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Abstract—Kerby is a system capable of reflecting street 

parking availability, giving drivers a time-sensitive insight 
on parking locations. It alleviates the frustration of having 
to circle around blocks multiple times only to never find a 
parking spot. Our solution aims to expand upon current 
garage and lot parking management systems and include 
street parking as another application area. It also provides 
a cheaper alternative to current state of the art systems 
since street parking is oftentimes close to free. 
 
Index Terms— ESP8266, IoT, MQTT, NodeMCU, Parking, 
Sensor, Smart Cities, WiFi 
 

I. INTRODUCTION 
 ARKING is one of the most painful parts of driving. In 
addition to the issues drivers face with inadequate parking 

spaces and parking maneuvers, they may simply not find 
parking spots, especially on the street. Finding an available spot 
is often a cycle of inconvenient turns and circling. Our proposal 
is to make a smart city solution that reduces the amount of time 
wasted looking for street side parking by providing users with 
the location of the closest open parking spot. 

Commercial technologies include systems such as ParkPGH, 
SpotHero, and BestParking; however, these systems usually 
always work within garages and enclosed parking lots, due to 
the convenience of implementation and hence, economic 
viability. The target users for these apps are people who 
occasionally visit some city for an event. City locals use street 
parking more often because (i) it is way cheaper and (ii) it might 
be closer to their destination. Street side parking is here to stay 
for the foreseeable future and there exists a need to create a 
centralized parking system that allows users to access both 
garage and public street parking. 

Kerby, our curbside parking management system, aims to 
extend the application of parking technology while remaining 
cost effective. 

II. USE-CASE REQUIREMENTS 
There are two kinds of users for our proposed system: the 

driver and the operator. We chose to narrow our scope to just 
drivers for feasibility purposes due to time constraints in the 
semester. There are several use-case requirements for the 
driver. Plainly said, drivers need to save time and enjoy hassle-
free parking. 

The first requirement is that the user’s car must be less than 
16 feet in length in order for our spot modules to detect it. This 
is derived from the fact that the average car is around 14.7 feet 

long. Thus, our product aims to serve not all cars but a large 
proportion of them. The most important user requirement that 
Kerby fulfills is an easy way to find the closest open street 
parking spot to a driver’s inputted destination. We have chosen 
to ensure that our system is able to find street parking within 
less than half a mile to the destination, so that we can sustain 
the benefit of street parking over garage parking. This also 
means that accuracy in location will be another important user 
requirement. When shown a parking location, the driver should 
be able to get directions to this location and expect the open 
spot to be within 30 feet of where they are. This quantitative 
metric is used because this is approximately the length of two 
cars. Additionally, to provide accurate results about 
availability, the sensors will wake up every 5 minutes to sense 
if their state should change (spot taken or not). We chose five 
minutes since we found that most people take at least 3 minutes 
to park and leave the car. Lastly, since we want our system to 
remain cost efficient, we require that the spot modules should 
remain less than fifty dollars, so that we can enable future 
scalability. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Kerby’s system design is aimed to be simple and digestible 

by any user or operator. The principle of operation is easy 
communication between the state of the physical world (i.e. the 
parking spot’s availability) and consumers (i.e. the drivers). The 
overall system has three key components: sensing IoT hardware 
installed on the curbside, an information warehouse stored on 
the cloud, and the user interface web application.  

 
Fig. 1. Overall simplified system block diagram 

The essential functions are accurate sensing, timely 
communication, accessible information, and a usable user 
interface. Each of these functions are supported by subsystems 
of our design. Accurate sensing will be completed by an 
ultrasonic sensor and transmitted through an IoT device. In Fig. 
2, a closer look at the “spot module” hardware is described. The 
details of each component are shared in section VI, but the 
overall concept of component interactions is displayed in these 
diagrams.  
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Fig. 2. Zoom-in of spot module system 

Similarly, Fig. 3 shows a closer look at the database/cloud 
section. Our hardware spot module will take care of collecting 
the information of parking spot availability, transferring it over 
to this next section that processes and stores it in our cloud 
server (e.g. AWS). These server-side processes will likely be 
where we will be able to improve our timing-based performance 
the most, so it is key our system implementation is as clean as 
possible. 

