
1
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

CryptoHash
David Cheung, William Zhao, Lulu Shyr

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—CryptoHash is a system capable of algorithmically
choosing the optimal distribution of compute resources allocated
to mining from a selection of different cryptocurrencies. It
operates at a 10% lower hardware cost yet has performance
measured in the number of hashes within 90% of conventional
methods. Through the use of customized hardware, our
cryptocurrency miner is able to maximize profits even with a low
initial capital investment. The design is scalable and benefits
from having multiple miners running in parallel.

Index Terms—Cryptocurrency mining, FPGA, hashing, proof
of work, Raspberry Pi, SPI protocol

I. INTRODUCTION

The increase in retail interest in cryptocurrencies the past
five years has come alongside a volatile increase in prices as
well. While early miners used standard laptops and
consumer-grade computers, current miners must adopt
specialized hardware in order to remain profitable. Gone are
the days where an individual could run a Bitcoin miner on
their CPU overnight and expect anything more than a few
pennies for their trouble. As their name suggests,
application-specific integrated circuit miners target a specific
cryptocurrency running a specific hashing algorithm. These
miners are not customizable and once a design is chosen, it
cannot be changed.

Our solution aims to be a fully customizable miner that
follows both interday and intraday price action in order to
select which cryptocurrency to mine. This approach no longer
suffers from the rigidness of ASICs while maintaining a
respectable hash rate. The user will also be able to view
metrics relevant to the system such as current hash rate, total
returns generated, and price charts for the various supported
cryptocurrencies.

II. USE-CASE REQUIREMENTS

The web app will be displaying current metrics relevant to
the user such as the hashrate and current prices of mined
coins. These metrics will be updated every minute such that
they are frequent enough for the user to receive real-time data
but spaced out such that our communication network can
support it. The choosing algorithm will also make its decision
based on these minute by minute updates. The system must
choose the optimal way to distribute compute resources. To

make this decision, the choosing algorithm will also examine
all cryptocurrency pricing data from the preceding three
months. Three months is the target time frame because
decisions made in the present should be weighted more
heavily on what has happened recently. However, too short of
a timeframe and there wouldn’t be enough data to generate a
meaningful trend to base our model on.

For this system to be profitable and users to purchase our
system, the hash rate must be at least competitive with
solutions currently on the market. Thus, we will be comparing
our system with GPUs and their respective hash rate. These
GPUS are more generalized than ASICS and can switch from
mining one coin to another relatively quickly. This matches
the intention of our system as well. Consumer-targeted GPUs
have a hash rate around five million hashes per second (5
Mh/s). We are looking for at least 90% of this hashing power
but with a 10% lower hardware cost.

An important component of the system is having the
cryptocurrency miners react in real-time to the choosing
algorithm. Thus, the system will have to keep communication
overhead minimal by limiting the amount of time it takes for a
command to be reflected. At the instance when the choosing
algorithm makes a new decision, the miner should change its
configuration to reflect these new settings in less than 10
seconds. This ensures that our system is able to keep up with
market moving news.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our Raspberry Pi will pull the latest pricing data for our
targeted cryptocurrencies using Binance’s API. This data is
then inputted into our custom machine learning model which
decides the optimal percentage of computing power to allocate
to each cryptocurrency. It will take into account a number of
factors such as current price, volatility and daily volume to
name a few. Our web application will also display this pricing
data in an informative way for the user.

The machine learning model must predict the next best
configuration based on previous pricing data and the other
indicators mentioned above. In order to maximize profits, our
system is predicting which cryptocurrency will outperform
relatively in the next minute. If Cryptocurrency A falls by
0.10% but Cryptocurrency B falls by 0.05%, we want our
system to take advantage of this spread and adjust accordingly.
Depending on the training results of our model, this could
mean increasing our weighting towards A because mean
reversion says that A will eventually return to its long running
average or our model might select B because, in the short
term, it exhibits better performance.

