
18-500 Design Project Report: Team C1 Kerby 03/04/2022

1

Abstract—Kerby is a system capable of reflecting street

parking availability, giving drivers a time-sensitive insight
on parking locations. It alleviates the frustration of having
to circle around blocks multiple times only to never find a
parking spot. Our solution aims to expand upon current
garage and lot parking management systems and include
street parking as another application area. It also provides
a cheaper alternative to current state of the art systems
since street parking is oftentimes close to free.

Index Terms— ESP8266, IoT, MQTT, NodeMCU, Parking,
Sensor, Smart Cities, WiFi

I. INTRODUCTION
 ARKING is one of the most painful parts of driving. In
addition to the issues drivers face with inadequate parking

spaces and parking maneuvers, they may simply not find
parking spots, especially on the street. Finding an available spot
is often a cycle of inconvenient turns and circling. Our proposal
is to make a smart city solution that reduces the amount of time
wasted looking for street side parking by providing users with
the location of the closest open parking spot.

Commercial technologies include systems such as ParkPGH,
SpotHero, and BestParking; however, these systems usually
always work within garages and enclosed parking lots, due to
the convenience of implementation and hence, economic
viability. The target users for these apps are people who
occasionally visit some city for an event. City locals use street
parking more often because (i) it is way cheaper and (ii) it might
be closer to their destination. Street side parking is here to stay
for the foreseeable future and there exists a need to create a
centralized parking system that allows users to access both
garage and public street parking.

Kerby, our curbside parking management system, aims to
extend the application of parking technology while remaining
cost effective.

II. USE-CASE REQUIREMENTS
There are two kinds of users for our proposed system: the

driver and the operator. We chose to narrow our scope to just
drivers for feasibility purposes due to time constraints in the
semester. There are several use-case requirements for the
driver. Plainly said, drivers need to save time and enjoy hassle-
free parking.

The first requirement is that the user’s car must be less than
16 feet in length in order for our spot modules to detect it. This
is derived from the fact that the average car is around 14.7 feet

long. Thus, our product aims to serve not all cars but a large
proportion of them. The most important user requirement that
Kerby fulfills is an easy way to find the closest open street
parking spot to a driver’s inputted destination. We have chosen
to ensure that our system is able to find street parking within
less than half a mile to the destination, so that we can sustain
the benefit of street parking over garage parking. This also
means that accuracy in location will be another important user
requirement. When shown a parking location, the driver should
be able to get directions to this location and expect the open
spot to be within 30 feet of where they are. This quantitative
metric is used because this is approximately the length of two
cars. Additionally, to provide accurate results about
availability, the sensors will wake up every 5 minutes to sense
if their state should change (spot taken or not). We chose five
minutes since we found that most people take at least 3 minutes
to park and leave the car. Lastly, since we want our system to
remain cost efficient, we require that the spot modules should
remain less than fifty dollars, so that we can enable future
scalability.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Kerby’s system design is aimed to be simple and digestible

by any user or operator. The principle of operation is easy
communication between the state of the physical world (i.e. the
parking spot’s availability) and consumers (i.e. the drivers). The
overall system has three key components: sensing IoT hardware
installed on the curbside, an information warehouse stored on
the cloud, and the user interface web application.

Fig. 1. Overall simplified system block diagram

The essential functions are accurate sensing, timely
communication, accessible information, and a usable user
interface. Each of these functions are supported by subsystems
of our design. Accurate sensing will be completed by an
ultrasonic sensor and transmitted through an IoT device. In Fig.
2, a closer look at the “spot module” hardware is described. The
details of each component are shared in section VI, but the
overall concept of component interactions is displayed in these
diagrams.

Kerby: The Curbside Parking Buddy
Kanvi Shah (Author), Mrinmayee Mandal (Author), Neville Chima (Author)

Department of Electrical and Computer Engineering, Carnegie Mellon University

P

18-500 Design Project Report: Team C1 Kerby 03/04/2022

2

Fig. 2. Zoom-in of spot module system

Similarly, Fig. 3 shows a closer look at the database/cloud
section. Our hardware spot module will take care of collecting
the information of parking spot availability, transferring it over
to this next section that processes and stores it in our cloud
server (e.g. AWS). These server-side processes will likely be
where we will be able to improve our timing-based performance
the most, so it is key our system implementation is as clean as
possible.