 

 
Fig. 3. Simplification of cloud-side communication and information storage 

The block diagram of the entire system architecture is 
included in the Appendix A. 

IV. DESIGN REQUIREMENTS 
Kerby’s principles of operation paired with the user 

requirements has provided us with a roadmap for the design 
requirements your curbside parking buddy will have to fulfill. 

The spot module subsystem must be able to detect cars 
parked in front of the sensor, calling for a distance sensor with 
a range of up to at least 1 foot. Next, the spots are to be detected 
for cars under 16 feet, which requires the modules to be 
configured in a way to accurately depict this. Currently, this 
requirement will be fulfilled by sensors positioned at every 8 
feet on a curbside.  

Additionally, we are looking for our system’s power to last a 
reasonable amount of time before needing to change the 
batteries. The design will call for sensor wake ups every 5 

minutes and a battery that can work with this timing to last 
around 6 months.  

Requirements for communication come from the need to 
transfer data from a spot module to a central database and into 
the user’s hands. Modules require a small, low-power 
consumption, low-cost communication device, with a reliable 
protocol like Wi-Fi. The Wi-Fi range also must be large enough 
to be able to hop on to the closest network and communicate 
with our central database. Since our MVP plan is to implement 
this on CMU campus, we have defined the range requirement 
only to be at least 100 meters. For future development, this 
would be extended to at least a few kilometers (may require the 
addition of an antenna). 

To maintain the scalability and accessibility of Kerby, we 
defined the user requirements of modules to stay under $50 
each. This has worked well with our principle of operation, to 
stay simple and functional, and driven our design requirements 
to be reasonable for cheaper IoT to fulfill. 

Since we would like to provide instant data to our users, our 
database needs to be able to answer real-time requests from our 
users but also track all the sensor data that has been collected. 
Cloud services, like AWS, will be able to provide this 
specification for Kerby. 

The user requirement of an easy-to-use graphical interface 
will be fulfilled by a web application that is compatible with the 
most common browsers and accessible to users. This means we 
will design the web app according to ADA standards. Our plan 
is to make the application very simple and clean, without too 
many options and extremely clear about where to input 
information and how to reserve a parking space.  

Providing an accurate available parking location within 30 
feet will require Kerby’s modules to have their geolocations 
(longitude, latitude) be encoded with each of their unique IDs. 
This will allow us to use an API (such as Google Maps) to 
calculate driving distance between destination and parking 
spots, fulfilling another user requirement of being easy-to-use. 

V. DESIGN TRADE STUDIES 
We continue with a trade-off analysis on our chosen design 

specifications regarding how they satisfy our design 
requirements. Our system requirements were primarily 
concerned with 1) detection and location accuracy, 2) transfer 
latency, and 3) project scalability. 

A. Sensors vs. Cameras 
Brainstorming in the initial phases of our project had led us 

down the path of possibly using cameras with computer vision 
to fulfill the requirement of “seeing” parked cars. Solving the 
same problem, these cameras would be installed at city 
intersections and look down the road and “see” if there were 
open spots or not.  

However, after some driving around on the curvy Pittsburgh 
roads, a realization of how expensive and complex computer 
vision would become to get any accurate readings turned us 
away from this route. 

Instead, to fulfill the requirement of scalability and accuracy, 
we decided that a curbside module would be more feasible. This 
way location accuracy and detection accuracy could be 
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fulfilled, at a lower cost than high functioning cameras paired 
with complex computer vision computations. 

