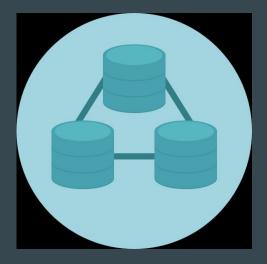

Use Case What is our project?

- AWS-deployed video streaming web application with multi-tiered architecture
- Testing and optimizing custom load balancer between frontend and backend servers
- Many LB models considered like CPU usage algorithms and machine learning


Multi-tiered Architecture

- In a web application, 3 common tiers are frontend, backend, and database
- Multi-tier benefits:
 - Modularity
 - Scalability
 - Availability
 - security
- The servers in each tier handle a specific role in the hierarchy

Presentation tier >GET SALES GET SALES TOTAL TOTAL The top-most level of the application 4 TOTAL SALE is the user interface. The main function of the interface is to translate tasks and results to something the user can understand. Logic tier This layer coordinates the application, processes commands, makes logical decisions and GET LIST OF ALL ADD ALL SALES evaluations, and performs SALES MADE TOGETHER LAST YEAR calculations. It also moves and processes data between the two surrounding layers. SALE 1 SALE 2 QUERY SALE 3 Data tier SALE 4 Here information is stored and retrieved from a database or file system. The information is then passed back to the logic tier for processing, and then eventually back to the user. Storage Database

What is a Load Balancer?

- Load balancers (LB) are intermediary nodes between the tiers of a multi-tier web server architecture
- LBs consider a cross-tier task and choose a server from the target tier that is best suited at that time
- There are various LB models for answering the "which server?" question
 - many include using server details as parameters or choosing based on precedent performance

Use Case Requirements - Video Streaming App

• User will be presented with homepage where they can select a particular video they are trying to stream

- Streaming Requirements as follows (typical video streaming standards):
 - transmitted at 3.5 Mbps
 - play length of 9-10 minutes
 - lag length less than 15 seconds (2.5% lag ratio)
 - buffer fill (time it takes video to load) less than 2 seconds

Use Case Requirements - Load Balancers

- LBs will use metrics to choose the front-end and back-end server to use for various processes according to various models
 - \circ e.g. processor utilization, mean response time

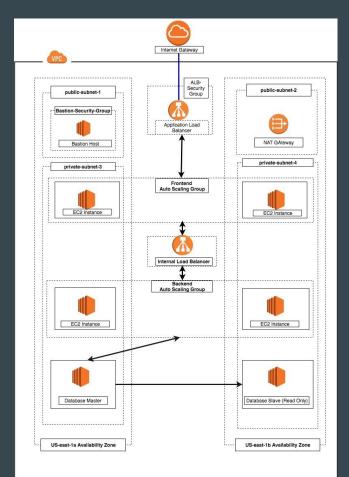
- The various LBs' performances will be benchmarked against RandomLB and GreedyLB algorithms
 - RLB will pick servers entirely at random (strong control)
 - GLB only uses shortest processing time to choose servers

Technical Challenges - Video Streaming App

- All tiers of the architecture should be relevant and useful
 Creating robust front-end, back-end, and database structure
- Target tiers of each LB must be put under sufficient load
 - Warrants usage of LB to solve non-trivial problem of "which server?"
 - Ensures benchmark comparisons reveal useful patterns
- Video Streaming server requires end-user nodes
 - Simulating load creation for the server tiers
 - Tracking app performance from user perspective

Technical Challenges - Load Balancers

• LBs should be able to effectively and efficiently communicate between their respective server tiers


• LBs need access to parameters necessary for their respective models

- CPU utilization across target server tier
- I/O levels
- Hardware specifications
- Need a monitoring system for analyzing each LB's respective performance
 - Should be independent of LB internal program for modularity and robustness

Solution Approaches - AWS

- AWS provides a comprehensive platform for building a multi-tier server architecture
 - Front-end, back-end, and database tiers built via a Virtual Private Cloud interface

- AWS LBs are not sufficiently configurable; we will replace with custom LBs
 - Functionally intermediary EC2 instances

Solution Approaches - End-User Simulation

• Begin with simple single user trial to test server connections

• Move on to multi target trials, we are considering running user simulation scripts on either our own devices, the ECE clusters, or additional AWS ec2 instances

• Would need a sufficient amount of users to put enough load on our servers for differences in load balancing algorithms to matter

Solution Approaches - Monitor Nodes

- Nodes that monitor LBs and overall system for performance analysis
- LB monitors are separate EC2 instances that get key metrics from LB I/O
 - modularity and 3rd-party verification
 - E.g. execution time, waiting time, and migration time
- Overall system monitoring can in the End-user nodes
 - Bit rate, lag ratio, etc.

How do we test our product?

- Many trials with users and requests sent over a specific time span (sample size)
- Trial groups have different load balancer implementations
- Simulate users from different geographic locations
- Average metrics for trial groups to compare LB implementations' performance

Schedule and Division of Labor

TASKTITLE	TASK OWNER	START DATE	DUE DATE	PERCENT	01/17 - 01/23	01/24 - 01/30	01/31 - 02/06	02/07 - 02/13	02/14 - 02/20	02/21 - 02/27	02/28 - 03/06	03/07 - 03/13
Project Conception and Initiation												
Team Formation	All	1/17/22	1/23/22	100%								
Project Conceptualization	All	1/24/22	1/30/22	100%								
Writing Abstract	All	1/24/22	1/30/22	100%								
Proposal Presentation Slides	All	1/31/22	2/6/22	100%			<u> </u>					
Preparation for Proposal Presentation	Mitul	1/31/2022	2/6/22	100%								
Project Design and Prototyping												
Obtaining AWS Credits	Mitul	2/7/22	2/13/22	20%								
Set Up and Test AWS Connections	All	2/7/22	2/27/22	0%								
Design Presentation Slides	All	2/14/22	2/20/22	0%								
Preparation for Design Presentation	Jason	2/14/22	2/20/22									
Design Review Report	All	2/14/22	2/20/22	0%								
Project Building and Launch												
Video Web Application Frontend	Mitul	2/28/22	03/13/22	0%								
Video Web Application Backend	Jason	2/28/22	03/13/22	0%								
Video Web Application Database	Nakul	2/28/22	03/13/22	0%								
Build Basic Custom Load Balancer	Jason	3/14/22	3/27/22	0%								
Set Up Monitor Node	Nakul	3/14/22	3/27/22	0%								
Implement Random Load Balancing as Control	Mitul	3/28/22	04/03/22									
Test Single User Scenario	Mitul	3/28/22	04/03/22	0%								
Project Monitoring and Improvement												
Begin End User Simulation	Jason	04/04/22	4/10/22									
Implement Basic Machine Learning Algorithms	Mitul	04/04/22	4/10/22	0%								
Implement Traditional Algorithms	Nakul	04/04/22	4/10/22	0%								
Monitor and Compile Data From Monitor Node	All	04/04/22	4/24/22	0%								
Implement Advanced ML Algorithms	All	04/11/22	4/24/22									
Final Presentation Slides	All	04/18/22	4/24/22									
Preparation for Final Presentation	Nakul	04/18/22	05/01/22	0%								