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Abstract—A system capable of reflecting street parking
availability, giving drivers a time-sensitive insight on parking
locations. It alleviates the frustration of having to circle around
blocks multiple times only to never find a parking spot. Our
solution aims to expand upon current garage and lot parking
management systems and include street parking as another
application area. It also provides a cheaper alternative to current
state of the art systems since street parking is oftentimes close to
free.
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I. INTRODUCTION

PARKING is one of the most painful parts of driving. In
addition to the issues drivers face with inadequate parking
spaces and parking maneuvers, they may simply not find
parking spots, especially on the street. Finding an available
spot is often a cycle of inconvenient turns and circling. Our
proposal is to make a smart city solution that reduces the
amount of time wasted looking for street side parking by
providing users with the location of the closest open parking
spot.

Commercial technologies include systems such as
ParkPGH, SpotHero, and BestParking; however, these systems
usually always work within garages and enclosed parking lots,
due to the convenience of implementation and hence,
economic viability. The target users for these apps are people
who occasionally visit some city for an event. City locals use
street parking more often because (i) it is way cheaper and (ii)
it might be closer to their destination. Street side parking is
here to stay for the foreseeable future and there exists a need
to create a centralized parking system that allows users to
access both garage and public street parking.

Kerby, our curbside parking management system, aims to
extend the application of parking technology while remaining
cost effective.

II. USE-CASE REQUIREMENTS

Our proposed system has two kinds of users: drivers and
operators. In this section, we have included requirements
necessary from each user’s perspective. For both, the car must
be less than 16 feet in length, in order to limit the scope of our
system for a semester-long project. The average car length is
about 14.7 feet long, so our system will be able to
accommodate a large proportion of cars.

A. Driver Requirements
Kerby should be able to direct a driver to the closest open

street parking spot from the driver’s inputted destination, thus
requiring user-friendly web interfaces. We also require that
when Kerby shows a parking location, the driver can expect
the spot will be open, have enough space to park, and be
within 30 feet from where Kerby’s route ends. This
quantitative metric is used because 30 feet is approximately
the length of two cars. Additionally, we require that Kerby
provide accurate results about availability over time. The
sensors will wake up every two minutes to sense if their state
should change (spot gets taken or not). Street parking can be
used both by Kerby drivers and local drivers. Many Kerby
drivers will also be requesting spots ahead of time before they
are anywhere near their destination. We also found that most
people park their cars in two minutes. So taking all of the
above into account, we set Kerby’s real-time information
requirement to one with two minute periods.

B. Operator Requirements
Kerby should help operators manage their street parking

areas. We require that the spot modules have modular design
for ease in scaling up or down. We also require that the spot
modules are cheap enough (i.e. < $50) to encourage scalability
and citywide adoption. These two requirements will sustain
the benefit of street parking over building more garages. The
spot modules should have a power source that lasts for a
reasonably long amount of time without replacement, which
we determined as at least 6 months. This is another factor in
determining the two minute period where the sensor wakes up
and sleeps. The spot modules should be weatherproof and
compatible with roadside infrastructure, with easily
replaceable batteries. Lastly, Kerby should convey overall
parking usage information to operators through an
interpretable graphical interface.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Kerby’s system design is aimed to be simple and digestible
by any driver or operator. The principle of operation is easy
communication between the state of the physical world (i.e.
the parking spot’s availability) and consumers (i.e. the
drivers). The overall system has three key components:
sensing IoT hardware installed on the curbside, an information
warehouse stored on the cloud, and the user interface web
application.
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Fig. 1. Overall system block diagram

The essential functions are accurate sensing, timely
communication, accessible information, and an intuitive user
interface. Each of these functions are supported by subsystems
of our design. Accurate sensing will be completed by an
ultrasonic sensor and transmitted through an IoT device. In
Fig. 2, a closer look at the “spot module” hardware is
described. The details of each component are shared in section
VI, but the overall concept of component interactions is
displayed in these diagrams.

Fig. 2. Zoom-in of spot module system

Similarly, Fig. 3 shows a closer look at the database/cloud
section. Our hardware spot module will take care of collecting
the information of parking spot availability, transferring it over
to this next section that processes and stores it in our cloud
server (e.g. AWS). These server-side processes were where we
improved our timing-based performance the most, so it was
key our system implementation was as clean as possible.

Fig. 3. Simplification of cloud-side communication and information
storage

The block diagram of the entire system architecture is
included in Fig. 4 in the Appendix. One major change is
choosing to use Flask instead of Django.