B. IR sensors vs. Ultrasonic sensors 
The design specification of needing a sensor that can sense if 

a car as far away as 1 foot from the curb could be fulfilled by 
different distance sensors. We researched both IR and 
ultrasonic sensors. The most common IR distance sensor used 
with Arduino projects has the range of 10cm-80cm but is priced 
at $10 a piece. Another common IR distance sensor was priced 
at around $3.33 per piece but the range was only 10cm-30cm.  

The most common ultrasonic sensor used in Arduino and IoT 
products, the HC-SR04, has a range of 2cm - 400cm and was 
priced at $2.40 per piece. This additional range and lower price 
point made it seem like the perfect choice. Additionally, we 
were able to find more documentation for projects with this 
sensor. 

C. Microcontroller and Communication Board 
Initially, the hardware portion of our project fits the 

description of a common household Arduino project. However, 
with the addition of needing to communicate between modules 
and with a central database, we introduced the possibility of 
needing WiFi.  

Most Arduino boards are not WiFi capable and would require 
an external module for enabling this functionality. The Arduino 
UNO WiFi R2 does meet this specification; however, its price 
point at almost $45 essentially put it out of the running.  

With our design specs of WiFi range, power supply needs, 
and price, we settled upon the ESP8266 NodeMCU. The low 
sleeping current consumption of 0.5 uA and active current 
consumption as low as 0.15 uA were huge factors, as well as 
the 3.3 V operating voltage. Additionally, there are more than 
enough digital I/O pins (13) to attach the ultrasonic sensor as 
well as any other debugging/future work extensions. There also 
exists plentiful documentation for creating IoT devices with the 
ESP8266. 

D. Power Sources 
Though our final selection of power source has not occurred, 

this is a design specification that we have been extremely 
interested in. Our project is untenable without a long-lasting 
power source.  

Our original idea (and still hope for the future) is that we will 
be able to run our system on solar power. However, the tradeoff 
in time spent making an inexpensive solar-powered system vs. 
time spent on making a more accurately functioning system 
made us lean towards focusing on the other sections of our 
project first. For power, we have settled on rechargeable 
LiFePo4 batteries, as they have been researched to work well 
with the ESP8266 NodeMCU boards for long-lasting power. 
Once we start testing, we may change this power source 
depending on our own testing tradeoffs. 
 

VI. SYSTEM IMPLEMENTATION 
This section describes our system’s implementation in detail. 

End-to-End, Kerby’s features an on-site hardware subsystem 
(spot modules) connected to a remote software subsystem via 

an IoT communication pathway. We now describe each 
subsystem along with their internal components: 

A. Spot Modules 
Kerby’s spot modules are small packaged interconnected 

hardware devices to be placed along the curbside of street 
parking spots. It features (i) an ultrasonic sensor to provide 
vehicle presence readings (ii) a microprocessor chip equipped 
with Wi-Fi functionality to process sensor readings and (iii) a 
long-lasting battery to reliably power the System-on-Chip 
board.  

Our choice of ultrasonic sensor is the HRCS04. This 
paragraph describes the spot module topology and the sensor’s 
capability. In order to model free continuous space in street 
parking, Kerby takes inspiration from dynamic allocation of 
computer memory. Popular memory allocators define basic unit 
blocks of memory and combine/split these into larger/smaller 
units to dynamically allocate/free a requested amount of 
memory resources. In a similar fashion, we apportion vehicle 
detection over a unit parking space to our basic operating unit 
called a spot module. These spot modules are horizontally 
placed 8 feet apart as seen in Figure.  Given that we limit our 
project scope to 16 feet average length cars, we will use three 
consecutive spot modules to dynamically detect whether there 
is enough space to park one average-sized vehicle. The 
HRCS04 offers vehicle detection readings by measuring the 
time taken for a sound to echo on reflection traveling through 
air which can be easily converted to distance value. The 
HRCS04 detects distances in the range of 0 - 4m (its maximum 
detection distance as noted by its spec sheet) with an effective 
angle of at most 15°. On close observation, the sensor’s ranging 
distance and effective angle justify our choice of 8 feet spacing 
because each sensor’s detection space will not overlap with 
others. When no object is detected within its range, it emits 4m. 
We can safely assume that a 4m reading is not a false negative 
because Kerby’s sensors are placed right on the curbside, 
centimeters from an expected parking spot.  

