult to quantify

and even more difficult to create a highly accurate predictor of
the price fluctuations. Our previous requirement was set to
70% which is better than the 50% from randomly guessing.
This accuracy number was constructed with the understanding
that it isn’t very high because price and price trends don’t
paint a complete picture of how cryptocurrency prices
fluctuate. The prices are very volatile and can be easily
swayed by public figures, current events, or even just random
buyer hesitancy. These are all difficult to quantify and
virtually impossible to predict in advance. However, as our
project and our understanding of our project's fundamental
goals developed, we developed a systematic process to
determine a metric for the accuracy for our decision making
process.

To test the accuracy of the algorithm, the system was run for
200 iterations where the pricing data for each coin and the
spread output were logged. Without looking at the predicted
spread and only looking at the pricing changes, an ideal
switching metric is produced. This testing process simplifies
the switching process to only consider the price change and
the price trend but with the added benefit of being able to
consider the changes in hindsight. After multiple iterations of
testing on a two board configuration, which is the simplest
configuration to reason about accuracy, the best run is depicted
below with an accuracy of 85.5%. This allows our decision

making process to boast at least 85% accuracy.

Fig. 5. Graph depicting differences between our spread and an ideal one

C. Results for Configuration Switching Overhead
One of our requirements was to be able to switch FPGA

configurations within ten seconds of the command being
inputted. We tested for this by having the choosing algorithm
run for a period of time based on pre-trained data. It generated
a set of spreads that was known ahead of time to a system of
six FPGAs. Once the choosing algorithm indicated that a
switch was necessary, the Python code that loads the
configuration file started a Python timer. It then instructed
Quartus Programmer to load the configuration and idled until
this task was completed. When Quartus finished, the timer
stopped and we recorded this result for multiple runs. For a
single board, we had an average configuration switching time
of 6.38 seconds. For multiple boards, this number grew
proportionally with the number of boards. Even still, we
considered the requirement to be satisfied because the
choosing algorithm will only command one FPGA board to
switch at a time.

D. Results for Packet Bit Errors
Although our system uses two-way communication between

the Raspberry Pi and the FPGAs, we decided to test the FPGA
to Raspberry Pi packet drop rate and extrapolate this to
two-way communication. On the FPGA, we designed a
module that would send a zero bit on one clock cycle, a one
bit on the next clock cycle and repeat this process. The
Raspberry Pi took in this bitstream and recorded any instances
when it observed two zeroes or two ones in a row. There were
issues performing this test because the communication
software was not completed until the very late stages of the
project. Thus, the tests we performed both before and after the
software was completed gave mixed results. Before the issues
were resolved, our system repeated one bit every eight bits for
a resiliency of 87%. After we implemented a fix for the
communication issues, we still observed some packet bit
errors but with an improvement to a 93% error rate.

9
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

E. Results for Hash Rate
The hash rate of our system is the clearest indicator of the

performance of our system. To test for the Bitcoin hash rate,
we found the Bitcoin genesis block online which specified the
80 byte block header and the nonce used to find a valid hash.
This information was hard coded onto an FPGA running our
Bitcoin mining controller instead of receiving the puzzle input
from the Raspberry Pi. The Raspberry Pi sent a reset signal to
the FPGA and started a timer when it did so. As soon as the
FPGA found the known valid nonce, it sent this back to the
Raspberry Pi which then stopped the timer.

Using this testing methodology, we recorded a hash rate of
3.8 kH/s for a Bitcoin mining controller with one hashing
module and a hash rate of 3.04 MH/s with eight hashing
modules. With a system of six FPGAs, we had a hash rate of
18.24 MH/s.

F. Results for Profitability
Because we weren’t able to successfully mine any

cryptocurrencies during the testing process, our profitability
results rely on what our potential earnings could have been.
Using the total hash rate of our system, we take it as a
percentage of the global hash rate and multiply this figure by
the mining rewards and the current cryptocurrency price.
Bitcoin has a mining reward of 6.25 Bitcoin and a block time
of around ten minutes which means the rewards are issued
every ten minutes. Ethereum mining rewards are variable and
the average reward is four Ethereum every 13 seconds.