IV. DESIGN REQUIREMENTS

Kerby’s principles of operation paired with the user
requirements has provided us with a roadmap for the design
requirements your curbside parking buddy will have to fulfill.

The spot module subsystem must be able to detect cars
parked in front of the sensor, calling for a distance sensor with
a range of up to at least 1 foot. Next, the spots are to be
detected for cars under 16 feet, which requires the modules to
be configured for optimal results with this constraint. This
requirement is fulfilled by positioning sensors every 8 feet on
the curbside.

Additionally, we are looking for our system’s power to last
a reasonable amount of time before needing to change the
batteries. The design will call for sensor wake ups every two
minutes and a battery that can work with this timing to last
around 6 months.

Requirements for communication come from the need to
transfer data from a spot module to a central database and into
the user’s hands. Modules require a small, low-power
consumption, low-cost communication device, with a reliable
protocol like Wi-Fi. The Wi-Fi range also must be large
enough to be able to hop on to the closest network and
communicate with our central database. Since our MVP plan
is to implement this on CMU campus, we have defined the
range requirement only to be at least 100 meters. For future
development, this would be extended to at least a few
kilometers (may require the addition of an antenna).

To maintain the scalability and accessibility of Kerby, we
defined the user requirements of modules to stay under $50
each. This has worked well with our principle of operation, to
stay simple and functional, and driven our design requirements
to be reasonable for cheaper IoT to fulfill.

Since we would like to provide instant data to our users, our
database needs to be able to answer real-time requests from
our users but also track all the sensor data that has been
collected. Cloud services, like AWS, will be able to provide
this specification for Kerby.

The user requirement of an easy-to-use graphical interface
will be fulfilled by a web application that is compatible with
the most common browsers and accessible to users. This
means we will design the web app according to ADA
standards. Our plan is to make the application very simple and
clean, without too many options and extremely clear about
where to input information and how to reserve a parking
space.

Providing an accurate available parking location within 30
feet will require Kerby’s modules to have their geolocations
(longitude, latitude) be encoded with each of their unique IDs.
This will allow us to use an API (such as Google Maps) to
calculate driving distance between destination and parking
spots, fulfilling another user requirement of being easy-to-use.

V. DESIGN TRADE STUDIES

We continue with a trade-off analysis on our chosen design
specifications regarding how they satisfy our design
requirements. Our system requirements were primarily
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concerned with 1) detection and location accuracy, 2) transfer
latency, and 3) project scalability.

A. Sensors vs. Cameras

Brainstorming in the initial phases of our project had led us
down the path of possibly using cameras with computer vision
to fulfill the requirement of “seeing” parked cars. Solving the
same problem, these cameras would be installed at city
intersections and look down the road and “see” if there were
open spots or not.

However, after some driving around on the curvy Pittsburgh
roads, a realization of how expensive and complex computer
vision would become to get any accurate readings turned us
away from this route.

Additionally, processing images using CV has an
exponentially higher power consumption rate than a sensor
has to take in a reading.

Instead, to fulfill the requirement of scalability and
accuracy, we decided that a curbside module would be more
feasible. This way location accuracy and detection accuracy
could be fulfilled, at a lower cost than high functioning
cameras paired with complex computer vision computations.

TABLE 1.  COST COMPARISONS OF DIFFERENT SENSING OPTIONS

Computing Device with Sensing Device Cost

Jetson Nano with Camera $120 + $26 = $146

Raspberry Pi Zero W Camera Pack $45

NodeMCU ESP8266 with HC-SR04
Ultrasonic sensor

$6 + $2 = $8

B. IR Sensors vs. Ultrasonic Sensors
The design specification of needing a sensor that can sense

if a car as far away as 1 foot from the curb could be fulfilled
by different distance sensors. We researched both IR and
ultrasonic sensors. The most common IR distance sensor used
with Arduino projects has the range of 10 cm - 80 cm but is
priced at $10 a piece. Another common IR distance sensor was
priced at around $3.33 per piece but the range was only
10cm-30cm.

The most common ultrasonic sensor used in Arduino and
IoT products, the HC-SR04, has a range of 2 cm - 400 cm and
was priced at $2.40 per piece. This additional range and lower
price point made it seem like the perfect choice. Additionally,
we were able to find more documentation for projects with
this sensor.

C. Microcontroller and Communication Board

Initially, the hardware portion of our project fits the
description of a common household Arduino project.
However, with the addition of needing to communicate

between modules and with a central database, we introduced
the possibility of needing WiFi.