Our hardware subsystem will need an algorithm in order to 
convert variable distance readings to discrete occupancy or 
availability values. In line with our design requirements, our 
main concerns are the reliable representation of the parking 
scene and running low power-consuming processes. For the 
former, we propose an idea to sample multiple readings within 
a short timeframe. The value for these parameters will be based 
on our best estimates for how long it takes a car to park and how 
quickly our microprocessor I/O port can receive readings. 
Preliminary research shows that we can expect a car to come to 
halt in under 1 minute and our microprocessor can be 
programmed to output readings at least every 2 seconds. 
Bounding periodic reading by these values, we will initially 
take 5 sensor readings in 15 second intervals to get a discretized 
reading just about every minute. If the readings consistently 
provide similar values with a range - the difference between the 
most distant and least distant readings - of less than 0.2m, a spot 
is considered occupied if the least distant reading in the 
sequence is less than 3.98m (the maximum value minus our 
0.2m error tolerance).  
 Our sensor readings are consumed by a wi-fi-enabled 
ESP8266 microprocessor. HRCS04 features Trig (input) and 
Echo (output) pins which can be connected to any of the 
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microprocessor’s GPIO pins. A time-triggered short HIGH 
pulse on the Trig pin followed by a LOW pulse would be used 
to establish a duty cycle for the HRCS04’s sleep feature 
described in the preceding paragraph. The Echo pin’s values 
will be read over our programming interface. To run 
lightweight programs on the ESP8266, we will use the open-
source MicroPython firmware. Apart from the flexibility to 
write programs at a higher level of abstraction than most iOT 
platforms, MicroPython comes with a rich set of in-built 
libraries and facilitates the import of user-defined libraries. For 
example, our GPIO interface will be controlled by the 
prepackaged Machine.Pin MicroPython class. To install 
MicroPython onto the processor’s flash memory, Kerby will 
use esptool to serially communicate with the chip’s ROM 
bootloader. Likewise, it will use ampy to serially communicate 
with MicroPython on the board and run our sensor processing 
script. 

A.  IoT communication medium 
This subsystem is concerned with the transfer of our sensor 

readings from the spot source to a cloud sink. We will achieve 
this using the popular lightweight IoT publish-subscribe 
network protocol MQTT (Message Queuing Telemetry 
Transport) provisioned through AWS’s IoT core service. At its 
core, IoT core will provide us with an MQTT broker that 
connects to multiple client connections via TCP/IP over some 
exposed endpoint. These client connections will take two 
forms: (i) a Publisher which uploads sensor payload to an 
intermediate cloud storage area ii) a Subscriber which connects 
to the MQTT broker and takes some action on receiving the 
sensor payload. AWS IoT core provides extensive 
documentation and service-tier levels which we will exclude 
from this discussion for brevity. Nevertheless, at a high-level 
we will use the AWSIoTPythonSDK API to maintain our client 
connections and provide security credentials. We will also 
create our accessible IoT endpoints and monitor device 
connections through AWS Console. 