Fig. 3. Simplification of cloud-side communication and information storage

The block diagram of the entire system architecture is
included in the Appendix A.

IV. DESIGN REQUIREMENTS
Kerby’s principles of operation paired with the user

requirements has provided us with a roadmap for the design
requirements your curbside parking buddy will have to fulfill.

The spot module subsystem must be able to detect cars
parked in front of the sensor, calling for a distance sensor with
a range of up to at least 1 foot. Next, the spots are to be detected
for cars under 16 feet, which requires the modules to be
configured in a way to accurately depict this. Currently, this
requirement will be fulfilled by sensors positioned at every 8
feet on a curbside.

Additionally, we are looking for our system’s power to last a
reasonable amount of time before needing to change the
batteries. The design will call for sensor wake ups every 5

minutes and a battery that can work with this timing to last
around 6 months.

Requirements for communication come from the need to
transfer data from a spot module to a central database and into
the user’s hands. Modules require a small, low-power
consumption, low-cost communication device, with a reliable
protocol like Wi-Fi. The Wi-Fi range also must be large enough
to be able to hop on to the closest network and communicate
with our central database. Since our MVP plan is to implement
this on CMU campus, we have defined the range requirement
only to be at least 100 meters. For future development, this
would be extended to at least a few kilometers (may require the
addition of an antenna).

To maintain the scalability and accessibility of Kerby, we
defined the user requirements of modules to stay under $50
each. This has worked well with our principle of operation, to
stay simple and functional, and driven our design requirements
to be reasonable for cheaper IoT to fulfill.

Since we would like to provide instant data to our users, our
database needs to be able to answer real-time requests from our
users but also track all the sensor data that has been collected.
Cloud services, like AWS, will be able to provide this
specification for Kerby.

The user requirement of an easy-to-use graphical interface
will be fulfilled by a web application that is compatible with the
most common browsers and accessible to users. This means we
will design the web app according to ADA standards. Our plan
is to make the application very simple and clean, without too
many options and extremely clear about where to input
information and how to reserve a parking space.

Providing an accurate available parking location within 30
feet will require Kerby’s modules to have their geolocations
(longitude, latitude) be encoded with each of their unique IDs.
This will allow us to use an API (such as Google Maps) to
calculate driving distance between destination and parking
spots, fulfilling another user requirement of being easy-to-use.

V. DESIGN TRADE STUDIES
We continue with a trade-off analysis on our chosen design

specifications regarding how they satisfy our design
requirements. Our system requirements were primarily
concerned with 1) detection and location accuracy, 2) transfer
latency, and 3) project scalability.

A. Sensors vs. Cameras
Brainstorming in the initial phases of our project had led us

down the path of possibly using cameras with computer vision
to fulfill the requirement of “seeing” parked cars. Solving the
same problem, these cameras would be installed at city
intersections and look down the road and “see” if there were
open spots or not.

However, after some driving around on the curvy Pittsburgh
roads, a realization of how expensive and complex computer
vision would become to get any accurate readings turned us
away from this route.

Instead, to fulfill the requirement of scalability and accuracy,
we decided that a curbside module would be more feasible. This
way location accuracy and detection accuracy could be

18-500 Design Project Report: Team C1 Kerby 03/04/2022

3

fulfilled, at a lower cost than high functioning cameras paired
with complex computer vision computations.

B. IR sensors vs. Ultrasonic sensors
The design specification of needing a sensor that can sense if

a car as far away as 1 foot from the curb could be fulfilled by
different distance sensors. We researched both IR and
ultrasonic sensors. The most common IR distance sensor used
with Arduino projects has the range of 10cm-80cm but is priced
at $10 a piece. Another common IR distance sensor was priced
at around $3.33 per piece but the range was only 10cm-30cm.

