
CryptoHash

David Cheung, William Zhao, Lulu Shyr



Use Case

Specialized hardware only works for a specific cryptocurrency.

Cryptocurrencies values fluctuate wildly!

Specialized hardware is expensive!

Support at least two proof-of-work coins, Bitcoin and Ethereum.

Others include Litecoin, Dogecoin.

Our default choosing algorithm will choose the optimal spread of coins.



Quantitative Use-Case Requirements

Hash rate has to be competitive, we want to have at least 90% of the hashing power 

that market GPUs boast, but with a lower hardware cost.

Choosing mechanism needs to pull from current data, trained from price data and 

trends from the past 3 months.

Communication overhead minimal, configure the new settings within 10 seconds.

Display metrics to user such as hashrate, power consumption, current prices.



Solution Approach:

For our FPGAs, we wanted low-cost boards that 

still have good performance.

We chose to use a Raspberry Pi 4 Model B for its 

connections and performance.

Django is a free and open source web framework 

that works well with our Raspberry Pi.



Solution Approach:

Free Binance API for retrieving cryptocurrency 

statistics

Bitcoin and Ethereum are the most popular proof 

of work coins

Scalability: Use network buses for the GPIO pins 

that connect the FPGAs and the Raspberry Pi



System Specification

Web App

Binance

Binance





Implementation Plan

Raspberry Pi

● Defined communication protocol called SPI
● Using Python RPI.GPIO library
● Along with the library, developing own software to

handle sending/receiving bytes

Other setups exist using a Pi Wedge but we are 
creating our own.



Implementation Plan

Mining Elements

● Using Binance API to pull pricing data
● Quantitative analysis of pricing data will be self-developed
● Connect to a mining pool with a stratum+tcp url
● Custom FPGA mining controller to provide inputs to the hashing module
● Depending on the coin, we will find how to implement the hash functions and 

integrate them



Test, Verification and Validation

Web app

● Test the user interface
● Test the functionality of web app
● Test the data transmission between Raspberry Pi and Web app
● FPGA output a done signal to check the 10s requirement for switching 

configuration



Test, Verification and Validation

Raspberry Pi

● Test Raspberry Pi communications locally before deployment
● Simulate back and forth communication between host and device

FPGA

● Use combination of SystemVerilog testbenches and VCS to simulate design
● Synthesize onto FPGA to test communication and hashing
● Simulate input through the board’s switches and buttons



Project Management



Project Management

Blockchain (David):
Create Raspberry Pi software to communicate with Bitcoin blockchain (input)
Create Raspberry Pi software to communicate with Bitcoin blockchain (output)

Mining (William):
Create FPGA module to parse data from RPi
Create FPGA Hashing module for Bitcoin
Create FPGA module to test if puzzle solved

Web App (Lulu):
Get django web app setup on Raspberry Pi
Communicate with the Binance API to get up to date cryptocurrency data