Reliable data transmission and project scalability were use-
case requirements raised earlier that play an important role in 
our IoT medium design decisions. MQTT is a reliably designed 
protocol that utilizes TCP/IP’s acknowledgement framework 
and message queues under the hood to deal with traffic 
congestion. We entrust AWS to guarantee the reliability of this 
design as a world-renowned cloud provider while we can tune 
other parameters within our control. MQTT offers varying 
levels of Quality of Service (QoS) that indicate whether a 
message was successfully delivered or may not be. For Kerby, 
we will use the Exactly Once semantic that guarantees each 
published message will arrive exactly once. On the other hand, 
the structure of our communication pathway can affect Kerby’s 
ability to scale. For example, it may be possible that 
connections may become overloaded as we add exponentially 
more spot modules. To this end, we assign connections to 
handle sensor payloads belonging to the same geolocated 
group. This implies that our sensor endpoints map to a physical 
group of clustered spot modules e.g /sensor-data/maggie-mo. 
and one client processes messages on one endpoint. Hence, for 
our MVP (described later), Kerby uses a 1:1 pub-sub model that 
can linearly grow or be grouped into sub-hierarchies e.g 
/sensor-data/cmu-campus etc. in the future. Moreover, to enable 

geolocation as a group ID for processing, we need to identify 
spot modules in the same physical location. We will enable this 
by establishing a directory mapping of each spot module’s 
unique Wi-Fi SSID to its physical location and embedding the 
SSID in sensor payloads. Once captured in code, these SSIDs 
can be used for making routing rules (as discussed here) or 
database insert rules (discussed later). 

B. Server-side processes 
This section discusses the processes in Kerby’s software 

workflow from once the sensor data is available on a subscribe 
client connection till it is used to serve a client’s parking 
request. We first discuss the role of AWS LightSail in running 
our server processes then the specifics of our NoSQL storage 
database, AWS DynamoDB, and lastly our self-built webapp. 

AWS LightSail is a cloud service providing virtual servers 
that will enable us to deploy our subscribe scripts in 
containerized applications. We will need to provision a 
dedicated machine to persist a job that subscribes to an  MQTT 
subscriber and inserts the sensor payload into DynamoDB on 
receipt. Lightsail allows us to create Docker containers tha 
mount volumes containing our necessary installation packages 
on some image and run the script independently. Beyond 
receiving the payload and inserting it into database tables, this 
subscribing process will add an ISO datetime to the sensor 
record. This will be necessary to query for recent sensor 
readings during webapp requests. 

DynamoDB is our schema-less data warehouse for Kerby. 
The schema for our various database tables is described in 
Figure 4. The important details of our design choices are as 
follows: (i) We store each geolocated group of sensor readings 
in the same table. This is only practical for quick lookup 
purposes given the latency and scalability issues we discussed 
in section 5.A (ii) We utilize a composite partitioning/primary 
key consisting of the spot module’s SSID and datetime for 
tables persisting sensor readings. This unique identifier is 
necessary because it would be harmful to overwrite or mix up 
any previous database records. (iii) We store a graph mapping 
of the hardware arrangement of sensor modules per geolocation 
in a separate table. This will be loaded in-memory to our 
webapp for algorithm computation on startup.  

Fig. 4. Sensor data schema 
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VII. TEST, VERIFICATION AND VALIDATION 
Testing was conducted to verify the performance of the 

ultrasonic sensors in comparison to the spec sheet metrics. 
Additionally, we plan to field test our system on campus at the 
two ends of Maggie Mo with street parking. We will use 
different requests for different destinations from different 
locations on campus. 

To test each user requirement, we specify appropriate 
measurements and the corresponding goal. In order to find the 
closest street parking to the destination, we will use the google 
maps API to find the distance between a given spot and distance 
and make sure it is less than half a mile. The google maps API 
has features such as geocoding and distance matrix that will be 
useful.  To ensure accurate parking location, we will be 
measuring the distance between the provided location and 
actual parking spot in the real world by hand. We will 
specifically look for whether this value is less than 30 feet. 
Additional tests are further explained in detail below. 
A. Tests for Accurate Representation of Real World 

In order to test whether our system accurately reflects the 
real-world state, we will be stress testing Kerby and creating a 
confusion matrix. We aim to have less than 20% of data points 
that fall under the false positive or false negative categories. 
B. Tests for Usability of Web Application 

In order to make sure that the web app is straightforward to 
use, we will be conducting user testing and recording ratings 
from 1 to 5 (1=bad, 5=great). We aim to have greater than 3.5/5 
stars on average. 

