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Abstract—Traffic lights historically have had minimal
innovation. In the past few years though, we have seen a growth
in the usage of traffic light cameras to detect inbound/outbound
traffic. Our project aims to utilize modern computer vision and
deep learning technologies to monitor traffic cameras and detect
vehicle collisions. The goal is for our system to be able to detect
vehicle collisions on the road from simple cameras mounted on
traffic lights and relay detailed information including video
recordings to local authorities. Additionally, we will be using this
data to model traffic effects caused by collisions.

Index Terms—Computer Vision, OpenCV, Pytorch, Resnet
Architecture, Pytorch, Image Processing, HERE

I. INTRODUCTION

Many traffic light networks in the U.S. are beginning
to modernize. Researchers in the past few years, including
Carnegie Mellon University faculty member Stephen Smith,
have been working to integrate a plethora of sensors such as
cameras and radars into traffic light systems to make smarter
traffic light management decisions [1]. With this growth in the
use of these traffic cameras, our project aims to integrate
software based computer vision and deep learning systems to
detect vehicle collisions and report these incidents to the
relevant authorities. It is notable that with investments already
being made in hardware additions (traffic light cameras) to
traffic light systems, our project is entirely software based.
Thus theoretically it requires minimal costs and infrastructure
changes from the client's perspective.

We aim to implement collision detection using an
algorithm based on the position and velocity of the vehicles in
frame. We will be using an image processing pipeline between
the frames of traffic videos to identify these parameters of any
moving objects in frame and when a crash between moving
objects has occurred. To classify with certainty that collisions
are occurring between vehicles, we are using the resnet
architecture to classify objects as vehicles. Additionally, we
plan on recording car crashes from before the crash, during the
crash, and after the crash for a period of 5 minutes using
OpenCV and video buffers. In response to crashes, we plan on
communicating information about the size of the crash,
location, and lane closures to the web server. Using this data,
along with a routing application program interface (API), we
will provide drivers optimized routes to their destination as

long as they input their source and destination on our
webpage, With this system, the client gains immediate
notification of a vehicle collision, recordings of the vehicle
collision in full, and predicted traffic disruptions due to the
vehicle collision. This information can be incredibly valuable
to first responders and city management and because this
system is entirely software, it has a minimal implementation
cost.

II. USE-CASE REQUIREMENTS

In this section, we have included requirements
necessary from the client’s perspective to utilize the system we
are developing and system use case requirements. They are
split into two parts.  The requirements are listed below:

A. Camera Requirements
We want to make the camera requirements realistic to what

one might expect from an average traffic light. Therefore, the
client must not need more hardware than a 1280x720p
webcam that can record at a minimum 24 fps and a Linux
powered device capable of running Python 3 and OpenCV.
The client must have their camera at an elevated and standstill
position on a traffic light facing the street. To ensure proper
connectivity, the client’s camera connected linux device must
have a reliable internet connection capable of uploading at a
rate of 8 mbps while downloading at a rate of 1mbps to
support web server communication. This is important as we
intend to use a web server to put together the different aspects
of this project. Furthermore, the client must have a web server
capable of ingesting content from camera interfaces such as
Amazon’s EC2 instance.

B. Crash Detection Requirements
It is important that we do not detect crashes when none have

in fact occurred. This is because our smart traffic system
begins to reroute traffic, alert law enforcement and has the
potential to cause serious disruption if triggered for a false
alarm. Therefore, we would much rather not detect some
crashes but be very precise on how we handle false positives.
As requirements, the system must be able to detect vehicle
collisions with a false positive rate of 0.1% where failure is
defined as a detected collision that is not a genuine collision.
On the other hand, the system must be able to detect vehicle
collisions with a false negative rate of 2% where failure is
defined as the omission of vehicle collision detection in the
event of a vehicle collision.