After the choosing algorithm selects an optimal spread, the
Raspberry Pi stores this data in its memory. The
communication software on the Raspberry Pi then has to

2
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

construct data packets containing commands or other data
necessary for operation. This software must serialize the data
from the internal buffers into a bit stream that can be
transmitted through the GPIO pins. Our system will connect
with established mining pools that allocate work for each of
the cryptocurrencies that we are interested in. The Raspberry
Pi will retrieve some work from these pools and send this data
to the FPGAs as well.

The entire system will be communicating using the SPI
protocol which requires four wires to implement. The
Raspberry Pi software will generate clock transitions and
assert select wires in accordance with this protocol.

Once the data reaches the FPGA GPIO pins, it is
deserialized to recreate the initial data packets. The
communication modules are responsible for performing this
deserialization and memory storage. The use of a Hardware
Description Language allows us to design the module with
minute detail and also enables us to model the system. The
FPGA will output a signal back to the Raspberry Pi once these
packets are received to acknowledge their full transmittal.
However, in the case that data transmission is corrupted, it will
inform the Raspberry Pi of this corruption and request it

resend the full packet.
The hashing modules on the FPGA are responsible for

taking each of the cryptocurrency proof of work puzzles and
solving them. For the majority of them, this consists of a
specific hashing algorithm being performed on a block of data
and comparing the resultant hash to some target. The objective
is to be the first to find this hash in order to receive a reward.
Once a valid hash is found, it is outputted from the hashing
module back to the FPGA’s communication module. There, it
will be serialized to be sent using the GPIO pins following the
SPI protocol.

When the Raspberry Pi receives this hash, it sends it to the
mining pool for final submission. The mining pool will
distribute a reward to each member if the hash was the first to
be accepted by the blockchain. There will be instances where
we will receive a reward even when we do not submit a hash
in time. This is because each member of the mining pool
submitting a valid hash rewards all other members. The
Raspberry Pi will keep track of our total rewards earned so far
to be displayed on the web application.

Fig. 1. Block drawing of overall system, illustrating the dataflow between various subsystems

3
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

IV. DESIGN REQUIREMENTS

The web app must be responsive to user inputs. The time
when a user switches a graph chart from one time frame to
another must be less than 100ms. This should be the case
whether the user goes from a month view to a week view or
from a year view to a day view. When the user changes the
graph to display another cryptocurrency, this understandably
takes longer to clear the current graph, fetch the new data
using Binance’s API, and create the new graph with this fresh
data. We are limiting the refresh time for this use case to be
200ms.

Our choosing algorithm must fetch data frequently in order
to make an informed decision on the optimal distribution of
computing resources. In order to maximize profits, we want to
be aware of any sudden changes in prices. Thus, the data
fetching must happen at the latest, every minute to ensure our
system remains optimal. The model we create will also be
expected to have 70% accuracy when predicting the next best
move. Some of this inaccuracy will come from the fact that
cryptocurrencies are inherently volatile. We must also consider
the fact that our model cannot predict when a certain piece of
news will impact one cryptocurrency more than another.

Once the choosing algorithm has an optimal configuration,
it must send this information to the SBC which in turn passes
it along to each miner. From the time that the choosing
algorithm makes a decision to when the first miner receives
this configuration, no more than 10 seconds must pass. This
keeps our communication overhead minimal and dedicates
compute resources to the sole task of mining.

Communication is a key component of our system. We will
be running five miners in parallel each with a set of wires
connected to the SBC. Any time there is a physical connection
to a wire or from a wire, there is the possibility that bits will
be dropped or the data could become corrupted. Our system
must be resilient enough such that 95% of packets are sent
properly.

As mentioned in the Use Case Requirements, our system
will need a competitive hashing rate in order to be a viable
alternative to GPUs. Hashing a block of 512 bits with
SHA-256 takes 64 clock cycles. For a 50 MHz clock, this
equates to one hash every 1.28 microseconds or ~781 kh/s. We
will need to modularize our hashing controller and generate
multiple smaller subsystems in order to improve this
performance. To achieve a hash rate comparable to GPUs of 5
Mh/s, our hashing modules will need to be compact enough
such that each miner will be able to support multiple copies
running in parallel.

