
Use Case
● Load balancing is a key server architecture process

● Problem: insufficient public knowledge on dynamic load balancing

○ Commercial options only offer “black-box” solutions

○ Useful for building scalable and more integrated open-source-based servers

● Solution: Testing and documenting performance of LB algorithms of interest in a 

real world environment video streaming server

○ Comparing traditional parameter-based LBs and experimental ML models



Server Architecture
● More streamlined

○ Now implementing Application 

LB, full-stack servers

○ Amazon S3 DB is auto-scaling; 

removes need for internal LB

● NodeJS Frameworks

○ HTTP-proxy load balancer

○ AWS-SDK video retrieval

● AWS group CodeDeploy



Load Balancing Algorithms (Benchmark)
● Fixed-decision traditional algo’s: RandomLB and RoundRobin

● AWS Elastic Load Balancing

○ Standard load balancing performance (commonly used blackbox solution)

○ Can be preset at high-level to consider various metrics (CPU%, Network I/O, etc.)



Load Balancing Algorithms (Custom)
● Multi-armed Bandit Reinforcement Learning Scenario

○ Online learning with reward function of a server metric

○ Exploitation vs Exploration

○ Key difference is variable reward with no asymptotic limit

■ Consider recent results and consistently explore

● Two algorithm classes based loosely on Epsilon-Greedy and UCB1

○ Two LB decider types with 2 different server metric (4 total)

■ local response time (ms) or network I/O (bytes)

○ Epsilon-greedy has fixed chance of naive exploration (e.g. ½ chance to pick at random)

○ Custom UCB1 explores more consistently by only picking from 50% least recent



User View - video streaming server

● Can pick b/w 4 videos of varying 

length and quality

● Streamed in 1MB chunks to HTML5 

video element



Internal View: LB Proxy Server
The load balancer makes the decision as to which video server to pick based on the 

algorithm it is running

Output shown from load balancer using egreedyRT algorithm:



Data View: User Simulation Results
● .csv generated by JMeter scripts 

(average response time, bit rate, etc.)

● Transformed into insightful graphs 

using external tools (excel, Python)



Quantitative Specifications
Metric Benchmark Description

User Metrics

User Latency 2s Time elapsed between the video request from the user 
and receiving video data from the server

Bit Rate Video-based How many bits are transmitted over a specified time

Load Balancer Metrics

LB Latency 500 ms Time elapsed between the LB receiving the request until 
a response from the video server is received

CPU Utilization Processor utilization (%) of a server/VM (async)

Network I/O Data volume (bytes) of input/output to a server (async)



Testing Plan
● Cannot simply have scripts sending requests for video chunks at regular intervals

○ Does not properly simulate how video chunks are being requested by video player

● Need to rely on simulating behavior of HTML5 video player

● Tried tools such as Selenium, Taurus, and JMeter with third party load testers such 

as dotcom-monitor, flood.io, and BlazeMeter



Final Testing Suite
● Generate different classes of users by recording browser behavior and converting 

them into JMeter files

● Run JMeter scripts through BlazeMeter to retrieve user data for each algorithm

● Compare between algorithms by generating graphs using resulting .csv files

Measures of Success
● Meeting basic benchmarks mentioned before while servers are under load

● Comparing performance of our custom load balancers with that of the benchmark 

load balancers

○ Finding user contexts where our custom load balancers performs better over benchmark

○ Altering algorithm values such as the value of epsilon or fraction of servers considered in UCB-1



Design Trade-offs
● Metric Retrieval Change

○ LBs now decide on local server metrics instead of user metrics

○ Less useful decision indicator but more reliable retrieval

■ Faster and more reliable metric retrieval

■ Cannot expect user metrics in typical server-client contract

● Architecture Streamlining

○ Streamlined architecture corresponds less to large-scale video streaming

○ However, makes load-balancing decisions more relevant to user data



Project Management


