

Final Presentation

Recap: Kerby's Use Case Requirements

Description	Motivation
Car length < 16 ft	Avg. car length = ~14.5ft
Location accuracy within 30ft	30 ft = ~2 cars
Sensors wake up every 5 min	Takes people at least ~3 min to park and leave
Find street parking within <0.5mi to destination	To keep benefit of street parking over garage parking
Cheap spot modules < \$50	To enable future scalability

Recap: Kerby's Design Approach

End Users

Kerby: Current Solution

- 3 per spot, situated on the curbside
- Fits within 2 in x 4 in x1 in box
- Uses the HC-SR04 ultrasonic sensors
- Uses the ESP8266 module
- LiPo Battery: 3.7V, 1200 mA Added voltage regulator
 - 0
- **Requires Wi-Fi**
- ~\$20 a piece! \$60 per spot
- Limitations:
 - Not weatherproof/compatible with roadside 0 infrastructure yet
 - Mass flashing not available yet Ο
 - Simplified battery replacement process not Ο available yet

Recap: Testing - Verification & Metrics

Requirement	Measurement	Goal
Find closest street parking to destination	Using google maps api to find distance between given spot and destination	< 0.5 mi
Accurate parking location	Distance between provided location and actual parking spot in real world	< 30ft
Accurate representation of real world	Confusion matrix from testing with large number or users and requests	< 20% False Positive and Negative
Relatively cheap for scalability	Compare to cost of regular parking meters	< \$50 per spot module
Easy-to-use web app	User Testing and recording ratings from 1(bad) to 5(great)	> 3.5/5 stars on average
Easy to install	User Testing and recording time	< 5 min on average

Testing the HC-SR04 Sensors - Range and Reliability

VERTICAL MEASURING

HORIZONTAL MEASURING

RESULTS

- Positioned the sensors 8 feet apart as planned
- Verified that use-case of <16 ft. cars will be able to use the system reliably, with stipulation of not being extremely high of the ground (>18 inches)

TESTING - DB & Backend core Latency

- Data Upload/Download
 - On avg, using software timing primitives i.e time.future() time.now()
 - 1ms to publish to IoT-Core, <1ms to receive message</p>
 - <1s to upload to DynamoDB, < 5s to query and parse DynamoDB results</p>
 - E2E response time per client <<< **3 min** use-case requirement
- Data consistency
 - Issue: ESP8266 Modules with same **1 min** period are flashed to upload out of phase
 - Soln: Query DB data over largest phase difference (2 periods instead of 1) and use most recent
 - Cost: Negligible. < 1ms in query runtime.
- Concurrency control
 - Issue: Enable multi-client processing on sensor readings
 - Soln: Use locking primitives on sensor metadata
 - Cost: Negligible. No deadlock cycles. < 5s increase in request latency

Testing: Web App

Usability Testing

- 5 volunteers with no prior knowledge
- Asked to navigate various pages
- Record feedback after explaining Kerby

• 4 out of 5 would use Kerby in the future

Project Management Updates

NAMES

kerby: your curbside parking buddy

C1

TEAM

						_															
WBS NUMBER	TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION	WE	K 1	WEEK	2	WEEK 3		WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11	WEEK 12	
						SMT	VRFS	SMTW	RFS	SMTW	RFSS	SMTWRF	SSMTWRFS	S M T W R F	SSMTWRF	S S M T W R F	SSMTWRF	SSMTWRF	S S M T W R F S	SMTWRFS	
1	Initial Development																				
1.1	Sensor Research	Minu	2/7/22	2/11/22	5																
1.2	IoT Device Research	Kanvi	2/7/22	2/11/22	5																
1.3	Database App Research N	Neville	2/7/22	2/13/22	7																
1.4	Module Set-up (w/o portable power)	Kanvi	2/11/22	2/16/22	6																
1.5	Power Supply Research	Minu	2/11/22	2/16/22	6				1												
1.6	Sensor-IoT communication setup	Neville	2/13/22	2/19/22	7																
1.7	Design Presentation /	All	2/16/22	2/19/22	- 4																
2	MVP																				
2.1	Module Set-up (w/ portable power)	Kanvi	2/20/22	2/23/22	4																
2.2	Web App Back End: simplest algorithm	Minu	2/20/22	2/23/22	4																
2.3	Setting up AWS and MQTT broker	Neville	2/25/22	2/28/22	- 4																
2.4	Web App Front End: simplest version	Minu	2/25/22	2/28/22	4						1 1 1										
2.5	Design Document /	All	2/28/22	3/3/22	-4																
3	Improvement																				
3.1	MVP Improvement Research A	All	3/13/22	3/16/22	4								SPRING DREAK								
3.2	Module set-up (w/ Micropython) k	Kanvi	3/17/22	3/22/22	6																
3.3	Improve Front End (w/ Google Maps API)	Minu	3/17/22	3/22/22	6																
3.4	Improve Communication Protocols	Neville	3/17/22	3/22/22	6																
3.5	Integrate Sensors + Database	Kanvi, Neville	3/23/22	3/25/22	3																
3.6	Integrate Webapp + Database	Minu, Neville	3/23/22	3/29/22	7																
4	Final																				
4.1	Prepare MVP for interim demo	All	3/30/22	4/4/22	6																
4.2	Refine user experience	Minu	4/10/22	4/13/22	4																
4.3	Buy new hardware/build casing	Kanvi	4/10/22	4/13/22	4																
4.4	Handle multiple gueries + modules on database	Neville	4/11/22	4/14/22	4																
4.3	Scale Module System	All	4/13/22	4/19/22	7													the second second			
4.4	Final Field Testing	All	4/20/22	4/21/22	2																
4.5	Final Presentation A	All	4/22/22	4/24/22	3																
4.5	Final Paper A	All	4/25/22	5/6/22	12																

Mrinmayee Mandal, Kanvi Shah, Neville Chima

WHERE IS KERBY GOING FROM HERE?

Public demo will be miniature version of the system implemented on a mock campus.

Remaining features to work on include:

- Viewspots: making it dynamic (i.e. refreshes on its own)
- Portable power/working batteries

Lessons Learned

Through Kerby

Order hardware early and always order extra!

Form testing plans and start testing while you build subsystems instead of waiting till end

Communication can make or break your capstone experience!