Each of the hashing modules will also need a long enough
critical path such that they are able to complete a substantial
amount of work yet stay within one clock cycle. The design
must have the critical path of the system reside in the hashing
modules rather than communication. This allows the system to

take advantage of each clock cycle to the fullest extent
possible. The latency of the hashing module will be within
80% of the clock period.

V. DESIGN TRADE STUDIES

The trade-offs for our design lie primarily in the choice of
the hardware. At the most fundamental level, the hardware we
use include a Raspberry Pi to facilitate communications and
FPGAs so that we can configure the system. The main driving
factors that influence what hardware we select are the
performance and the component cost. Other trade-offs include
one between profitability and the supported coins and model
complexity and accuracy. These trade-offs influence system
level complexity and communication complexity.

A. FPGA Trade-Offs
At the very core of our design, we want to preserve a

relatively low hardware cost while still allowing for the
customization requirement and still meeting the performance
requirement we set on ourselves. We recognize that FPGAs
will not be the most efficient miners and will not be viable in
mining popular coins by themselves simply because they
won’t be able to achieve the same hash-rates as specialized
hardware will. However, to create a system that can be
reprogrammed quickly, we choose to use FPGAs because of
our relative familiarity with them. To realize the gap between
achievable hash rates, we use multiple boards to very crudely
model a multicore system. In this essence, we are also limited
by our allocated budget that needs to be shared with other
components. This fundamentally pushed us to use the
components already listed in the Inventory, where we
ultimately made a decision between the DE0-CV and DE2-115
boards. The DE0-CV differ primarily in the number of logic
units and the price. DE0-CV boards are relatively cheap as
compared to DE2-115 boards, but they have much fewer logic
elements. We ultimately chose to go with the DE0-CV boards
since they’re smaller and multiple of these boards would be
easier to assemble. The boards are also cheaper, which ties in
nicely with the idea of lower hardware cost. The relatively
fewer logic units problem is resolved by having multiple
FPGAs as long as it stays within budget.

B. SBC Trade-Offs
To make the design portable and have the connections be

more easily understood, the communication command center
is implemented as a single board computer. In particular, our
design uses a Raspberry Pi Model 4. Once again respecting the
allocated budget, we wanted to take a look at the inventory
first before making any purchases. The Raspberry Pi Model 3
was not worth the price for the small amount of computing
power it would be able to provide. The Raspberry Pi Model 4
also came in differing sizes of RAMs, which struck a tradeoff
between performance and cost, but we didn’t need that much
computational strength from the single board computer, we

4
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

settled with 4 GB of RAM. The largest tradeoff analysis came
down to the Raspberry Pi Model 4 and the RockPi. We
compared the cores, the I/O, and the operating
system/documentation. The Raspberry Pi has a quad-core
while the RockPi has a six-core, but there are 4 main things
the SBC needs to continuously do, so any number of cores
greater than or equal to 4 would suffice. Both Pi’s were
capable of supporting GPIO I/O, which is the direct
communication between the FPGA and the SBC. The largest
factors that played into choosing the Raspberry Pi was that the
documentation was more established than for the Rock Pi and
that we wanted the quicker cores on the Raspberry Pi so that
tasks would not get scheduled onto the slower cores on the
Rock Pi for no benefit.

C. Supported Coin Trade-Offs
The beauty of the project is being able to mine multiple

cryptocurrencies at the same time and have a choosing
algorithm that can choose between the coins to maximize
profit. However, there exists a plethora of coins, only a subset
of which can be mined with a proof-of-work system such as
ours. The coins that are proof-of-work also tend to not share
the same algorithms, where adding support for a coin using
means needing to have configurations for that algorithm in the
FPGA side of things. This system allows for easy scalability,
but the modules have a significant overhead in data size and
communication because the headers would have to change.
For example, adding functionality for a currency like Litecoin,
would require implemented Scrypt modules for the FPGA,
which would also necessitate recompilation.