C. Web Server and Video Requirements
In the event of a detected collision, we want the succeeding

events to happen timely. The system must record the minute
before the collision, and the next 4 minutes upon collision
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detection, and upload the recording to the web server within 6
minutes. The system must also notify the web server within 10
seconds of the detected collision. With regard to the video, it
must be 640x480 resolution at 24fps specified to the web
server with 30 seconds of video recording completion. In the
event of a detached collision, the recorded video must not
contain any skipped frames. In the event that skipped frames
are detected, they shall be labeled in the data packet sent to the
web server. Finally, the system must have a 24/7 uptime for 1
month intervals

D. Rerouting Requirements
In the event of a collision, we want to be able to rapidly

update the paths of our drivers, so that there is as little impact
as possible on their trip. We would like the location, size of
crash, and relevant route data to be transmitted to our web
server within 5 seconds of the actual crash taking place and
being confirmed. We would then like our rendered map on our
web server to update within 10 seconds of receiving this data,
so that the consumer can react in a timely manner to these new
changes.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our architecture involves multiple components that
interconnect with one another. We have included Fig. 1 to
demonstrate the connections between the multiple
components.. Fig. 1 which is located at the end of this design
report demonstrates the high level architecture that we are
using. It includes modules such as the opencv recording
module, object detection module, resnet module, traffic
rerouting module, etc. Details and specifications for each
block are provided in the implementation section of the design
report.

IV. DESIGN REQUIREMENTS

A. Web Server and Video Requirements
Similar to the use case requirements, we want our design to

ensure efficient video logging. Therefore, the recording
module shall not skip frame processing given an ingestion rate
of 24 frames per second. This implies that frame processing
and saving must occur in 41.67 milliseconds. Note that other
modules run concurrently so this design requirement is strictly
in the context of the recording module. To ensure that we are
only keeping the relevant frames we need and not risking
running out of our camera hardware’s storage space, the
recording module shall save frames in a FIFO style queue and
maintain the last 1 minute / 1440 frames processed.upon
receiving a CRASH_DETECTED signal, the recording
module shall copy the 1440 frame FIFO queue. The recording
module shall receive signals in a timely fashion (must not
process > 1 frame when a signal is raised and before handling

the signal). As mentioned earlier, the video processing module
shall not take > 41.67 milliseconds to process individual
frames to prevent “runaway” processing in the context of
inbound video frames.

B. Image Processing & Classification Requirements
As with the web server requirements, we want to ensure

efficient image processing and classification. In addition to
our use case client side requirements, we want to make sure
that 99% of all moving vehicles in any given frame in the
video data stream are correctly detected, classified, and
matched with a correct-to-form boundary. We expect this high
classification because our project specifically only deals with
vehicle on vehicle crash, so we want to eliminate other
moving objects that are not vehicles from our system. With
regard to the speed of the classification, the resnet architecture
shall take no greater than 250 ms per vehicle in classification
of vehicles. In terms of what makes a correct - to - form
boundary, we want to make sure 90% of the pixels enclosed
within the contour boundary are aligned with the vehicle
object and not the vehicle’s surroundings.

V. DESIGN TRADE STUDIES

Some specific quantitative requirements of our subsystems
have trade offs that are worth exploring. This section discusses
such metrics, and how the trade offs can be studied and
experimented with to come up with the best design for our use
cases.

A. Crash Detection Speed and Orientation Metrics
A very important use case requirement is detecting vehicle

collisions with a false positive rate of 0.1% and detecting
vehicle collisions with a false negative rate of 2%. When two
vehicles are detected to be very close together, we must make
sure that they have indeed crashed and not simply happen to
be very close together for a benign reason. Two parameters
that we can fine tune to make sure we are meeting our
requirement is the speed and orientation required of the
vehicles suspected of crashing. With regard to speed, there are
two parameters to tune- how fast must the cars be going before
the crash and how much did they slow down after the crash?
Intuitively, the cars should be going at a decent speed before
being suspected of crashing, and then should have slowed
down more or less to a complete stop after stopping. With
regard to the orientation- looking at the direction of travel in
the frames prior to being suspected of crashing, are the
motions predicted to intersect- and specifically we must tune
how much leeway between the suspected crash location and
the intersection point is truly representative of a crash instead
of a near miss. These three parameters can be fine tuned, and
will result in trade offs with regard to the efficacy of our crash
detection system. However, this is an optimization problem. A
basic approach is to make an initial reasonable guess for all
three metrics, and then keep 2 constant and vary 1 the first
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until an optimum is reached, and similarly repeat for the other
two parameters.

B. Tradeoffs regarding vehicle classification networks
In our efforts to classify collided objects as vehicles, we have
decided to use efficient deep learning architectures for the
classification problem. Originally we considered Mobilenet
v2, Resnet 50, and Resnet 34. All networks had their own pros
and cons as listed below

1) Mobilenet v2
Mobilenet v2 is a relatively lightweight network. In our
experimentation we found that the classification accuracy was
relatively low and required many epochs to train. In order to
get a well trained network we required > 50 epochs at ~10-20
minutes per epoch which seemed unreasonable for our
context.