VIII. PROJECT MANAGEMENT 

A. Schedule 
Refer to the attached schedule at the end of this report in 

Appendix B. We are currently on schedule to have a functioning 
MVP and demo by the due date. 

Schedule changes include longer time required for 
researching components and adding slack for time dedicated to 
other presentations and reports. 
 
B. Team Member Responsibilities 

We distributed responsibilities among team members 
according to each person’s strengths and interests. Kanvi will 
handle the hardware setup for the sensor modules and the 
frontend graphics for the web app design. Mrinmayee will be 
in charge of researching and testing sensor detection 
algorithms to parse data from the spot module. Neville will 
implement the communication between module and central 
database and the central hub maintenance software. As for 
presentations and paperwork, we all work on different sections 
to draft up content and edit together. Lastly, we will all work 
together for integration and field testing, and we also agree to 
help each other out as needed throughout the semester. 

 

C. Bill of Materials and Budget 
Refer to Table 1, Bill of Materials in Appendix C. As 

mentioned earlier, we prioritize being cost effective in our 
choice of materials. 
D. Risk Mitigation Plans 

One of the possible risks for Kerby includes failure of 
communication from module to database. In the case one 
module starts malfunctioning, either because of low power, 
WiFi interference, or another reason, we will make sure to mark 
its place in our database with “unknown status.” This is also 
what will be displayed to our users on the graphical interface, 
as to make sure no one is led to a “possibly open” spot.  

Additionally, in the case our system gives false information 
to the user about parking availability, we hope to incorporate 
user feedback (simple as buttons with “yes, I found and used 
the spot!” or “no, the spot was not empty”) that will indicate to 
us if a certain sensor needs to be taken offline. With our model 
of two types of users, this would be information given to the 
operators so they could service the module in need. 

In order to mitigate risk of hardware damage in the field, we 
will be encasing our modules with weatherproof materials. 
Initially (and likely, the scope of our project), these materials 
may consist of an airtight plastic box with holes cut for the 
sensor. Once our design reaches a more sophisticated state, 
weatherproofing will also progress to a cleaner look and 
stronger materials meant for the roadside. 
 

IX. RELATED WORK 
Currently there are no commercially available widely used 

products that work similar to what Kerby proposes to execute. 
However, there is work being done with similar goals. INRIX 
is tapping into the IoT of the automotive industry and 
introducing ultrasonic technology to be installed on the cars 
itself. If all cars use this technology, then cars parked alongside 
a curb would be able to provide information about the 
availability of spots in front and behind them.  

Spot is another company that is developing smart city 
solutions, with the goal of making all parking information 
available at the tip of your fingertips. Work they have 
completed has made for an almost complete database of parking 
information for a portion of Sydney, Australia - displayed 
through a graphical web user interface that can tell you as you 
mouse over areas: if there is free or paid parking, if there is 
space available, if there is a temporary construction site 
blocking the spots. 
 

X. SUMMARY 
Overall, Kerby is a system that aims to reflect street parking 

availability, acting as a street parking management system to 
give drivers insight into where to go ahead of time. The 
system will have three main component groups: spot modules, 
central data hub, and the web application. The stakeholders are 
users of street parking in big cities. We have learned about 
many design tradeoffs so far but realize that we may continue 
to run into challenges. 
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APPENDIX A: BLOCK DIAGRAM 
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APPENDIX B: SCHEDULE 
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APPENDIX C: BOM 

TABLE I.  BILL OF MATERIALS 
Description Model # Manufacturer Quantity Cost per unit Total 

ESP8266 NodeMCU Dev Board CP2102 ESP-12E HiLetgo 3 $5.46 $16.39 
Ultrasonic Sensors HC-SR04 Tangyy 5 $2.40 $12 
Batteries 14430 Rechargeable LiFePo4 JESSPOW 8 $2.13 $17 

 