Our implementation focuses on Bitcoin and Ethereum, the
most popular cryptocurrencies. While maximizing profits is
one of our project’s requirements, we needed to make a
tradeoff where instead of mining some altcoin that could have
some more potential to give us higher returns, we mine a coin
that is well established. Again, our primary focus is not to
make the most efficient miner that makes as much money as
possible. Our focus is to do that, but also constrained under the
selection of the coins. As well established coins, the protocols
of how they work are more understood and there exists more
documentation and research on mining these coins. It also
serves as a more welcoming setup where people can mine the
currencies they are more familiar with.

D. Selection Model Trade-Offs
The choosing algorithm is modeled as a decision tree that is

trained every month and inferred from every minute. There are
a few trade-offs that exist here, in choosing the type of the
model and the hyperparameters.

In choosing the decision tree, the model we chose had to be
run very quickly and without much computational power
because we don’t want the entire system to always constantly
be under great stress. The model is trained and inferred on the
Raspberry Pi, which also has to deal with all of the

communication coming from the webapp, mining pools, and
the FPGAs. It is imperative to keep other computation
relatively low so that computing power for the communication
is not compromised much. The training process for a decision
tree also does not take very long either since there isn’t any
weight updates in the form of back propagation or gradient
descents. This allows for the model to be retrained quickly on
a large data set such as the 3 months of data. The largest
drawback that decision trees usually have is that they’re
usually not that accurate when compared to something like a
Deep Neural Network. The neural networks usually pay for
this accuracy with the long time it takes to converge. Due to
the nature of cryptocurrency volatility, it is hard to predict the
behavior especially since it is so sensitive to current events, or
other events that price and price trends tend to not explain
very well.

The hyperparameters for the model include the 3 months of
data for training, the frequency that the model or inference is
updated, and the history of mining pool rewards. For the
training data, we have access to a lot of data from the Binace
API, but if we train with too much data, then the model will be
very flawed where it tries to use very old data to predict the
future. However, we can’t settle on too little since it wouldn’t
be enough to paint a good picture of the climate of the prices
due to the inherent price volatility. The monthly model update
was a trade-off between performance and weight updating.
The model needs to update its weights so that it doesn’t
become obsolete. Updating it every month is also a way to
amortize the cost of training. The 1 minute switching allows
the FPGAs to have some leeway in switching between the
cryptocurrencies. We also want to track the more recent
rewards from the miners to try and implement the greedy
algorithm, biasing the decision based on which mining pools
provided more taste.

VI. SYSTEM IMPLEMENTATION

A. Web Application
The web application will be built using the Django

framework in python and will be deployed onto the cloud
using the Amazon EC2 instance. Django provides an
authentication system which handles user accounts, groups,
and permissions. We will use this to implement our login and
registration page. When the user first accesses the web
application, they will be greeted by our login page, they will
then input their username and password to log in. If they do
not have an account already, they can click registration and be
redirected to the registration page to register for an account.
Later on, if they are already logged in, they will be redirected
to the home page. On the top of every page, there will be a
navigation bar where users can choose to logout or go to a
specific page.

5
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

On the home page, the user will see a table of the current
cryptocurrency prices, price and percentage changes within
the last 24 hours, high and low prices, and quote volume. In
addition to the statistics displayed in the table, the user will
also be able to see the candlestick charts and the line charts for
the cryptocurrencies to get a better sense of the trends in
cryptocurrency. The statistics for the cryptocurrencies will be
obtained by using the Binance API.

By default, a machine learning algorithm will choose how
much to mine on each cryptocurrency (BTC and ETH), but on
the bottom of the page there’s a dropdown menu where the
user can choose the ratio of how they want to mine their
cryptocurrency if they wish to change it. We will also be
displaying the amount of cryptocurrency it has mined and the
hashrate of mined coins from the FPGA on the top of the
home page in a profile section. The web application will
refresh every minute such that the metrics will be updated
frequently enough for the user to receive real-time data.