Most Arduino boards are not WiFi capable and would
require an external module for enabling this functionality. The
Arduino UNO WiFi R2 does meet this specification; however,
its price point at almost $45 essentially put it out of the
running.

With our design specs of WiFi range, power supply needs,
and price, we settled upon the ESP8266 NodeMCU. The low
sleeping current consumption of 0.5 uA and active current
consumption as low as 0.15 uA were huge factors, as well as
the 3.3 V operating voltage. Additionally, there are more than
enough digital I/O pins (13) to attach the ultrasonic sensor as
well as any other debugging/future work extensions. There
also exists plentiful documentation for creating IoT devices
with the ESP8266.

VI. Power Source

Our original idea (and still hope for the future) was that we
were able to run our system on solar power. However, the
tradeoff in time spent making an inexpensive solar-powered
system vs. time spent on making a more accurately
functioning system made us lean towards focusing on the
other sections of our project first. For power, we settled on
rechargeable LiFePo4 batteries, as they have been researched
to work well with the ESP8266 NodeMCU boards for
long-lasting power. The batteries that we tested our system
with had a range of 3.3V to 4.7V with 1200mAH current
output. In future development, before approaching reusable
power sources, we would want to update our battery to
something with higher voltage output to make sure our
HC-SR04 sensors work.

VII. SYSTEM IMPLEMENTATION

This section describes our system’s implementation in
detail. End-to-End, Kerby features an on-site hardware
subsystem (spot modules) connected to a remote software
subsystem via an ioT communication pathway. We now
describe each subsystem’s internal components along with
their design justifications.

A. Spot Modules
Kerby’s spot modules are small packaged hardware circuits

placed along the curbside of street parking spots. It features (i)
an ultrasonic sensor to provide object detection readings (ii) an
ESP8266 microcontroller chip equipped with Wi-Fi capability
to process and transfer sensor readings and (iii) a battery
source to reliably power the system-on-chip. A diagram of one
spot module is depicted in figure 1.
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Fig. 4. Image of the hardware of a spot module. The HC-SR04 sensor
(middle), LifePO4 battery ( left) and ESP8266 NodeMCU (right) are
electrically connected.

Our choice of ultrasonic sensor is the HC-SR04. This
sensor’s capabilities are described as follows. The HC-SR04
creates readings by measuring the time taken for a sound wave
traveling through air to reflect off of a surface. Using internal
ultrasonic transducers, the sensor converts electronic signals to
sound pulses whose width is measured to determine the time
the sensor traveled. The distance is easily calculated using the
distance-speed-time equation. The HC-SR04 detects distances
in the range of 2 - 250 cm with an effective angle of 15°
according to its specification sheet (see Table 2) and our
functionality tests. When no object is detected within its range,
it emits a 250cm reading. Because Kerby’s sensors are placed
right on the curbside, centimeters from a car’s expected
parking position, we safely assume that such maximum
reading is not a false negative. The HC-SR04 features Trig
(output) and Echo (input) pins which can be connected to any
of the microcontroller’s GPIO pins. The Trig pin sends short
LOW pulses to stabilize the sensor followed by longer HIGH
pulses to trigger ultrasonic sound pulses. A 66% duty cycle
over a period of 15 µs was sufficient to receive accurate
readings. On the other hand, the Echo pin produces a pulse
when a reflected signal whose length is proportional to the
signal transmission time is received. Once connected to the
ESP8266’s GPIO pins, its values are read over a programming
interface.

TABLE 2.  HC-SR04 SPECIFICATION SHEET

Specification Name Specification Value

Operating Voltage DC 5V

Operating Current 15mA

Operating Frequency 40KHz

Range 2cm - 2.5m

Measuring Angle 15°

Trigger Input Signal 10µS TTL pulse

Open-source MicroPython firmware enables Kerby to run
lightweight programs on the ESP8266 microcontroller. Apart
from providing the flexibility to write programs at a higher
level of abstraction (optimized python) than most IoT
platforms, MicroPython comes with a rich set of in-built
libraries for data processing. For example, the GPIO interfaces
and data uploads are accessed via its Machine.Pin and umqtt
classes respectively. Kerby uses Esptool to serially
communicate with the chip’s rom bootloader in order to install
Micropython. Once installed, Pymakr - a compiler plugin -
transmits the micropython code onto the controller’s 2MB
flash memory where it is converted to bytecode.

