Use Case

e Load balancing is a key server architecture process
e Problem: insufficient public knowledge on dynamic load balancing

o Commercial options only offer “black-box” solutions
o Useful for building scalable and more integrated open-source-based servers

e Solution: Testing and documenting performance of LB algorithms of interest in a
real world environment video streaming server

o Comparing traditional parameter-based LBs and experimental ML models

. m
Server Architecture |
Pp ication
e More streamlined Ba'"cef

o Now implementing Application Video Servers

LB, full-stack servers @ @ @
o Amazon S3 DB is auto-scaling;

removes need for internal LB

S3 Bucket (Autoscaling)

e NodeJS Frameworks

o T
o HTTP-proxy load balancer

o AWS-SDK video retrieval i
Database

e AWS group CodeDeploy

Load Balancing Algorithms (Benchmark)
e Fixed-decision traditional algo’s: RandomLB and RoundRobin

e AWS Elastic Load Balancing

o Standard load balancing performance (commonly used blackbox solution)
o Can be preset at high-level to consider various metrics (CPU%, Network I/O, etc.)

Load Balancing Algorithms (Custom)

e Multi-armed Bandit Reinforcement Learning Scenario
o Online learning with reward function of a server metric
o Exploitation vs Exploration
o Key difference is variable reward with no asymptotic limit
m Consider recent results and consistently explore

e Two algorithm classes based loosely on Epsilon-Greedy and UCBI
o Two LB decider types with 2 different server metric (4 total)
m local response time (ms) or network I/O (bytes)
o Epsilon-greedy has fixed chance of naive exploration (e.g. %2 chance to pick at random)
o Custom UCBI explores more consistently by only picking from 50% least recent

User View - video streaming server

HTTP Video Streaming

HTTP Video Streaming

-- select an option --

Big Buck Bunn v

Feel free to seek through the video and it only loads the

v Big Buck Bunny

part you want to watch

Smack

Smash Game ek through the vidqg

Tsunami
o watch

e Can pick b/w 4 videos of varying
length and quality
e Streamed in IMB chunks to HTML5

video element

» 3:00/3:00

Internal View: LB Proxy Server

The load balancer makes the decision as to which video server to pick based on the

algorithm it is running

Output shown from load balancer using egreedyRT algorithm:

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL GITLENS

minInd
Target
minInd
Target
minInd
Target
minInd
Target

is 2 and chosen is 2

index 2 (http://ec2-54-174-93-234.compute-1.amazonaws.com:8000) had a response time of 893.3999999999997 ms
is 2 and chosen is 2

index 2 (http://ec2-54-174-93-234.compute-1.amazonaws.com:8000) had a response time of 892.7999999999997 ms
is 2 and chosen is 1

index 1 (http://ec2-52-91-35-74.compute-1.amazonaws.com:8000) had a response time of 903.6000000000001 ms
is 2 and chosen is ©

index @ (http://ec2-54-152-11-82.compute-1.amazonaws.com:8000) had a response time of 907.2 ms

Data View: User Simulation Results

Average response time over 40 types of request
8000

e .csv generated by JMeter scripts
(average response time, bit rate, etc.)
e Transformed into insightful graphs

Average Response time /ms

using external tools (excel, Python)

Request

Samples Average i Std. Dev. Error %

Quantitative Specifications

Metric Benchmark

Description

User Metrics

User Latency 2s

Bit Rate Video-based

LB Latency 500 ms

CPU Utilization

Network 1/0

Time elapsed between the video request from the user
and receiving video data from the server

How many bits are transmitted over a specified time

Load Balancer Metrics

Time elapsed between the LB receiving the request until
a response from the video server is received

Processor utilization (%) of a server/VM (async)

Data volume (bytes) of input/output to a server (async)

Testing Plan

e (Cannot simply have scripts sending requests for video chunks at regular intervals

o Does not properly simulate how video chunks are being requested by video player
e Need to rely on simulating behavior of HTMLS5 video player
e Tried tools such as Selenium, Taurus, and JMeter with third party load testers such

as dotcom-monitor, flood.io, and BlazeMeter

Se

Taurus by Perforce

Final Testing Suite

e Generate different classes of users by recording browser behavior and converting
them into JMeter files
Run JMeter scripts through BlazeMeter to retrieve user data for each algorithm

e Compare between algorithms by generating graphs using resulting .csv files

Measures of Success

® Meeting basic benchmarks mentioned before while servers are under load
e Comparing performance of our custom load balancers with that of the benchmark

load balancers

o Finding user contexts where our custom load balancers performs better over benchmark
o Altering algorithm values such as the value of epsilon or fraction of servers considered in UCB-1

Design Trade-offs

e Metric Retrieval Change
o LBs now decide on local server metrics instead of user metrics
o Less useful decision indicator but more reliable retrieval
m Faster and more reliable metric retrieval
m Cannot expect user metrics in typical server-client contract

e Architecture Streamlining

o Streamlined architecture corresponds less to large-scale video streaming
o However, makes load-balancing decisions more relevant to user data

Project Management

TASK TITLE

Project Building and Launch

Set Up and Test AWS Connections | Jason
Initial Video Server | Nakul
Implement Benchmark Load Balancers | Mitul
Obtaining Response Time for Load Balancer Mitul
Implementing Video Chunks Jason
Implement Epsilon-Greedy Load Balancer Mitul
Begin End User Simulation | Jason
Obtaining Network |/O | Nakul
Implement UCBa-Based Load Balancer Mitul
User Simulaticn Data Graphing/Comparison

AWS Deployment