Fig. 2. Diagram of Screenshot of Web Application

B. Raspberry Pi and Mining Pool Communication
Acting as the communication center, the Raspberry Pi needs

to communicate with the mining pool for the respective
cryptocurrency. The Raspberry Pi will obtain work, or the
puzzles, from the mining pools primarily through the stratum
tcp protocol that modern mining pools use. While the reward
for mining solo would be much higher, we do not configure it
as such so that we do not have to compete with miners
sporting ridiculously high hash rates that we can not achieve.
Connecting and communicating with the respective

blockchains also incurs unnecessary overhead in
communication and resources that is beyond the core concept
of our project.

The information needed to connect to different mining
pools, including different usernames and passwords will be
stored in a configuration file. The Raspberry Pi will read the
file and connect to the mining pools and start to receive work
from the mining pools. The work that the mining pool
provides will have to be processed and placed into a PUZZLE
packet to be sent off to all of the FPGAs. The FPGAs are
configured to perform the check themselves and will only send
the Raspberry Pi their solution in a SOLUTION packet when
they have a valid solution. Since the packets are assumed to be
valid, the Raspberry Pi will parse the packet and send the
solution to the mining pool as soon as possible to maximize
the rewards. Therefore, the Raspberry Pi will have to
continuously stay in connection with the mining pools, which
also includes detecting whether the pool has died.

The communication between the Raspberry Pi and mining
pools is most simplistically captured with the getwork
function and HTTP protocol. However, getwork has since
been deprecated, necessitating the Stratum Mining Proxy to
bridge getwork with the stratum mining protocol.

C. Coin Choosing Algorithm
The choosing mechanism will automatically switch between

what cryptocurrency our setup mines for. It is also the default
configuration that seeks to optimize which cryptocurrencies
are mined in an effort to maximize profit. At a high level, it is
a trained model that is trained every month with the past 3
month’s worth of data from the Binance API. It will perform
inference, and thus switch between cryptocurrencies, on a
minute basis. The model takes as input the current price of the
cryptocurrencies, the current price trend for the past 10
minutes, and the recent rewards from the different mining
pools. The model will have a greedy algorithm that will bias
the model to want to mine more of the cryptocurrency that has
higher payouts. Another factor that isn’t explicitly an input is
the relative strength index, which provides a picture of how
the price momentum is swinging. The model will calculate the
relative strength index with the Binance data from the past 10
minutes. The model strikes a balance between the price and
trend where if a coin grows in price with a favorable trend, it
will attempt to bias its weights to switch some portion of
mining power to that coin.

The exact algorithm that the choosing mechanism is based
on is a decision tree, where we use each input and calculated
input as nodes. Every month, the model will be trained with
the 3 months of data from Binance. Throughout the month, the
model will run inference every minute where it runs through
the model with the current price, current trend, and earnings
history from the mining pools. The decision tree result is
stored and compared with the next time to generate test results
that will later be used as accuracy checks for the testing and

6
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

validation portions. The decisions will also have some
threshold value that changes every 10 minutes, which is also
the time frame of data we keep track of as inputs. The most
recent earnings from the different mining pools will also be
stored in addition to the fractional share of the mining power
corresponding to the time of the earnings.

D. Raspberry Pi to FPGA Communication
There will be two types of data packets that the Raspberry

Pi will send to the FPGA: UPDATE packets and PUZZLE
packets.

An UPDATE packet will include an eight bit header
followed by 32 bits of data. The header has five bits which
indicates the FPGA the packet is targeted towards, one bit to
distinguish an UPDATE packet from PUZZLE, and two bits
for the number of data bytes in the packet. The 32 bits of data
are separated into four equal eight bit portions. Each of these
eight bits contains a numerical value which tells the FPGA
how much of that particular cryptocurrency to mine. A data
packet of {8’d10, 8’d25, 8’d40, 8’d25} tells the FPGA to use
25% mining power for coin one, 40% for coin 2, etc. These
percentages are automatically generated by our choosing
algorithm.

