
Use Case
● Load balancing is a key server architecture process

● Problem: insufficient public knowledge on effective dynamic load balancing

○ Commercial options only offer “black-box” solutions

○ Useful for building scalable and more integrated open-source-based servers

● Solution: Testing and documenting performance of LB algorithms of interest in a 

real world environment video streaming server

○ Comparing traditional parameter-based LBs and experimental ML models



Server Architecture



Picking the right VM
● Between Azure and AWS we chose to run our instances on AWS

○ We have experience deploying web apps on EC2 instances 

● Several types of EC2 instances defined by the technical specifications of the VM

○ General purpose, storage optimized

● We will be leveraging different general purpose 

EC2 instances with the same specifications (e.g. 

T4g for backend, T3 for frontend, H1 for 

database)



Webpage Layout/Functionality



Load Balancer Simulation
● One load balancer b/w front-end and back-end, 

another b/w back-end and database

1. Receive request from tier either above or below

2. Request+receive parameters from target tier

3. Apply parameters to model -> determine target node

4. Send request to target node

5. (optional) Receive feedback from target node for 

updating model



Video Specs/Source 
● Stream 1080p videos at 60 fps 

that are ~10 minutes (8-12)

● Upgrade to 4k videos if more 

load on LB is needed

● Use a catalogue of Creative 

Commons videos from Youtube

● CC license allows republishing 

without copyright issues

● Dynamic video that changes a lot 

to put sufficient load

● Gaming videos, stock videos



Initial LB Algorithms (Mitul)

Name Parameters Brief Description

Round Robin N/A Chooses nodes in specific sequence
(e.g. 1, 2, 3, 1, …)

CPU Decider VM specs,
CPU usages

Chooses node with lowest current CPU utilization 

Response-based 
UCB1

VM response 
times

ML model tracks recent response speeds and 
chooses fastest or random based on log chance

TBD VM specs,
Request sizes

Another reinforcement-learning-based algorithm



Quantitative Specifications

Metric Benchmark Description

Bit Rate 3.5 MB/s How many bits is transmitted over a specified time

Lag Ratio 2.5% Waiting time over watching time of the video

Buffer Fill < 2s Time it takes for video to load at the start

User Latency 6s Time elapsed between the video request from the user 
and receiving video data from the server

LB Latency 500ms Time elapsed after the request leaves the LB until a 
response from the target is received

CPU Usage 80% Percentage of capacity of VM’s in use by the system



Testing Plan - User Simulation 
● Run python scripts on 30 devices/VMs to simulate users

● Metrics averaged per test and compared with benchmark for each algorithm

● Users will pick random videos from our application to send requests for

● Ensures requests that put varying loads on servers

User Behavior # of users requests/min Description

Full-Length 10 ~1 / 10 min Watches videos to its full length

Half-Length 10 ~1 / 5 min Watches videos to half length

Quick-Swap 10 ~5 / 1 min Switches between different videos in quick 
succession



Monitor Node
● Each LB will have an accompanying 

monitor node situated in an adjacent 

position

● They will collect data on the LB 

performance via response from 

adjacent tiers

○ Local response time

○ CPU utilization variance



Test Evaluation
● Metrics of our video streaming application benchmarked against 

load balancer that randomly picks servers (RandomLB)

● Metrics also have to meet our specifications

● Potential sources of failure:

○ Not generating enough load for making LB consequential

○ Not having significant improvement over randomLB

● Can be solved by reducing testing load/using better VM’s



Task Management