2) Resnet 50
Resnet 50 was the next deep learning network we considered.
The architecture was relatively simple to set up and after
around 15-20 epochs at ~15 minute per epoch, the network
seemed to classify objects as vehicles with a solid degree of
accuracy. The only problem with Resnet 50 is that it seems to
miss our design requirements of classification taking no
greater than 250 ms. This is due to the exponentially large
number of convolutional layers needed as the Resnet size
increases.

3) Resnet 34
Resnet 34 was the final deep learning network we considered.
The architecture was relatively simple to set up as it is
essentially the same Resnet 50 but with many fewer layers and
smaller layers that carry less data. Around 15-20 epochs at
~10 minute per epoch, the network seemed to classify objects
as vehicles with a solid degree of accuracy. In fact the
accuracy was very similar to resnet 50. We believe that this is
due to the low resolution and “simple design” of vehicles. As
we are classifying the change that an object is a vehicle, the
network can be very simple and still function well.

C. Open Street Maps vs Google Maps vs HERE
In our efforts to find the best way to implement dynamic

rerouting for our drivers, we were presented with a multitude
of options. Originally OSM, Google Maps, and HERE all
seemed like potential options for implementing our rerouting,
as all three were prominent map API’s that have been around
for quite a while.

1) OSM
We at first attempted to make use of OSM to implement

our rerouting plans, but although it seemed to bear much fruit
in the beginning, we quickly hit a wall. Although with OSM
we have the flexibility of running actual spatial network
analysis, and are able to express geographical locations and
roads as a network of weights and edges, it was not quite what
we needed for our project. The difficulty in rendering maps for

a variety of locations, and honing in on specific intersections
to lower the weight on became a big enough issue that we
moved on to exploring other avenues.

2) Google Maps
We then moved onto attempting to make use of the Google

Maps API, which seemed to be a very fleshed out and viable
choice. In reality we quickly discovered that there currently is
not any method in place for developers to develop route
avoidance. Although we can have the API create routes based
on a variety of factors, there is no way for us to have it avoid
specific intersections and/or streets.

3) HERE
Finally we landed on the HERE Routing API. HERE

technologies is a company dealing with mapping, location,
and related automotive services. They are the ones behind
most of the built in mapping systems placed in cars. The
HERE Routing API allows us to block out entire areas based
on input coordinates, and optimally route drivers around the
crash location. Although we have less flexibility when
compared to OSM in how we are routing the drivers, the
ability to have route avoidance is worth the trade off. Also the
built in routing algorithm for the HERE Routing API is
already close to ideal, and should not deviate much from what
we also expect the optimal pathing to be.

VI. SYSTEM IMPLEMENTATION

A. Image Processing & Object Detection
The first aspect of our project is the image processing

pipeline for object detection. Our data set is a video feed of the
Sherbrooke / Amherst intersection in Montreal. We first apply
frame differencing, and then image thresholding at 30 (out of a
maximum value of 255 in a grayscale image). This isolates
only the moving objects between frames, as the stationary
areas will not have large values after frame differencing. To
make the moving areas more prominent, we apply image
dilation, which is a convolution operation with a kernel 3x3
matrix of all ones. Calling this kernel matrix k, for two
successive frames F1 and F2:

(1.) (1(F2 - F1) > 30 ) * k

Here, 1 is the indicator function- which results in a one
when the thresholding condition is met at a given pixel, and 0
otherwise. At this point, we have blacked out all stationary
areas and have made the moving areas prominent. To get the
locations of the moving areas, we need to plot the contours.
Using OpenCV’s findContours function, we can get the
overall shape and boundaries of the moving areas. In other
words, we will have visible boundaries of the cars, pedestrians
and other moving objects in frame.
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Fig 1: Expression (1.) implemented on consecutive frames

B. Deep Learning Vehicle Classifier
Since we are primarily concerned with vehicle on vehicle

crash detection, we will be using a deep neural network to
classify the boundaries of the moving objects as vehicles. This
will be using the Resnet Architecture. Combined, the image
processing and deep learning pipeline together must make sure
to meet our requirements of detecting vehicles with a 99%
success rate. This means that 99% of vehicles that are seen in
frame are detected, and their contours are matched properly to
the vehicle outlines. Due to hardware constraints, we plan on
using a Resnet 34 architecture that is configured as shown
below.