Algorithm Justification
In line with Kerby’s design requirements, a main concern is

the accurate representation of the real-world parking scene.
Hence, Kerby requires an algorithm to convert analog distance
readings to categorical availability readings i.e whether an
object occupies the spot or not. We utilize the idea of
multi-sampling over short time frames in making the
conversions. Simply put, we take X sensor readings in Y
second intervals to form one categorical value. Our working
version uses 6 & 5 for X & Y respectively (see testing latency
subsection for justification). If the multiple readings provide
values below a threshold and within a range, the spot is
considered occupied, otherwise it is available. In our working
version, we adopted a threshold of 60cm because
Pennsylvania law requires cars to park no more than 12 inches
(~30.5cm) from the curb and a range of 5 cm from tape
measure observations. Once the categorical value is
determined for the current epoch, the sensor ID (SID) and
value are published to an MQTT broker over the earlier
established wi-fi connection. More details regarding the
MQTT protocol can be found in the IoT communication
subsection. And Figure 2. summarizes the spot module
workflow.

Fig. 1. Psuedocode describing the spot module software workflow.
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Circuit Components Justification

While the main two components (ESP8266-12E and
HC-SR04 ultrasonic sensor) ran perfectly well during our
programming phase, we realized that once the board was
unplugged from the USB port and only running on battery
power, the readings being sent from the module were no
longer accurate. After testing and researching other projects
with these two components, we realized that the ESP8266
required a 3.3V source to avoid damage while the HC-SR04
was a 5V sensor. To remedy the first part, we inserted
AMS1117-3.3 voltage regulators along with 100uF
electrolytics capacitors to bring down the voltage being
plugged directly into the board. The 5V ultrasonic sensors
were not agreeing with this drop in voltage, so the latest
design has the VCC pin of the sensor plugged directly into the
battery Vout. To avoid damage of this higher voltage going
into the ESP8266 from this route, a voltage divider circuit of
two 10K Ohm resistors was placed on the Echo pin of the
sensor.

Lastly, the indicator LEDs were added on as a way for us
to know what phase of code was running (connecting to wifi,
connecting to MQTT, taking a reading) as well as indicating if
the sensor was detecting itself as “occupied or not.”

Fig. 2. Circuit visualization of all components.

B. IoT communication medium
This subsystem is concerned with the transfer of our sensor

readings from the spot source to a cloud sink. Kerby achieves
this using a popular lightweight IoT publish-subscribe network
protocol, MQTT, provisioned through AWS’s IoT core cloud
service. At its core, IoT core provides an MQTT broker that
connects to multiple client connections via TCP/IP over an
exposed endpoint. These client connections take two forms: (i)
a Publisher which uploads payload data to an intermediate
cloud storage queue (ii) a Subscriber which connects to the
MQTT broker and inserts the payload into the database on
receipt. AWS IoT core provides extensive startup
documentation and cost-tier levels to facilitate our

implementation. At a high-level, we configure AWS IAM
(Identity Access Management) profiles and create abstract IoT
things with security policies attached to them for authN &
authZ respectively. The security policies generate certificates
containing ECDSA public-private encryption keys which
allow a client connection access to publish/subscribe on a
topic. AWSIoTPythonSDK is the API we use to call the client
connection’s access methods. Moreover, we monitor device
connections and IoT telemetry via the AWS console.

Architecture Justification
Reliable data transmission and project scalability are

use-case requirements outlined earlier that drive our IoT
design decisions. We entrust AWS to guarantee the reliability
of their MQTT protocol implementation as a leading cloud
provider while we tune other parameters within our control.
For example, the AWSIoTPythonSDK provides parameters for
handling connection interrupts, resumptions and socket
persistence. Nevertheless, MQTT offers varying levels of
Quality of Service (QoS) that indicate whether a message was
successfully delivered or perhaps not. Kerby uses the exactly
once semantic (QoS level 1) which guarantees each published
message will arrive exactly once.