The most common ultrasonic sensor used in Arduino and IoT
products, the HC-SR04, has a range of 2cm - 400cm and was
priced at $2.40 per piece. This additional range and lower price
point made it seem like the perfect choice. Additionally, we
were able to find more documentation for projects with this
sensor.

C. Microcontroller and Communication Board
Initially, the hardware portion of our project fits the

description of a common household Arduino project. However,
with the addition of needing to communicate between modules
and with a central database, we introduced the possibility of
needing WiFi.

Most Arduino boards are not WiFi capable and would require
an external module for enabling this functionality. The Arduino
UNO WiFi R2 does meet this specification; however, its price
point at almost $45 essentially put it out of the running.

With our design specs of WiFi range, power supply needs,
and price, we settled upon the ESP8266 NodeMCU. The low
sleeping current consumption of 0.5 uA and active current
consumption as low as 0.15 uA were huge factors, as well as
the 3.3 V operating voltage. Additionally, there are more than
enough digital I/O pins (13) to attach the ultrasonic sensor as
well as any other debugging/future work extensions. There also
exists plentiful documentation for creating IoT devices with the
ESP8266.

D. Power Sources
Though our final selection of power source has not occurred,

this is a design specification that we have been extremely
interested in. Our project is untenable without a long-lasting
power source.

Our original idea (and still hope for the future) is that we will
be able to run our system on solar power. However, the tradeoff
in time spent making an inexpensive solar-powered system vs.
time spent on making a more accurately functioning system
made us lean towards focusing on the other sections of our
project first. For power, we have settled on rechargeable
LiFePo4 batteries, as they have been researched to work well
with the ESP8266 NodeMCU boards for long-lasting power.
Once we start testing, we may change this power source
depending on our own testing tradeoffs.

VI. SYSTEM IMPLEMENTATION
This section describes our system’s implementation in detail.

End-to-End, Kerby’s features an on-site hardware subsystem
(spot modules) connected to a remote software subsystem via

an IoT communication pathway. We now describe each
subsystem along with their internal components:

A. Spot Modules
Kerby’s spot modules are small packaged interconnected

hardware devices to be placed along the curbside of street
parking spots. It features (i) an ultrasonic sensor to provide
vehicle presence readings (ii) a microprocessor chip equipped
with Wi-Fi functionality to process sensor readings and (iii) a
long-lasting battery to reliably power the System-on-Chip
board.

Our choice of ultrasonic sensor is the HRCS04. This
paragraph describes the spot module topology and the sensor’s
capability. In order to model free continuous space in street
parking, Kerby takes inspiration from dynamic allocation of
computer memory. Popular memory allocators define basic unit
blocks of memory and combine/split these into larger/smaller
units to dynamically allocate/free a requested amount of
memory resources. In a similar fashion, we apportion vehicle
detection over a unit parking space to our basic operating unit
called a spot module. These spot modules are horizontally
placed 8 feet apart as seen in Figure. Given that we limit our
project scope to 16 feet average length cars, we will use three
consecutive spot modules to dynamically detect whether there
is enough space to park one average-sized vehicle. The
HRCS04 offers vehicle detection readings by measuring the
time taken for a sound to echo on reflection traveling through
air which can be easily converted to distance value. The
HRCS04 detects distances in the range of 0 - 4m (its maximum
detection distance as noted by its spec sheet) with an effective
angle of at most 15°. On close observation, the sensor’s ranging
distance and effective angle justify our choice of 8 feet spacing
because each sensor’s detection space will not overlap with
others. When no object is detected within its range, it emits 4m.
We can safely assume that a 4m reading is not a false negative
because Kerby’s sensors are placed right on the curbside,
centimeters from an expected parking spot.