The other type of packet is the PUZZLE packet. This
contains the proof of work puzzle received from the mining
pool. Different coins have different puzzle sizes so we need to
handle variable length packets. For the two coins we have
planned, the Bitcoin block header is 80 bytes and for
Ethereum it is 508 bytes. This puzzle is stored in the
Raspberry Pi and serialized in order to transmit as a single bit
through the GPIO pins.

We are using a Pi Wedge with one end inserted into the 40
GPIO pins found on the Raspberry and the other end into a
breadboard. The FPGAs will receive their inputs by
connecting jumper wires from their GPIO pins into the
breadboard. Using a Pi Wedge breadboard implementation
allows us to scale the system without being limited by the
amount of pins available on the Raspberry Pi.

E. FPGA Hashing Module
We will be creating our own mining controller to handle the

puzzle input and distribute work to the numerous hashing
modules. It first receives a serialized input through its GPIO
pins that it must recreate into the UPDATE or PUZZLE
packet. After a distinction is made, either the percentages or
the proof of work puzzle is stored into internal buffers we
create in the FPGA. Simultaneously, the FPGA will continue
to hash the previous puzzle until a new one is fully received.

To generate a valid hash to return to the mining pool, the
hashing module on the FPGA will cycle through a series of
numbers to hash along with the inputted puzzle. Although we

now have a hash, it must be validated before it can be returned
to the mining pool. To do so, there will be a separate module
whose job is to compare this resultant hash with a target
number inputted along with the puzzle. The hash is accepted
only if it is less than the target number.

Once the hashing module finds a valid hash, it will
communicate this back to the mining controller. The controller
will take the 256 bit hash and serialize it in order to send this
to the Raspberry Pi. The total communication packet will be
264 bits because there is the inclusion of an 8 bit header field
to inform the Raspberry Pi which FPGA sent the hash and for
which cryptocurrency the hash is for.

The process of outputting data to the Raspberry Pi follows a
similar process to inputting data. The FPGA sends the data as
a single bit using the GPIO pins on the board. This data travels
through a wire to the breadboard, back to the Pi Wedge, and
finally to the Raspberry Pi’s GPIO pins.

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for Web Applications
The most basic validation method for the user interface on

the web application will be clicking through each button and
tab making sure the page loads according to user input. For
example, clicking on the logout tab and submitting the
registration information should bring the user back to the login
page and inputting the correct username and password on the
login page should bring the user to the home page. We can
print out the information stored in the profile model in the
terminal to make sure all the information is stored correctly.
On the home page there will be five options for the mining
ratio that the user can choose from. After hitting the submit
button, the page should refresh and we can utilize a print
statement that prints out the option selected to make sure the
data is stored correctly and ready to send to the FPGA. For the
table and graphs that are generated from the Binance API, we
can compare the numbers to the values displayed on the
official Binance website to make sure we are getting the
correct data from the API database and parsing it correctly on
the web application. Similarly with the graphs, we can
compare them with the graphs on the official website to make
sure the general trend is correct.

B. Tests for Model Accuracy
Validation of the choosing algorithm is difficult to quantify

and even more difficult to create a highly accurate predictor of
the price fluctuations. Our requirement is set to 70% which is
better than the 50% from randomly guessing. The accuracy
isn’t very high because price and price trends don’t paint a
complete picture of how cryptocurrency prices fluctuate. The
prices are very volatile and can be easily swayed by public
figures, current events, or even just random buyer hesitancy.

7
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

These are all difficult to quantify and virtually impossible to
predict in advance.

Through just periodic runs, the model will accumulate a
running log of how it predicts the price to change and the
actual price change. The model in addition to outputting the
ideal spread will also keep track of how it feels the price will
be in the next run. On the next run, this prediction will be
compared to the real result and its correctness will be saved,
which ultimately becomes the accuracy for that run. The
longer that the model runs for, the more accurate the accuracy
rating will be, but to a certain extent. The longer it runs, the
more outdated the training data for the model will be. So
although the results might be a little skewed in the size of the
data set, we can validate more quickly by choosing to check
the accuracy for a short time period, currently set at 100
results.