A scalability issue Kerby faces is that connection queues
may become congested as spot modules are exponentially
added to the network. As a solution, our design doc proposed
to assign connections to handle incoming sensor payloads
belonging to the same geolocation group. i.e all spot modules
in the same physical location publish to a topic designated for
that physical location - say “readings/maggie_mo.” This
effectively allows us to move away from a many:1 to
many:many pub-sub architecture and parallelize
uploading/downloading our sensor readings from the cloud via
multithreading. This architecture allows for quick
synchronized database inserts and can linearly grow to be
grouped via geolocation sub-hierarchies in a larger-scale
future version. However, after implementing the many:many
architecture, we realized the parallel processing benefit was
minimal on our small-scale campus setup. Kerby witnessed
<1s speedup periodically publishing data from 9 sensors
evenly spread across three locations on CMU’s campus -
Margaret Morrison, Tech & Frew Streets - to a single sub
client versus sending to three clients, one per location. Though
we remain positive parallel processing remains important in a
large-scale deployment of Kerby e.g a local municipality, its
importance was nevertheless realized during redeployments of
our software system. Basically, because the spot module and
backend process code may be redeployed at different times
during development and testing, published messages may be
queued up over the network while the subscribe script is not
running. Once the script is once again running, many
messages are instantly dequeued and a single subscriber
processes the batch slowly. This was evident in an experiment
where we witnessed a ~4x speedup (214s to 623s) on
inserting backlogged data into dynamoDB, between both
architectures when deploying the subscribe script thirty
minutes after the spot modules began publishing.



6
18-500 Final Project Report: Team C1 Kerby 05/06/2022

C. Server-Side Processes
This section discusses the server-side processes in Kerby’s
workflow. i.e the software modules invoked once data from
the sensors is available on a subscribe client connection in
order to serve a client’s parking request. The major
components involved are (i) a NoSQL database - DynamoDB,
(ii) Google Geolocation APIs (iii) a Backend Engine and (iv) a
Flask-based web-app.

DynamoDB
AWS’s DynamoDB is Kerby’s schemaless data warehouse.

The schema for our database table is described in figure 3. The
important details of our working implementation and potential
improvements in a scaled-out version are outlined as follows:
(i) We store all published sensor readings in a singular table.
In the future, it may be more practical to store readings from
co-located groups of sensors in the same table.This will help
with faster table scans and data overflow in a larger sensor
network (ii) We configure a data throughput on our tables of 5
ReadCapacityUnits & 5 WriteCapacityUnits which is
basically DynamoDB terminology for a throughput of at most
5MB/s worth of data. Our payload size during development
was small enough to work with these parameters but they may
need to be adjusted in a data-intensive live system. (iii) Table
records have a composite partitioning key consisting of the
spot module’s SID and insert datetime. The composite key is
necessary in order to distinguish stale readings from a sensor
when the BackEnd engine makes queries. (iv) Dynamo’s
schemaless nature provides the added advantage of flexibly
extending our data structure. As seen in figure 3, Occupied is
the only additional field stored in the database. Nevertheless,
during range tuning and testing, we were able to easily include
the taken sensor readings as part of the payload without any
additional costs. This could be useful for communicating
training data between remote ML models and the spot
modules in a future iteration of Kerby (see Future Work
section).

Fig. 3. DynamoDB schema for sensor readings

BackEnd Engine

Kerby’s backend engine parses sensor data and runs
algorithms in order to perform two main tasks. (i) update
sensor history/state and (ii) indicate spot availability.

The former task is motivated by our use-case
requirement to accurately reflect the field parking situation in
real-time. Initially, Kerby queried DynamoDB for readings

from the most recent publishing period - 60s. This data was
then used to make decisions regarding the available sensors
via quick web-app request-response calls. This
implementation was unreliable (see testing accuracy
subsection) and suffered from various issues. For one, since a
user was provided with parking based on a single timeframe
worth of data, oscillations in the data received due to
unexpected foreign objects could soon after make the readings
incorrect. Secondly, simultaneously providing parking to
multiple users was a conflicting process because once one user
A had reserved a spot, Kerby kept no history regarding
existing clients and so user B was also provided parking with
the latest database readings as the source of truth. This was
quite problematic given that user A needed some time to
arrive at their parking spot, before or after B arrived at theirs.
Thirdly, the sensor sometimes did not publish readings in the
last period due to clock drift on the microcontroller or may go
completely offline if power is disconnected. In general, the
scenarios described above create various distributed system
fault tolerance and inconsistency issues Kerby needed to
handle.

Our solution was to devise sensor state logic inspired
by hardware finite state machines (FSMs). Kerby’s sensor
readings and client statuses formed various states, between
which, each sensor transitions with time. New sensor readings
from dynamoDB and time thresholds formed next state
parameters to govern which new state a sensor transitions to.
And based on a sensor’s current state, rules determine whether
to mark them available for parking, occupied by users, or
uncertain for use and hence, hidden from users. A detailed
diagram of Kerby’s time-regulated FSM can be found in
Appendix D. In general, its logic is as follows.

● A spot is characterized by two states. It’s field state
which can be one of (i) Available or (ii) Occupied.
And its client state which can be one of (i) Available -
implying not reserved for any client (ii) Transient -
reserved for a client in transit to park (iii) Occupied -
occupied by a parked client.