Our hardware subsystem will need an algorithm in order to
convert variable distance readings to discrete occupancy or
availability values. In line with our design requirements, our
main concerns are the reliable representation of the parking
scene and running low power-consuming processes. For the
former, we propose an idea to sample multiple readings within
a short timeframe. The value for these parameters will be based
on our best estimates for how long it takes a car to park and how
quickly our microprocessor I/O port can receive readings.
Preliminary research shows that we can expect a car to come to
halt in under 1 minute and our microprocessor can be
programmed to output readings at least every 2 seconds.
Bounding periodic reading by these values, we will initially
take 5 sensor readings in 15 second intervals to get a discretized
reading just about every minute. If the readings consistently
provide similar values with a range - the difference between the
most distant and least distant readings - of less than 0.2m, a spot
is considered occupied if the least distant reading in the
sequence is less than 3.98m (the maximum value minus our
0.2m error tolerance).
 Our sensor readings are consumed by a wi-fi-enabled
ESP8266 microprocessor. HRCS04 features Trig (input) and
Echo (output) pins which can be connected to any of the

18-500 Design Project Report: Team C1 Kerby 03/04/2022

4

microprocessor’s GPIO pins. A time-triggered short HIGH
pulse on the Trig pin followed by a LOW pulse would be used
to establish a duty cycle for the HRCS04’s sleep feature
described in the preceding paragraph. The Echo pin’s values
will be read over our programming interface. To run
lightweight programs on the ESP8266, we will use the open-
source MicroPython firmware. Apart from the flexibility to
write programs at a higher level of abstraction than most iOT
platforms, MicroPython comes with a rich set of in-built
libraries and facilitates the import of user-defined libraries. For
example, our GPIO interface will be controlled by the
prepackaged Machine.Pin MicroPython class. To install
MicroPython onto the processor’s flash memory, Kerby will
use esptool to serially communicate with the chip’s ROM
bootloader. Likewise, it will use ampy to serially communicate
with MicroPython on the board and run our sensor processing
script.

A. IoT communication medium
This subsystem is concerned with the transfer of our sensor

readings from the spot source to a cloud sink. We will achieve
this using the popular lightweight IoT publish-subscribe
network protocol MQTT (Message Queuing Telemetry
Transport) provisioned through AWS’s IoT core service. At its
core, IoT core will provide us with an MQTT broker that
connects to multiple client connections via TCP/IP over some
exposed endpoint. These client connections will take two
forms: (i) a Publisher which uploads sensor payload to an
intermediate cloud storage area ii) a Subscriber which connects
to the MQTT broker and takes some action on receiving the
sensor payload. AWS IoT core provides extensive
documentation and service-tier levels which we will exclude
from this discussion for brevity. Nevertheless, at a high-level
we will use the AWSIoTPythonSDK API to maintain our client
connections and provide security credentials. We will also
create our accessible IoT endpoints and monitor device
connections through AWS Console.

Reliable data transmission and project scalability were use-
case requirements raised earlier that play an important role in
our IoT medium design decisions. MQTT is a reliably designed
protocol that utilizes TCP/IP’s acknowledgement framework
and message queues under the hood to deal with traffic
congestion. We entrust AWS to guarantee the reliability of this
design as a world-renowned cloud provider while we can tune
other parameters within our control. MQTT offers varying
levels of Quality of Service (QoS) that indicate whether a
message was successfully delivered or may not be. For Kerby,
we will use the Exactly Once semantic that guarantees each
published message will arrive exactly once. On the other hand,
the structure of our communication pathway can affect Kerby’s
ability to scale. For example, it may be possible that
connections may become overloaded as we add exponentially
more spot modules. To this end, we assign connections to
handle sensor payloads belonging to the same geolocated
group. This implies that our sensor endpoints map to a physical
group of clustered spot modules e.g /sensor-data/maggie-mo.
and one client processes messages on one endpoint. Hence, for
our MVP (described later), Kerby uses a 1:1 pub-sub model that
can linearly grow or be grouped into sub-hierarchies e.g
/sensor-data/cmu-campus etc. in the future. Moreover, to enable

geolocation as a group ID for processing, we need to identify
spot modules in the same physical location. We will enable this
by establishing a directory mapping of each spot module’s
unique Wi-Fi SSID to its physical location and embedding the
SSID in sensor payloads. Once captured in code, these SSIDs
can be used for making routing rules (as discussed here) or
database insert rules (discussed later).