From this, we calculated our expected returns to be $5.67 x
10-11 per second mining Bitcoin. Using Synopsys, we found
that the power consumption of each FPGA board mining
Bitcoin was 24.8 mW. After subtracting the energy costs from
our revenue, each board has a loss of $6.57 x 10-9 per second.

VIII. PROJECT MANAGEMENT

A. Schedule
See page 12 for the schedule.

B. Team Member Responsibilities
We split the responsibilities for each team member based on

their strengths and courses taken. Lulu primarily worked on
the web application and a portion of the communication
between the Pi and the FPGAs on the Pi side, specifically only
the sending and receiving bitstream functions. David worked
on the communication between the mining pool and the RPi
and the FPGAs, which includes creating modules to
communicate both ways with the mining pools and parsing the
relevant information to then send to the FPGAs. He also
worked on implementing and testing the choosing algorithm
including acquiring and processing all of the data that it
requires. William wrote the SystemVerilog modules that
handled the communication between the RPi and FPGA on the
FPGA side and the hashing modules on the FPGAs. For

communication, this meant writing modules that reconstructed
the proof of work puzzle from the input bitstream along with
serializing the valid nonce found and sending that to the
Raspberry Pi. He also researched the mining process for
Bitcoin and Ethereum and wrote both mining controllers for
the two cryptocurrencies. In addition, William and David
worked together on the configuration switch on the FPGAs
using a remote server in addition to finding solutions to all the
various problems that arose and conducting all of the
necessary research.

C. Bill of Materials and Budget
See page 13 for the bill of materials for the project.

D. Risk Management
In terms of the potential design risks, we had the concern

that during the communication between the Pi and the FPGAs
we will drop bits or read extra bits which we did observe when
testing the communication modules. This was due to the
difference in clock frequency between the Pi and the FPGAs.
After consulting with a TA, we were able to implement an
asynchronous first in first out buffer that solves the issues.
Another design risk that we encountered was the parameters,
such as cryptocurrencies prices, used for training the choosing
algorithm was imported incorrectly. This was due to the
Ethereum prices from Binance’s API not being updated. After
pulling data from another API we were able to solve the issue.

Midway through the project, we realized that the idea we
had for configuration switching used a lot of wasted hardware
space. Our initial design placed both the Bitcoin and Ethereum
hashing modules on the same FPGA and enabled either one
depending on the current configuration. After realizing the
inefficiencies of this, we pivoted to using Quartus Programmer
to load different configurations onto the FPGAs externally.
One issue that arose was the fact that Quartus is an Intel
program that only runs on x86 based computers while the RPI
runs on an ARM CPU. Luckily, we were able to use a VM that
already had Quartus installed to reprogram the FPGAs with
configuration files.

In terms of schedule, we were behind most of the time. In
the beginning of the semester, since our delivery for the Pi
came late we were behind on tasks related to the Pi. We were
able to catch up by working on them during the spring break.
After updating the schedule for the design review report, we
tried to make sure we had enough time in the end for
integration. In the end, since our communication subsystem
still had bugs we didn’t integrate the system until the last week
of the class. We made time during final’s week to try to fix the
issues.

In terms of budget, we didn’t face many constraints since
we got our FPGAs from inventory and we only needed a
Raspberry Pi which was the most expensive part we bought
for our project.

IX. ETHICAL ISSUES

Our intended audience is anyone who wants to make money
from mining cryptocurrencies without any prior knowledge in

10
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

this field. Since our product will choose the optimal spread for
mining different cryptocurrencies, the users only need to
power up the devices then they can start making money.
Mining requires usage of the internet and powerful hardware
that are able to do the computations fast enough in order to
make a profit. Hence the main ethical issue for our product is
environmental impact. Running these hardwares requires
enormous amounts of power, which has the potential to
negatively impact our environment such as global warming.
Although our project uses the FPGAs as our main hardware,
which does not consume as much energy as ASICs, energy
consumed can still be enormous if the user uses multiple
devices at the same time, or enough users use our device at the
same time.