● A field and client state of Occupied/Occupied or
Available/Available respectively is considered a
consistent state. i.e the field readings match
expectations from Kerby clients. All other state
permutations are considered inconsistent i.e carry a
certain degree of uncertainty

● A client can only reserve Available/Available spots
which then moves them to the Available/Transient
state. Once an active client has noted they no longer
need parking, the spot immediately moves from the
Occupied/Occupied state back to the availability
pool.

● Other movement (or not) between states is possible
via one of two types of conditions. (i) A new
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database reading immediately triggers action e.g
When a sensor is in an Available/Available state and
an Available reading is received, it remains in
Available/Available. (ii) A new database reading
triggers action after continuously emitting the same
categorical value over a period of time that falls
below, above, or within a threshold range. For
example, when a sensor’s next reading is Available in
the Occupied/Available state, it must have emit a
streak of Available readings over a period of time
greater than a set threshold for Kerby to decide, with
high probability, that it should return to the
Available/Available state.

● The FSM diagram in Appendix D notes two time
thresholds. (i) Conflict Thresh is a parameter that
determines how long a spot’s readings must be
consistent before Kerby decides it is safe to leave an
inconsistent state (ii) Arrival Time refers to how long
the user is expected to arrive at the parking location
based upon Google Distance Matrix API estimates
(discussed below).

The other major backend task involves determining spot
availability. A read-write lock is used to control critical
sections in accessing spot module states while the backend
engine updates states in the background. The algorithm relies
on a predefined orientation of the sensor network stored
in-memory. The sensor topology schema is shown in figure 4.
The topology assumes that spot modules are placed in a row
on the curbside 8 feet apart from one another (see testing cost
section for cost-distance tradeoff). Three adjacent
Available/Available sensors are needed to dynamically mark
an open parking area which a car of average length should fit
in. Out of those three, either the left or right spot module could
be used together with two adjacent free spots to form another
spot, provided they are not at the edge of the parking
perimeter. This is because each spot has eight feet in front and
behind it. Hence, to allow cars to park bumper to bumper (as
done on the street), each set of three occupied spot modules
can provide overlapping use to multiple clients at their
boundaries. A visualization of space allocation nuances can be
found in the Testing Subsection B.

Fig. 4. Schema indicating sensor row topology.

GoogleMaps APIs

The other major backend component involves using Google
Map geolocation APIs. Specifically, we access gcloud
accounts and obtain APIs keys which allow Kerby to use the
Geolocation & Distance Matrix APIs. The Geolocation API is
used to convert the user’s destination from a well-formatted
text address (taken from a web app form) to longitude and
latitude coordinates. These coordinates, along with spot
module coordinates are passed into the Distance Matrix API to
show the shortest distance & shortest travel time sensor
locations.

Web-App

The web-app renders html page templates and displays results
from the Backend engine via flask. It features two main views.
(i) a request view that prompts the user for a destination
address and shows a google map route from their current
location to the parking spot (ii) a viewspots view to show the
current status of spot modules. Images of the web app are
shown below.

Fig. 5. Request parking webpage

Fig. 6. Viewspot webpage. (Green car icons on map indicate available
spots)
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VIII. TEST, VERIFICATION AND VALIDATION

A. Test Results for Ultrasonic Sensor Performance

The sensors came with a spec of a 15 degree measuring
angle. However, there was not much research out there about
how this affects readings in terms of objects in vertical and
horizontal view range of the sensors.

In order to make sure our sensors would be able to meet the
requirements of detecting the average vehicle, we performed
curbside testing for many cars along Margaret Morrison St.
We were able to verify that the sensors detected any car that
came within the 400 cm and 15 degree range, adding a
stipulation to the users that could use our product as is - their
cars needed to be at a max of 18 inches above the ground.

B. Test Results for Placement of Spot Modules

In order to fulfill our easy-to-install requirement, we built
Kerby to be situated on the curbside. After testing and
researching the range of the ultrasonic sensor, we found that
one sensor would not be able to detect an open spot for an
entire car from head to trunk. Thus, we decided to “sample”
the curbside by placing a module every few feet to detect at
least 16 feet of open space for a user. There were three
measurements we looked out for: distance between sensors,
cost associated with one open spot, amount of unutilized space
on street parking area. In the case of 6 feet spacing, we found
that to guarantee a spot of at least 16 feet, we would need 4
sensors, thus translating to an open spot of 18 feet. If the
average car came to park in this spot, we would end up
wasting at least 4 feet.