Fig 2: Resnet layer designs for Renet 18 through Resnet
101. [3]

C. Crash Detection Formula and Actions
Now that we have located the boundaries and location of

each vehicle, we will formulate a method for crash detection.
The crash detection algorithm begins when the boundaries of
two moving vehicles overlap. Once this is detected, we want
to know if this is a crash, or simply two vehicles that happen
to be very close to each other for another reason. We will track
the direction of movement as well as the change in speed of
the vehicles4. Our frame images are dimensioned at 600 x 800

pixels. Therefore, our notions of velocity- both magnitude and
direction- will simply be the movement of the “center” of the
boundary of a vehicle from one frame to the next. The
“center” of the vehicle is the average of all the plotted
contours that make up the vehicle boundary. We will track the
movement of the overlapping vehicle from 150 frames before
they began to overlap. We will see if their directions of motion
are in an orientation and speed that will lead to a crash, as well
as if the vehicles came to a stop once they did overlap, by
looking at 150 frames after. The video is 30 fps so this is the
equivalent of looking 5 seconds before overlap and continuing
to monitor for another 5 seconds. The logic looks as follows:

Fig 3. Crash Detection Logic Flow

Combined, the image processing, deep learning and crash
detection algorithms together must make sure to meet our
requirements of detecting vehicle collisions with a false
positive rate of 0.1% and detecting vehicle collisions with a
false negative rate of 2%

Fig 4: The post crash detection actions are shown here.
Multiple modules respond to the detected crash.
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D. Web Server
We are planning to use Apache linked with Amazon EC2

for our web server. This platform is highly scalable while also
very inexpensive. In addition to Amazon EC2, we plan on
using Django to implement the web interface that clients will
utilize. Django also has a built in SQL-Lite based database
that we will use to store crash information.

E. Rerouting
Now that we have received both the location and size of the

crash, we are now able to use that information to aid the driver
in avoiding the area. To calculate directions between two
coordinates, without traveling through a specific area or other
more specific restrictions, we make use of the HERE Routing
API. Based on the size of the crash we define custom penalty
parameters to determine which road attributes to use in our
route calculations, allowing us to give drivers the fastest route
to their location.

We will use HERE’s mapping application to render the
geographical representation of the route together with the map
data, so that the route is displayed on a map. Drivers will be
able to access this map, as well as input their current location
and destination, on our web server. This means that drivers
will be easily able to always receive current and up to date
rerouting information straight from any internet connected
device that they prefer.

Fig 5: Example of route avoiding an area

F. Video Logging
The video logging interface utilizes a FIFO style queue.

When frames are processed, they are added to a fixed size
FIFO queue of size 1440 frames (1 minute of footage at 24
frames per second). We have implemented the functionality of
freezing snapshots of the queue in the event of a detected
collision, the queue is copied and saved for video exporting.
This can be shown in Fig 4. which covers post crash detection
actions.

Fig 6: Frame processing and logging shown

VII. TEST, VERIFICATION AND VALIDATION

To verify that we are meeting our use-case and design
requirements, we will conduct the following tests.

A. Tests for Crash Detection
We want to test that we are detecting vehicle collisions with

a false positive rate of 0.1% and detecting vehicle collisions
with a false negative rate of 2%. While the overall pipeline is
being trained and refined on the Montreal intersection video
stream, it is not efficient to use a video stream with very
intermittent crashes to specifically test for crash detection.
Instead we can use traffic light car crash clips from YouTube
to ensure that our algorithm is working as intended and up to
specifications. In order to attain the video from YouTube, we
can make use of screen recordings.

B. Tests for Post-crash Timeliness
We have two conditions for timeliness once a crash has

been detected: the web server is notified within 10 seconds
and the five minute recording is subsequently uploaded - we
will allow slack and round to the next minute so 6 minutes
allocated for uploading. To test this, we will simply begin a
timer the moment a crash is detected and monitor the web
server. If our queue based implementation of video logging is
working as efficiently as intended, the time requirements
should be met and the results should show up as intended on
the web server.