B. Server-side processes
This section discusses the processes in Kerby’s software

workflow from once the sensor data is available on a subscribe
client connection till it is used to serve a client’s parking
request. We first discuss the role of AWS LightSail in running
our server processes then the specifics of our NoSQL storage
database, AWS DynamoDB, and lastly our self-built webapp.

AWS LightSail is a cloud service providing virtual servers
that will enable us to deploy our subscribe scripts in
containerized applications. We will need to provision a
dedicated machine to persist a job that subscribes to an MQTT
subscriber and inserts the sensor payload into DynamoDB on
receipt. Lightsail allows us to create Docker containers tha
mount volumes containing our necessary installation packages
on some image and run the script independently. Beyond
receiving the payload and inserting it into database tables, this
subscribing process will add an ISO datetime to the sensor
record. This will be necessary to query for recent sensor
readings during webapp requests.

DynamoDB is our schema-less data warehouse for Kerby.
The schema for our various database tables is described in
Figure 4. The important details of our design choices are as
follows: (i) We store each geolocated group of sensor readings
in the same table. This is only practical for quick lookup
purposes given the latency and scalability issues we discussed
in section 5.A (ii) We utilize a composite partitioning/primary
key consisting of the spot module’s SSID and datetime for
tables persisting sensor readings. This unique identifier is
necessary because it would be harmful to overwrite or mix up
any previous database records. (iii) We store a graph mapping
of the hardware arrangement of sensor modules per geolocation
in a separate table. This will be loaded in-memory to our
webapp for algorithm computation on startup.

Fig. 4. Sensor data schema

18-500 Design Project Report: Team C1 Kerby 03/04/2022

5

VII. TEST, VERIFICATION AND VALIDATION
Testing was conducted to verify the performance of the

ultrasonic sensors in comparison to the spec sheet metrics.
Additionally, we plan to field test our system on campus at the
two ends of Maggie Mo with street parking. We will use
different requests for different destinations from different
locations on campus.

To test each user requirement, we specify appropriate
measurements and the corresponding goal. In order to find the
closest street parking to the destination, we will use the google
maps API to find the distance between a given spot and distance
and make sure it is less than half a mile. The google maps API
has features such as geocoding and distance matrix that will be
useful. To ensure accurate parking location, we will be
measuring the distance between the provided location and
actual parking spot in the real world by hand. We will
specifically look for whether this value is less than 30 feet.
Additional tests are further explained in detail below.
A. Tests for Accurate Representation of Real World

In order to test whether our system accurately reflects the
real-world state, we will be stress testing Kerby and creating a
confusion matrix. We aim to have less than 20% of data points
that fall under the false positive or false negative categories.
B. Tests for Usability of Web Application

In order to make sure that the web app is straightforward to
use, we will be conducting user testing and recording ratings
from 1 to 5 (1=bad, 5=great). We aim to have greater than 3.5/5
stars on average.

VIII. PROJECT MANAGEMENT

A. Schedule
Refer to the attached schedule at the end of this report in

Appendix B. We are currently on schedule to have a functioning
MVP and demo by the due date.

Schedule changes include longer time required for
researching components and adding slack for time dedicated to
other presentations and reports.

B. Team Member Responsibilities

We distributed responsibilities among team members
according to each person’s strengths and interests. Kanvi will
handle the hardware setup for the sensor modules and the
frontend graphics for the web app design. Mrinmayee will be
in charge of researching and testing sensor detection
algorithms to parse data from the spot module. Neville will
implement the communication between module and central
database and the central hub maintenance software. As for
presentations and paperwork, we all work on different sections
to draft up content and edit together. Lastly, we will all work
together for integration and field testing, and we also agree to
help each other out as needed throughout the semester.