Fig. 7. Vehicle allocation visualization

Extending this analytical process to different distance
values, we found that 8 feet would be the most optimal choice
for our project, as it wastes the least amount of space and is a
good middle ground in terms of cost. This way, when three
sensors indicate that they are not blocked, we can guarantee
that our average user will have a spot to park in. Overall, this

testing helped us verify our design requirement of accurate
request location, meaning when the user gets to their requested
spot they will have the appropriate amount of space to park.

Fig. 8. Graph showing testing results of tradeoff between frequency of
sensor placement, costs and unutilized space on street parking area

C. Usability Test Results for Web Application

After building the first functional prototype of the web-app,
we asked 5 volunteers to use and navigate it without any prior
knowledge. We recorded some common questions asked, such
as “do I have to type a full address when requesting?”. Then,
we explained the purpose of Kerby and recorded any
additional feedback they had for us. Four out of five
volunteers did not like typing in the full address when
requesting a spot. We changed our design to incorporate a
drop-down menu that suggests or autocompletes as the user
types. Two out of five participants thought that the route
should be more interactive and informative. In response, we
added a blue dot that follows the user’s location as they move.
We also added an information window that pops up when a
marker is clicked.

Fig. 9. Examples of suggestions made by volunteers during testing

After these changes were made, we did another round of the
same testing and found that there is a 80% likelihood that
people would use Kerby again in the future. Thus, this testing
process achieves the user requirements of an easy-to-use web
application.

D. Test Results for Power Consumption of Spot Modules

From running our batteries for long periods of time, we
were able to test their lifetime. We found that the batteries
drain to lower voltage values when run for long periods of
time without any deep sleep periods. Results showed that after
2 hours of continuous running, the batteries were only giving
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around 3.3V. This downward trend of voltage draining
continued as the batteries ran longer. This showed us that we
would need to figure out a different system for battery
charging or replacement - or especially look into how other
low-power IoT systems in the current civil infrastructure
work.

E. Test Results for Latency

We measured the time taken for various processes in
Kerby’s communication pipeline to complete (see Table 3)
over ten minutes of simulating E2E requests. Generally, each
task was completed within a few seconds and the only
noticeable latency bottleneck was the RW lock used in the
backend engine. This was expected as the rate of user requests
may variably align with the frequency at which the spot states
are updated. Hence, the request may have to wait a few
seconds before the update is finished before proceeding.
Nevertheless, the total communication latency time for all
tasks sums up to under less than a minute. This plus the two
minute conflict threshold used in the time-regulated FSM
totals approximately a 3 minute wait time for Kerby requests.
This is quite less than our 5 minute parking use-case
requirement.

TABLE 3. LATENCY RESULTS OF KERBY SOFTWARE TASKS

Process Average Time Taken

mqtt publish 0.87s

mqtt subscribe 2.1s

DB inserts < 1s

DB queries < 1s

Availability check 2.48 s

RW Lock delay 6.24 s

IX. PROJECT MANAGEMENT

A. Schedule
Refer to the attached schedule at the end of this report in

Appendix B. We have modified the schedule along the way
several times, but have reached its end with a functioning
demo by the due date.

Major changes from the design document to the final

project report document were primarily due to making
additional time for integration of subsystems.

B. Team Member Responsibilities
Originally, we distributed responsibilities among team

members according to each person’s strengths and interests.
Kanvi would handle the hardware setup for the sensor
modules and the frontend graphics for the web app design.
Mrinmayee would be in charge of researching and testing
sensor detection algorithms to parse data from the spot
module. Neville would implement the communication
between module and central database and the central hub
maintenance software. However, getting the hardware spot
modules functioning took longer than planned, and duties had
to be rearranged. Neville finished setting up the IoT
communication medium rather early. Thus, Mrinmayee passed
the development of sensor detection algorithms and the overall
software backend engine using database info to Neville in
exchange for Kanvi’s secondary role in designing the frontend
of the web app.

As for presentations and paperwork, we all worked on
different sections to draft up content and edit together. Lastly,
we all worked together for integration and field testing, and
we also helped each other out as needed throughout the
semester.

C. Bill of Materials and Budget
Refer to Table I, Bill of Materials in Appendix C. As

mentioned earlier, we prioritize being cost effective in our
choice of materials.

D. AWS Usage [if credits requested/used]
Our database workload was small enough to stay within the

cost-free AWS tier. No credits were requested.