C. Tests for Configuration Switching
One of our requirements was to be able to switch FPGA

configurations within ten seconds of the command being
inputted. We will test for this by having the choosing
algorithm select a pre-programmed configuration to send to
the FPGA. The Raspberry Pi will start an internal timer once
the configuration has begun sending. After the FPGA receives
this input, parses it, and performs the necessary updates to
reflect these new changes, it will output a signal back to the
Raspberry Pi. Once the Raspberry Pi receives this signal, it
will stop its timer. We will run several of these configurations
and inspect whether any of these instances caused the response
time to be greater than ten seconds.

D. Tests for Packet Bit Errors
There are two ways of physical communication between the

components of our system, from the Raspberry Pi to the FPGA
and from the FPGA to the Raspberry Pi. We can test both
ways at once by having the FPGA pass its input through to its
output. The Raspberry Pi initiates the process by sending
randomized packets selected in a provided test file. These test
inputs follow the normal path through the Raspberry Pi GPIO
pins, Pi Wedge, breadboard, and FPGA GPIO pins. Once it
reaches the FPGA, the inputs are simply returned as outputs
where it follows the same path back to the Raspberry Pi. The
Pi will examine this output and compare it with the randomly
generated test input. A shortened output is the result of
dropped bits and flipped bits is due to data corruption. Each
error instance is tallied and the overall ratio of incorrect bits to
total bits is recorded. This process is run multiple times
through the use of the randomized tester to generate an
accurate percentage of dropped bits.

E. Tests for Hashing Rate
The hash rate of our system will be the clearest indicator of

the performance of our system. There will be a rigorous
process to determine the average hash rate for each
cryptocurrency being mined. First, we will generate
randomized inputs through the use of SystemVerilog
testbenches to simulate the execution of the hashing module.
This will be allowed to run for 5 minutes such that the number
has time to converge. While the testbench is running, it will
output the current calculated hash rate every 30 seconds. We
will use a software tool developed by Synopsys called VCS
for simulation.

After retrieving the simulation hash rate, we will also need
to synthesize the design onto an FPGA to test the design on a
physical board. Synthesis will be done using a program called
Quartus. Once the design is on the FPGA, it will be connected
to the Raspberry Pi which will generate the randomized inputs
for testing. Similar to before, we are allowing it to run for 5
minutes for convergence. The FPGA will output the number of
completed hashes back to the Raspberry Pi where it will be
displayed every 30 seconds.

If there is a divergence between the simulation numbers and
the synthesis numbers, we are inclined to lean more towards
the synthesis hash rate because it reflects how the design
performed on a physical board.

F. Tests for Critical Path and Latency
When synthesizing our design, the configuration file takes

in a clock period as an argument. It then generates several
reports, one of which being the timing report for our design.
We know that the DE0-CV FPGA supports a 50 MHz clock.
Thus, by providing this as our clock period argument, we can
see if our design will meet this timing requirement. The timing
report will indicate whether our design’s latency fits within
this period along with the critical path of our design. Although
the gates and flip flops are not always descriptively named, it
can still be deciphered to determine whether the critical path
of our system lies within the hashing module.

VIII. PROJECT MANAGEMENT

A. Schedule
By the middle of the week 3/28, we hope to have achieved a

basic miner that’s able to mine cryptocurrency and show the
communication between each component, such as between
RPi and the web application, FPGA and the RPi, and mining
pool and the RPi. This will serve as the basic framework when
we want to scale up our project in the future. Our goal is to
finish the project in the week of 4/18, approximately a week in
advance. For the detailed schedule, see page 9 for the
complete Gantt Chart.

8
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

B. Team Member Responsibilities
We split the responsibilities for each team member based on

their strengths and courses taken. Lulu will primarily work on
the web application and helps with implementing the machine
learning algorithm that will do the coin choosing. David will
be establishing the communication between the mining pool
and the RPi. William will be writing modules that handle the
communication between RPi and FPGA and the hashing
modules on the FPGAs.