C. Bill of Materials and Budget
Refer to Table 1, Bill of Materials in Appendix C. As

mentioned earlier, we prioritize being cost effective in our
choice of materials.
D. Risk Mitigation Plans

One of the possible risks for Kerby includes failure of
communication from module to database. In the case one
module starts malfunctioning, either because of low power,
WiFi interference, or another reason, we will make sure to mark
its place in our database with “unknown status.” This is also
what will be displayed to our users on the graphical interface,
as to make sure no one is led to a “possibly open” spot.

Additionally, in the case our system gives false information
to the user about parking availability, we hope to incorporate
user feedback (simple as buttons with “yes, I found and used
the spot!” or “no, the spot was not empty”) that will indicate to
us if a certain sensor needs to be taken offline. With our model
of two types of users, this would be information given to the
operators so they could service the module in need.

In order to mitigate risk of hardware damage in the field, we
will be encasing our modules with weatherproof materials.
Initially (and likely, the scope of our project), these materials
may consist of an airtight plastic box with holes cut for the
sensor. Once our design reaches a more sophisticated state,
weatherproofing will also progress to a cleaner look and
stronger materials meant for the roadside.

IX. RELATED WORK
Currently there are no commercially available widely used

products that work similar to what Kerby proposes to execute.
However, there is work being done with similar goals. INRIX
is tapping into the IoT of the automotive industry and
introducing ultrasonic technology to be installed on the cars
itself. If all cars use this technology, then cars parked alongside
a curb would be able to provide information about the
availability of spots in front and behind them.

Spot is another company that is developing smart city
solutions, with the goal of making all parking information
available at the tip of your fingertips. Work they have
completed has made for an almost complete database of parking
information for a portion of Sydney, Australia - displayed
through a graphical web user interface that can tell you as you
mouse over areas: if there is free or paid parking, if there is
space available, if there is a temporary construction site
blocking the spots.

X. SUMMARY
Overall, Kerby is a system that aims to reflect street parking

availability, acting as a street parking management system to
give drivers insight into where to go ahead of time. The
system will have three main component groups: spot modules,
central data hub, and the web application. The stakeholders are
users of street parking in big cities. We have learned about
many design tradeoffs so far but realize that we may continue
to run into challenges.

18-500 Design Project Report: Team C1 Kerby 03/04/2022

6

REFERENCES
[1] Arduino vs ESP8266 vs ESP32 Comparison, Accessed on

Feb 15, 2022, [Online]. Available:
https://diyi0t.com/technical-datasheet-microcontroller-
comparison/

[2] Best Battery for ESP8266 microcontroller, Accessed on
Feb 20, 2022, [Online]. Available: https://diyi0t.com/best-
battery-for-esp8266/

[3] ESP8266 NodeMCU with HC-SR04 Ultrasonic Sensor
with Arduino IDE, Accessed on Feb 28, 2022, [Online].
Available: https://randomnerdtutorials.com/esp8266-
nodemcu-hc-sr04-ultrasonic-arduino/

[4] Ultrasonic Sensor Parking Availability Technology,
Accessed on March 1, 2022, [Online]. Available:
https://inrix.com/blog/ultrasonic-sensor-parking-
availability-technology/

[5] Spot: Smart city parking and mobility solutions. Accessed
on Feb 2, 2022, [Online]. Available:
https://www.spotparking.us/spot-cities

18-500 Design Project Report: Team C1 Kerby 03/04/2022

7

APPENDIX A: BLOCK DIAGRAM

18-500 Design Project Report: Team C1 Kerby 03/04/2022

8

APPENDIX B: SCHEDULE

18-500 Design Project Report: Team C1 Kerby 03/04/2022

9

APPENDIX C: BOM

TABLE I. BILL OF MATERIALS
Description Model # Manufacturer Quantity Cost per unit Total

ESP8266 NodeMCU Dev Board CP2102 ESP-12E HiLetgo 3 $5.46 $16.39
Ultrasonic Sensors HC-SR04 Tangyy 5 $2.40 $12
Batteries 14430 Rechargeable LiFePo4 JESSPOW 8 $2.13 $17