Other possible edge cases of harm can include wires
wearing down or the Pi overheating which can result in an
electric hazard. The user would be adversely affected in these
situations. One of the approaches to mitigate these adverse
impacts is to have an emergency stop button that stops the
whole system when the user realizes the system is
overheating. Another approach is to have the system shutdown
and sleep for a period after running for a long time to avoid
the overheating situation. The best way to induce a sleep
period would be to implement a thermistor temperature sensor
that would notify the system to shut down once the
temperature exceeded a certain threshold and sleep until the
temperature of the system reached a safe minimum.

X. RELATED WORK

There is a senior project from California Polytechnic State
University’s electrical engineering department that also used
an FPGA for bitcoin mining. But the miner is only mining
bitcoin and it doesn’t have the self choosing algorithm that we
hope to implement. This project mainly focused on learning
the mining algorithm and the hashing algorithm, SHA-256,
and ways to improve the miner’s hash rate. [1]

Another paper that we looked at was from Lebanese
University, where the main goal of their project was to
implement communication between an FPGA and RPi using
SPI protocol. This is similar to what we are trying to achieve
with our RPi, as we want to be able to control multiple FPGAs
at the same time using SPI protocol. [2]

XI. SUMMARY

Our system was able to meet most of our design
requirements but failed to generate a profit. After amortizing
the initial setup time, the FPGAs maintained less than a 10
second configuration switching time and performed quite well
with a hash rate of 18.24 Mh/s for a six board system.
Although this exceeded our requirement of being competitive
with GPUs, the power consumption of the system was such
that the costs exceeded the revenue. Our choosing algorithm
performed quite well with results indicating that it could
predict the next best coin with an accuracy of up to 85%.

A. Future work
One improvement that we can make is to adjust the Bitcoin

hashing algorithm such that it reduces the number of SHA-256
hashes needed. When hashing the 80 byte block header, the
data size is greater than the 512 bit input so the FPGA has to
hash the first half followed by the second half. However, the
nonce resides in the second half of the block header and thus,
the hash of the first half does not change. An improvement
that would greatly improve our hash rate would be to calculate
the hash of the first half of the block header and save this for
reuse without needing to hash it again.

There is a lot of potential that exists in terms of the coins
that can be used for the project. The number of coins can be
scaled up both in terms of the number of coins that can be
supported for mining and the number of coins that can be
switched around. Adding support for more coins that can be
mined is just a matter of creating the mining configuration for
the FPGA and adding the module to connect to the respective
mining pool. Adding support to switch between more coins is
a slightly more tricky issue in changing the decision making
process both in how it is trained and how the spread thresholds
are calculated. Another improvement is to have the entire
mining system connect to the blockchains of the coins
themselves to mine coins without the middle-man of a mining
pool. Mining pools are very helpful for very popular coins
such as Bitcoin and Ethereum where the probability of mining
those coins as a solo miner is negligible. However, there are a
plethora of other altcoins that can be mined where having
complete ownership of the coins is a desirable characteristic.
This also can remove one of the costs that decreases the
overall revenue of the system: mining pool fees. Each mining
pool will charge the relevant miners a fee after the miner has
obtained a certain amount of rewards; mining solo can avoid
this surcharge.

GLOSSARY OF ACRONYMS

API – Application Programming Interface
ASIC – Application-Specific Integrated Circuit
CPU – Central Processing Unit
FPGA – Field Programmable Gate Arrays
GPU – Graphics Processing Unit
RPI – Raspberry Pi
SBC – Single Board Computer
SHA-256 – Secure Hash Algorithm 256
SPI – Serial Peripheral Interface
VM - Virtual Machine

11
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

REFERENCES

[1] Dotemoto, P. (2014, June). FPGA based Bitcoin mining.
DigitalCommons@CalPoly. Accessed on March 4, 2022. Available:
https://digitalcommons.calpoly.edu/eesp/268

[2] Hajjar, H., & Mourad, H. (2019). Implementation of an FPGA -
Raspberry Pi SPI Connection. ThinkMind(TM) Digital Library.
Accessed on March 4, 2022. Available:
https://www.thinkmind.org/articles/cenics_2019_1_20_50029.pdf

[3] Moles, Josh. “A Verilog (Specifically, System Verilog) Implementation
of the Not-Yet-Finalized SHA-3 Winner, Keccak.” Keccak-Verilog,
Github, 12 Apr. 2021, https://github.com/jmoles/keccak-verilog.