C. Tests for Rerouting Efficacy
We would like our route data to update within 5 seconds of

the crash, and then have the geographical representation of the
map that we are rendering on our web server to update within
15 seconds of the entire crash. We would also like to make
sure that the rerouting module is not forcing our drivers on
long convoluted routes. We will make sure these conditions
are all satisfied by testing our design on simulated crashes, and
timing how long is required for our map to fully update and
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render our route after being given specific locations. We will
also look at the newly created route and see if it makes sense
for a driver to take those specific turns in order to avoid the
crash area.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule is based around first creating individual

components, and then figuring out ways to connect them
together. The web server acts as the glue that helps us
integrate all of our different pieces, and have them work
together hand in hand. Our crash detection, rerouting module,
queue based recording system, and webserver module are all
distinct entities that can be developed in parallel all the way
until they need to be connected to the web server. The web
server connection can be mimicked in testing by providing
data to our different modules and seeing how they operate
under different conditions, The emergency response
notification system on the other hand heavily relies on the
existence of the web server, and must wait until that has been
fully set up before we can see any progress in that regard. The
schedule we have leaves time at the end for both integration,
testing, and reworking based on feedback we receive from our
demo before the final due date.

Our Gantt chart can be seen in appendix A.

B. Team Member Responsibilities
While all group members are responsible for collaborating

well on all aspects of the project, the work has been split up to
allow members to focus on their areas of interest or expertise.
Arvind Govinday shall primarily focus on the image
processing pipeline, and getting the crash detection working.
Jonathan Li will primarily focus on the video logging and web
server aspects of the projects. Jonathan also has a lot of deep
learning experience, and so will focus on the vehicle classifier
as well. Goran Goran will primarily focus on rerouting.

C. Bill of Materials and Budget
Bill of Materials and Budget are included at the end of the

design project report.

D. Risk Mitigation Plans
The biggest risk to our project is that the image processing

and classification aspects do not work. The rest of the modules
very much rely on these aspects working, so it would put us
significantly behind if this part did not work as intended.
However, the problem of vehicle detection has been widely
studied, and there exist numerous open source pre-trained
classifiers for us to use on images. If we are unable to get our
own vehicle detection and classification system working, we
will simply use one of these open source classifiers and work

on the rest of the project. With regard to web server and
rerouting, there is less risk as these modules are more isolated
and simpler to accomplish.

IX. RELATED WORK

There are currently no other projects that we are aware of
that integrates all of these features into a traffic light module.

A lot of research has been done in the field of both crash
detection, and traffic flow rerouting, but nowhere in our
searches were we able to find anyone that was attempting to
integrate these two components into the same system in quite
the same way. We place most of the responsibility of
following through with the rerouting changes on the drivers
themselves, having them access a website and follow specific
directions..

The closest project to our design that we have been able to
find is Surtrac [2]. Surtrac is an AI-based adaptive traffic
management system designed to better control traffic flow. It
makes use of sensors to identify approaching vehicles,
calculate their speed and trajectory, and adjust a traffic signal’s
timing schedule as needed. Surtrac was coincidentally spun
out from a Carnegie Mellon Institute project.

Although both our project and Surtrac are smart traffic
lights, there are a few distinct differences. Our main focus is
detecting large disruptions to traffic flow caused by crashes
and best aiding drivers in avoiding it, as well as providing
documented footage on the crash itself. Along with notifying
the proper authorities of the location and approximate size of
the crash, in efforts to reduce emergency response time. Our
traffic lights are all stand alone systems, different from the
decentralized network of smart traffic lights that form Surtrac,
and have no control over the timing of traffic light signal
changes in other areas.

X. SUMMARY

Our goal for our smart traffic signal system has always been
two fold, to both mitigate loss in productivity caused by car
crashes, and to lower emergency response time to crashes.
Therefore it is important that we are able to detect and record
the crashes accurately as they occur, understand how that
affects individual drivers' routes, and report these occurrences
to law enforcement with a high degree of confidence in their
occurence.

Challenges in achieving these requirements lie in the fact
that we must be able to do all of these tasks at both a high
speed and with little to no error. If we are not able to detect
these crashes fast enough and cut down on emergency
response time, there may as well not be a smart traffic light in
that location in the first place. We also do not want to
accidentally report crashes that do not actually exist, resulting
in traffic slow downs as we reroute cars away from a perfectly
viable street. Reporting crashes that do not exist would also
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result in a significant waste in emergency response resources.

GLOSSARY OF ACRONYMS

API - Application Program Interface
OSM - Open Street Maps
Resnet - Residual Learning Network
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Appendix C: Block Diagram of System


