

CryptoHash

David Cheung, William Zhao, Lulu Shyr

Use Case

Specialized hardware only works for a specific cryptocurrency.

Cryptocurrencies values fluctuate wildly!

Specialized hardware is expensive!

Support at least two proof-of-work coins, Bitcoin and Ethereum.

Others include Litecoin, Dogecoin.

Our default choosing algorithm will choose the optimal spread of coins.

Quantitative Use-Case Requirements

Hash rate has to be competitive, we want to have at least 90% of the hashing power that market GPUs boast, but with a lower hardware cost.

Choosing mechanism needs to pull from current data, trained from price data and trends from the past 3 months.

Communication overhead minimal, configure the new settings within 10 seconds.

Display metrics to user such as hashrate, power consumption, current prices.

Solution Approach:

For our FPGAs, we wanted low-cost boards that still have good performance.

We chose to use a Raspberry Pi 4 Model B for its connections and performance.

Django is a free and open source web framework that works well with our Raspberry Pi.

Solution Approach:

Free Binance API for retrieving cryptocurrency statistics

Bitcoin and Ethereum are the most popular proof of work coins

Scalability: Use network buses for the GPIO pins that connect the FPGAs and the Raspberry Pi

System Specification

Two FPGA	Communciation									
SS	Select									
MOSI	Raspberry Pi		0	0	0	0	1	1	0	1
MISO	EDCA 1									
MISO	FFGAT									
MISO	FPGA 2									
SCLK	Clock									
			0	1	2	3	4	5	6	7

Implementation Plan

Raspberry Pi

- Defined communication protocol called SPI
- Using Python RPI.GPIO library
- Along with the library, developing own software to handle sending/receiving bytes

Other setups exist using a Pi Wedge but we are creating our own.

Puzzle

1

Implementation Plan

Mining Elements

- Using Binance API to pull pricing data
- Quantitative analysis of pricing data will be self-developed
- Connect to a mining pool with a stratum+tcp url
- Custom FPGA mining controller to provide inputs to the hashing module
- Depending on the coin, we will find how to implement the hash functions and integrate them

Test, Verification and Validation

Web app

- Test the user interface
- Test the functionality of web app
- Test the data transmission between Raspberry Pi and Web app
- FPGA output a done signal to check the 10s requirement for switching configuration

← → C ③ 127.0.0.1:8000/error/

Page not found (404)

Request Method: GET Request URL: http://127.0.0.1:8000/error/ Raised by: myapp.views.error

Test, Verification and Validation

Raspberry Pi

- Test Raspberry Pi communications locally before deployment
- Simulate back and forth communication between host and device

FPGA

- Use combination of SystemVerilog testbenches and VCS to simulate design
- Synthesize onto FPGA to test communication and hashing
- Simulate input through the board's switches and buttons

Project Management

WBS NUMBER	TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION	PCT OF TASK COMPLETE	WBS NUMBER	TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION	PCT OF TASK COMPLETE
4.16	Decide if we want to be a full node	David	2/18/22	2/18/22	1	100%	5	Testing					
4.17	Literature Review (1 Paper)	All	2/20/22	2/25/22	1	15%	E 1	One way communication test for DDi		2/14/22	2/17/22	4	0%
4.18	Create data structure for input data	David	2/19/22	2/21/22	3	10%	5.1	One way communication test for RPI		3/14/22	3/1//22	4	0%
4.19	Create FPGA module to parse data from RPi	William	2/22/22	2/26/22	5	40%	5.2	One way communication test for FPGA		3/17/22	3/20/22	4	0%
4.20	Create FPGA Hashing module for Bitcoin	William	2/25/22	3/2/22	6	10%	5.3	Test FPGA module for communicating with RPi (2 way)		3/24/22	3/27/22	4	0%
4.21	Create FPGA module to test if puzzle solved	William	3/1/22	3/3/22	2	10%	5.4	Create test puzzles		3/21/22	3/23/22	3	0%
4.22	Connect FPGA modules		3/2/22	3/4/22	3	20%	5.4	Create heading headbmark		2/10/22	2/01/00	2	0%
4.23	Spring Break		3/4/22	3/13/22	10	0%	5.5			3/19/22	3/21/22	3	0%
4.24	Literature Review (1 Paper)		3/17/22	3/23/22	7	0%	5.6	Measure modules for baseline		3/17/22	3/18/22	2	0%
4.25	Adapt data structures for Etereum Mining		3/14/22	3/16/22	4	0%	5.7	Test connection for WebApp		3/17/22	3/19/22	3	0%
4.26	Create FPGA Hashing module for Etherum		3/16/22	3/20/22	5	0%	5.8	Test Synthesizing process		3/14/22	3/16/22	3	0%
4.27	Adapt checking module for Etereum		3/21/22	3/23/22	3	0%	5.9	Test both synethesized files, taking them on		3/23/22	3/25/22	3	0%
4.28	Connect FPGA modules		3/21/22	3/23/22	3	0%		and off the boards					*13***1200
4.29	Create simple choosing algorithm		3/24/22	3/26/22	3	0%	5.10	Test choosing algorithm with own benchmark		3/25/22	3/29/22	5	0%
4.30	Find way to choose which FPGA uses which synthesized code		3/27/22	3/29/22	3	0%	5.11	Test 2 FPGA setup		3/30/22	4/1/22	3	0%
4.31	Scale up to 2 FPGAs		3/30/22	4/1/22	3	0%	5.12	Test 5 FPGA setup		4/1/22	4/3/22	3	0%
4.32	Scale up to 5 FPGAs		4/1/22	4/3/22	3	0%	5 14	Test sign in, sign out, and profile setting		2/16/22	2/18/22	3	80%
4.33	Make sure formatting is consistent/correct		4/2/22	4/3/22	2	0%		function		2,10,22	2, 10, 22	Ū	00.0
434	Get django environment setup on Raspberry		2/21/22	2/26/22	5	15%	5.15	Test the form for inputs		2/21/22	2/23/22	3	0%
4 35	Pi Create web ann project	Lulu	2/8/22	2/12/22	5	100%	5.13	Test the urls for each web pages are set up correctly		2/28/22	3/1/22	2	0%
4.36	Set up basic framwork	Lulu	2/8/22	2/12/22	5	100%	516	Connect to Bitcoin blockchain		3/28/22	4/3/22	7	0%
4.00	out up busic munimon	Luiu	210122	2/12/22	5	100%	0.10			0,20/22	110122	'	0.0

Project Management

Blockchain (David):

Create Raspberry Pi software to communicate with Bitcoin blockchain (input) Create Raspberry Pi software to communicate with Bitcoin blockchain (output)

Mining (William): Create FPGA module to parse data from RPi Create FPGA Hashing module for Bitcoin Create FPGA module to test if puzzle solved

Web App (Lulu): Get django web app setup on Raspberry Pi Communicate with the Binance API to get up to date cryptocurrency data