C. Bill of Materials and Budget
See page 10 for the bill of materials for the project.

D. Risk Mitigation Plans
Our most significant risk right now is allocating time for

integration. Since the RPis came in later than we expected, we
were unable to do tasks and testing related to the RPi. This
includes implementing communication protocol between the
RPi and mining pool, and testing communication between the
FPGAs and the RPi. In an attempt to mitigate the risk, David
and William are going to each to take an RPi to work on these
tasks during spring break in order to meet our deadline for the
interim demo.

In terms of potential design risks, we are concerned about
how we are going to compare the hashing rate against the
GPU miner. Since one of our design metrics requires our
hashing rate to reach at least 90% of GPU’s hashing rate, it’s
important for us to get an accurate hashrate number to ensure
we meet our design requirement. We decided on 5 Mh/s for
the GPU’s hashrate because it was the most reasonable
number that we found.

IX. RELATED WORK

There is a senior project from California Polytechnic State
University’s electrical engineering department that also used
an FPGA for bitcoin mining. But the miner is only mining
bitcoin and it doesn’t have the self choosing algorithm that we
hope to implement. This project mainly focused on learning
the mining algorithm and the hashing algorithm, SHA-256,
and ways to improve the miner’s hash rate. [1]

Another paper that we looked at was from Lebanese
University, where the main goal of their project was to
implement communication between an FPGA and RPi using
SPI protocol. This is similar to what we are trying to achieve
with our RPi, as we want to be able to control multiple FPGAs
at the same time using SPI protocol. [2]

X. SUMMARY

We hope to create an FPGA miner that’s flexible and cost
friendly in comparison to the GPU and ASICS miner. Most
importantly, the miner will be able to choose the optimal ratio

using a machine learning algorithm to mine different
cryptocurrencies in order to achieve maximum profit. Users
can make profit without analyzing the trend of
cryptocurrencies. The upcoming challenge in the
implementation will be keeping the communication overhead
between each component to a minimum so that the miner can
reflect the changes in cryptocurrency prices in real time.

GLOSSARY OF ACRONYMS

API – Application Programming Interface
ASIC – Application-Specific Integrated Circuit
CPU – Central Processing Unit
FPGA – Field Programmable Gate Arrays
GPU – Graphics Processing Unit
RPi – Raspberry Pi
SBC – Single Board Computer
SHA-256 – Secure Hash Algorithm 256
SPI – Serial Peripheral Interface

REFERENCES

[1] Dotemoto, P. (2014, June). FPGA based Bitcoin mining.
DigitalCommons@CalPoly. Accessed on March 4, 2022. Available:
https://digitalcommons.calpoly.edu/eesp/268

[2] Hajjar, H., & Mourad, H. (2019). Implementation of an FPGA -
Raspberry Pi SPI Connection. ThinkMind(TM) Digital Library.
Accessed on March 4, 2022. Available:
https://www.thinkmind.org/articles/cenics_2019_1_20_50029.pdf

9
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

Figure 3: Gantt Chart

10
18-500 Design Project Report: Team C4-CryptoHash 03/04/2022

Table 1: Bill of Materials

Item Description Model # Manufacturer Quantity Cost

FPGA Cyclone V 5CEBA4F23C7N Device, 49K
Programmable Logic Elements, 3080 Kbits embedded
memory, 4 Fractional PLLs

DE0-CV Terasic Inc. 10 $0

RPi 4 1.5 GHz 64-bit quad core ARM Cortex-A72 processor,
on-board 802.11ac Wi-Fi, Bluetooth 5, full gigabit
Ethernet, two USB 2.0 ports, two USB 3.0 ports, 2–8
GB of RAM

B Raspberry Pi
Foundation

1 $167.48

Pi Wedge Adapts the GPIO header on the RPi to a standard
solderless breadboard

None SparkFun 1 $20.85

Breadboard Breadboard Kit Solderless, Large None Digilent 1 $0

Jump Wires Male to Female 4 and 8 Inch Solderless Ribbon
Dupont-Compatible Jumper Wires

None GenBasic 1 $13.56

Total Cost $201.89

