
LearNet
C2:  Mitul Saha, Nakul Goenka, Jason Tang

18-500 Capstone Design, Spring 2022
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Typical server architecture is increasingly moving towards 
multi-tier systems that rely on load balancing to meet storage 
and workflow efficiency needs. Though 3rd-party load balancing 
solutions are available, they function as black-boxes may not 
meet specific system demands. Furthermore, there is a lack of 
public knowledge on custom load balancing for server-specific 
solutions. We document performance of some traditional and 
some custom dynamic load balancing algorithms within a 
real-world system: a video streaming server.

Scan QR or follow this link for 
more information:

https://course.ece.cmu.edu/~ece
500/projects/s22-teamc2/

System Description

System Evaluation

Conclusions & Additional Information

Clients will have videos streamed in many 1MB chunks requests 
to the video app. Each request goes to a proxy server that load 
balances by choosing a video server with a specific algorithm. 
The video server retrieves the requested chunk from the AWS 
S3 database and sends it to the client while sending relevant 
server metrics to the load balancer.

We made two key design tradeoffs. Firstly, 
our load balancing proxy now uses server 
metrics to make decisions instead of user 
metrics. These values are less useful but  
more reliable and better adhere to the 
server-client contract. We also streamlined 
our server architecture. This corresponds 
less to commercial video streams but makes 
load balancing decisions more impactful.

Metric Benchmark Description
User Metrics
User Latency 2s Time elapsed between the video 

request from the user and 
receiving video data from the 
server

Bit Rate Video-based How many bits are transmitted 
over a specified time

Load Balancer Metrics
LB Latency 500 ms Time elapsed between the LB 

receiving the request until a 
response from the video server is 
received

CPU Utilization Processor utilization (%) of a 
server/VM (async)

Network I/O Data volume (bytes) of input/output 
to a server (async)

Algorithm Parameters Brief Description

Round 
Robin

N/A Chooses server in sequence
(e.g. 1, 2, 3, 1, 2, 3, …)

e-greedy response time,
network I/O,
e value

Chooses best performing server 
with chance ‘e’ and otherwise 
random

Soft-UCB 
adaptation

response time, 
network I/O,
p value

Chooses best performing server 
and worsens its metric by fixed 
value ‘p’ each time chosen

Hard-UCB 
adaptation

response time, 
network I/O,
k value

Chooses best performing server 
from list of k-least recently chosen 
servers

4 Different Use Cases (VM Groups)

1 Same Server Location, Same Server Specifications

2 Same Server Location, Different Server Specifications

3 Different Server Locations, Same Server Specifications

4 Different Server Locations, Different Server Specifications

Our custom load balancing algorithms will use the load balancer 
metrics for their decision-making process. JMeter user scripts 
are generated and ran through BlazeMeter to obtain the user 
metrics between algorithms which are then graphed and 
compared to determine their efficacy in different use cases.


