
Kerby
Final Presentation

Recap: Kerby’s Use Case Requirements

Description Motivation

Car length < 16 ft Avg. car length = ~14.5ft

Location accuracy within 30ft 30 ft = ~2 cars

Sensors wake up every 5 min Takes people at least ~3 min to park and
leave

Find street parking within <0.5mi to
destination

To keep benefit of street parking over
garage parking

Cheap spot modules < $50 To enable future scalability

Recap: Kerby’s Design Approach

Kerby: Current Solution
● 3 per spot, situated on the curbside
● Fits within 2 in x 4 in x1 in box
● Uses the HC-SR04 ultrasonic sensors
● Uses the ESP8266 module
● LiPo Battery: 3.7V, 1200 mA

○ Added voltage regulator
● Requires Wi-Fi
● ~$20 a piece! $60 per spot
● Limitations:

○ Not weatherproof/compatible with roadside
infrastructure yet

○ Mass flashing not available yet
○ Simplified battery replacement process not

available yet

Recap: Testing - Verification & Metrics
Requirement Measurement Goal

Find closest street parking to
destination

Using google maps api to find distance
between given spot and destination

< 0.5 mi

Accurate parking location Distance between provided location
and actual parking spot in real world

< 30ft

Accurate representation of real world Confusion matrix from testing with
large number or users and requests

< 20% False Positive and Negative

Relatively cheap for scalability Compare to cost of regular parking
meters

< $50 per spot module

Easy-to-use web app User Testing and recording ratings from
1(bad) to 5(great)

> 3.5/5 stars on average

Easy to install User Testing and recording time < 5 min on average

Testing the HC-SR04 Sensors - Range and Reliability
HORIZONTAL MEASURINGVERTICAL MEASURING

15˚12-18 inches

RESULTS
● Positioned the sensors 8 feet

apart as planned
● Verified that use-case of <16 ft.

cars will be able to use the
system reliably, with stipulation
of not being extremely high of
the ground (>18 inches)

30˚

TESTING - DB & Backend core Latency
● Data Upload/Download

○ On avg, using software timing primitives i.e time.future() - time.now()
■ < 1ms to publish to IoT-Core, <1ms to receive message
■ <1s to upload to DynamoDB, < 5s to query and parse DynamoDB results
■ E2E response time per client <<< 3 min use-case requirement

● Data consistency
○ Issue: ESP8266 Modules with same 1 min period are flashed to upload out of phase
○ Soln: Query DB data over largest phase difference (2 periods instead of 1) and use most

recent
○ Cost: Negligible. < 1ms in query runtime.

● Concurrency control
○ Issue: Enable multi-client processing on sensor readings
○ Soln: Use locking primitives on sensor metadata
○ Cost: Negligible. No deadlock cycles. < 5s increase in request latency

Testing: Web App

● 5 volunteers with no prior knowledge
● Asked to navigate various pages
● Record feedback after explaining Kerby

Usability Testing

● 4 out of 5 did not

like typing full address

● 2 out of 5 thought the route should be
more interactive

● 4 out of 5 would use Kerby in the future

Usability Results

Project Management Updates

WHERE IS KERBY GOING FROM HERE?

Public demo will be miniature version of the
system implemented on a mock campus.

Remaining features to work on include:

- Viewspots: making it dynamic (i.e. refreshes
on its own)

- Portable power/working batteries

Lessons Learned
Through Kerby

● Order hardware early and
always order extra!

● Form testing plans and start
testing while you build
subsystems instead of waiting
till end

● Communication can make or
break your capstone
experience!