[4] Ward, Chris. “Ethash.” Ethash, Ethereum Wiki, 11 June 2020,
https://eth.wiki/en/concepts/ethash/ethash.

[5] Cryptocurrency API, historical & real-time Market Data.
CryptoCompare. (n.d.). Retrieved May 7, 2022, from
https://min-api.cryptocompare.com/documentation?key=Price&cat=Sing
leSymbolPriceEndpoint

[6] Binance. (2022, April 26). Binance-spot-API-docs/rest-api.md at master
· Binance/Binance-spot-API-docs. GitHub. Retrieved May 7, 2022, from
https://github.com/binance/binance-spot-api-docs/blob/master/rest-api.m
d

[7] Ricmoo. (n.d.). Ricmoo/nightminer: Simple python cryptocurrency
mining client. GitHub. Retrieved May 7, 2022, from
https://github.com/ricmoo/nightminer

12
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

Fig. 6. Full Schedule

13
18-500 Final Project Report: Team C4-CryptoHash 05/07/2022

TABLE I. BILL OF MATERIALS

Item Description Model # Manufacturer Quantity Cost

FPGA Cyclone V 5CEBA4F23C7N Device, 49K
Programmable Logic Elements, 3080 Kbits embedded
memory, 4 Fractional PLLs

DE0-CV Terasic Inc. 10 $0

RPi 4 1.5 GHz 64-bit quad core ARM Cortex-A72 processor,
on-board 802.11ac Wi-Fi, Bluetooth 5, full gigabit
Ethernet, two USB 2.0 ports, two USB 3.0 ports, 2–8
GB of RAM

B Raspberry Pi
Foundation

1 $167.12

RPi 4 1.5 GHz 64-bit quad core ARM Cortex-A72 processor,
on-board 802.11ac Wi-Fi, Bluetooth 5, full gigabit
Ethernet, two USB 2.0 ports, two USB 3.0 ports, 2–8
GB of RAM

B Raspberry Pi
Foundation

1 197.07

Memory
Card

Ultra 64GB UHS-I/Class 10 Micro SDXC Memory
Card With Adapter

None San Disk 1 $17.89

Pi Wedge Adapts the GPIO header on the RPi to a standard
solderless breadboard

None SparkFun 1 $20.85

Breadboard Breadboard Kit Solderless, Large None Digilent 1 $0

Jumper
Wires

Male to Female 4 and 8 Inch Solderless Ribbon
Dupont-Compatible Jumper Wires

None GenBasic 1 $13.56

USB C to
Micro SD
Adapter

Anker USB C Hub, 5-in-1 USB C Adapter, with 4K
USB C to HDMI, SD and microSD Card Reader, 2 USB
3.0 Ports

None Anker 1 $38.10

USB Hub Powered 10-to-1 USB 3.0 Data Hub Splitter None Atolla 1 $43.54

Ethernet
Cable

Cat 8 Ethernet Cable, 20ft Heavy Duty High Speed
Internet Network Cable, Professional LAN Cable,
26AWG, 2000Mhz 40Gbps with Gold Plated RJ45
Connector, Shielded in Wall

None Vabogu 1 $23.5

Ethernet
Cable

Cat8 Ethernet Cable, Outdoor & Indoor, 6FT Heavy
Duty High Speed 26 AWG Cat8 LAN Network Cable
40Gbps, 2000Mhz with Gold Plated RJ45 Connector

None DbillionDa 1 $22.98

USB C to
Ethernet
Converter

USB C 6 In 1 Hub None UtechSmart 1 $31.47

Power Strip GE 6-Outlet Power Strip with 2 Ft Extension Cord,
(Ended up not using this.)

None General
Electric

2 $11.90

Total Cost $587.98