E. Risk Management
One of the possible risks for Kerby included failure of

communication from module to database. In the case one
module starts malfunctioning, either because of low power,
WiFi interference, or another reason, we made sure to mark its
place in our database with “unknown status.” This is also what
was displayed to our users on the graphical interface, as to
make sure no one is led to a “possibly open” spot.

Another possible risk for Kerby is being able to detect
correctly that the requesting user parked into their requested
spot and not someone else. We try to manage this by keeping
track of the duration provided by the Google Maps API when
the user requests a route. For the further improvement, we
would have incorporated user feedback (simple as buttons
with “yes, I found and used the spot!” or “no, the spot was not
empty”). With our model of two types of users, this would be
information given to the operators so they could check the
modules as needed.

In order to mitigate risk of hardware damage in the field, we
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planned to encase our modules with weatherproof materials.
These materials were envisioned to consist of an airtight
plastic box with holes cut for the sensor. However, due to the
semester time constraints, we were not able to mitigate this
risk entirely.

X. ETHICAL ISSUES

Streetside parking is technically available for all and not
restricted to only users of our system, Kerby. The ideal user
would be a driver who has access to a device that can open our
web application. The product would be most appealing to
drivers who are intimidated by street parking in the city, which
would mean they are likely not city locals. Thus, the biggest
ethical issue stemming from our system is regarding these
regular non-users of Kerby who had their “usual spot”,
everyday for work for example, and now will have to contest
with Kerby users. Additionally, since the Viewspots feature on
our web-app distinguishes Kerby vs non-Kerby users,
operators may “punish” non-Kerby users. Lastly, if
implemented on a larger scale across cities, Kerby exposes
information about traffic and congestion of the cities to the
Internet, which may be concerning for security.

XI. RELATED WORK

Currently there are no commercially available widely used
products that work similar to what Kerby proposes to execute,
as per its final design. However, there is work being done with
similar goals. INRIX is tapping into the IoT of the automotive
industry and introducing ultrasonic technology to be installed
on the cars itself. If all cars use this technology, then cars
parked alongside a curb would be able to provide information
about the availability of spots in front and behind them.

Spot is another company that is developing smart city
solutions, with the goal of making all parking information
available at the tip of your fingertips. Work they have
completed has made for an almost complete database of
parking information for a portion of Sydney, Australia -
displayed through a graphical web user interface that can tell
you as you mouse over areas: if there is free or paid parking, if
there is space available, if there is a temporary construction
site blocking the spots.

XII. SUMMARY

Overall, Kerby is a system that aims to reflect street parking
availability, acting as a street parking management system to
give drivers insight into where to go ahead of time. The
system has three main component groups: spot modules,
central data hub, and the web application. The stakeholders are
users of street parking in big cities. In the end, the system did
meet most of the design specifications.

A. Future work
Kerby has a long way to go from where we ended up this

semester. One day, we intend to explore the possibilities of
reusable power and maybe Kerby will be able to be
solar-powered! When made for installation, it will be encased

in a weatherproof and car-weight bearing material. The web
application will be more robust and users will be able to learn
more about the locations they are choosing to park in, like the
price per hour. Kerby will require a scaled-up version of stress
testing, where multi-client scenarios will be critical. For
anyone who approaches the Kerby system in the future, we
suggest starting with power testing almost immediately as well
exploring different communication protocols like MQTT. We
are excited for Kerby in the days that come.

GLOSSARY OF ACRONYMS

MQTT – Message Queuing Telemetry Transport
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APPENDIX A: System Description Diagrams
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Appendix B: Project Management
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Appendix C: BOM

Table I.  Bill of Materials (to make six spot modules)

Description Model # Manufacturer Quantity Cost per
unit

Total Used or New to
Design?

ESP8266 NodeMCU Dev Board CP2102 ESP-12E HiLetgo 6 $5.46 $32.78 Used

Ultrasonic Sensors HC-SR04 Tangyy 6 $1.84 $11.04 Used

Batteries 14430 Rechargeable LiFePo4 JESSPOW 8 $2.13 $17 Not used

Batteries 103040 1200mAH CaoDuRen Store 12 $9.99 $119.88 Used

Voltage Regulators AMS1117-3.3 Frienda 6 $0.45 $2.70 New

Green, Yellow, and Red LEDs - - 18 - - New

10K Resistors - - 12 - - New

100 uF Capacitor - - 6 - - New

Mini Breadboard 400 Points Ambreddr 12 $2.02 $24.38 New

Appendix D: FSM State Transition Diagram


