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Abstract—A system capable of handling English/Mandarin
code-switching for use in ASR instant messaging applications.
Current systems dynamically select between models using a
separate LID module which have been shown to be less effective
in CS contexts than jointly trained LID and CS models. The
system should be plausibly deployable for use in mobile devices.
This drives requirements for the end-to-end transcription
system’s size, speed, and throughput. Evaluated on our
limited-size dataset, we were able to achieve a comparable CER
of 18.25% in relation to the latest current literature in the field.

Index Terms—Automatic Speech Recognition, Code-switching,
Deep Learning, End-to-end, Instant Messaging, Language
Identification, Self-supervised Learning, Speech-to-text,
Transformers.

I. INTRODUCTION

Automatic Speech Recognition has been an area of great

focus for machine learning researchers. In the dozen years
since 2010, use of the technology has burgeoned from
academic experimentation to wide adoption in
consumer-facing applications. Thanks to larger labeled speech
corpi, better computational resources, and advancements in
model architecture, performance metrics of state of the art
ASR have practically saturated in many problem
domains–surpassing even humans in WER performance.

ASR systems are currently widely available in a range of
applications and devices where users are able to harness
speech-to-text tools for writing documents, sending text
messages, and recording conversations. While the training of
these deep models requires significant computational
resources, they have seen successful deployment even on
mobile and edge devices such as the iPhone through the
combined use of a cloud-based computation client and
sometimes special native neural hardware accelerators.
Though the recognition of dozens of languages are
individually supported on these devices, situations in which
speakers may switch between languages mid-sentence
(code-switching) are not specifically handled.

For conversations and messaging use-cases between
multilingual speakers, the accurate handling of code-switching
is necessary to allow the participants the ability to express
themselves authentically, naturally, and efficiently while
capturing their words with precision. This system focuses on
handling CS within the context of instant messaging which
motivated early design decisions surrounding its architecture,
size, latency, and throughput. The less-formal nature of this

type of communication allowed us to limit the vocabulary
which the model would be required to learn and it is also a
use-case in which we expect the real-world prevalence of CS
to be high. As the implementation progressed and the system
was evaluated, several of these early decisions had to be
amended to prioritize creating the most functional prototype
over one which could be directly deployed on a mobile or
edge device.

When the project began, the goal of this implementation
was ultimately to emulate the experience of current
monolingual ASR systems. These systems provide
ease-of-use, fast response times, and accuracy which make
them competitive with a traditional instant messaging
experience. Achieving the latter of these high-level features
proved to be the hardest challenge during our implementation
attempts with our final system falling short of competitiveness
with the current state of the art. Though improving accuracy
consistently consumed most of our implementation efforts,
issues with the quality of our dataset and model training
difficulty saturated our achievable performance below
expectations. Acknowledging this, a secondary objective of
this project has become investigating and explaining precisely
where the methods used fell short and what steps could still be
taken to reach a competitively high accuracy.

Current implementations such as Apple’s text-to-speech
feature available in its Messages app perform exceptionally
well for day to day use. Though the specifics of this
implementation is difficult to find, evidence from
experimentation with the feature seems to indicate the use of
individually-trained state of the art end-to-end ASR models
per language in combination with a small LID model used for
choosing the correct model per word [3]. This results in some
instances of confused multi-lingual transcriptions in which
individually switched words are missed or badly transcribed
within the context of the sentence. We planned to overcome
these deficiencies by using a jointly-trained LID/ASR
architecture which would be able to capture multi-lingual
contextual information on both the LID and ASR portions of
the transcription problem. A feature extra tor and tunable
transformer model front-end which had been pre-trained on
multilingual speech were intended to help provide usable
language and context information for the downstream modules
of the model to make accurate and robust predictions. Though
we attempted for several weeks to properly implement and
train this architecture, we were ultimately forced to settle on a
final implementation which used a multiplexed architecture
similar to the one which we suspect is currently used by Apple
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in an effort to prioritize the delivery of the best performing
system for our final demonstration.

II. USE-CASE REQUIREMENTS

Targeting instant messaging as a use-case demands special
requirements be fulfilled by the final system. Speed and
accuracy are the first and foremost as they most directly affect
the final quality of the user experience. UPL could not be
more than 3 seconds, allowing the system to have a similar
response time to the iPhone for the first word of an ASR
transcription to be returned. The system’s accuracy was
initially quantitatively measured by the WER (word error rate)
metric, but we clarified this to a CER metric since this better
captured our system’s performance as we decided to do
character level transcriptions. As text-to-speech instant
messaging was expected to take place in a wide range of audio
environments, the system also needed to be robust to
background noise, meaning accuracy is maintained even with
a lower SNR. For any audio with an SNR greater than 20dB
(30dB is considered clean speech), the CER could be no
greater than 25% while audio with an SNR as low as 5dB
could dbe no greater than 30%.

A vocabulary size of 5000 tokens was estimated to
accommodate most day-to-day conversations which we
expected in instant messaging. Though we did not expect
users to be submitting messages longer than 10 or 20 seconds,
we required that the system be capable of handling single
messages which correspond with up to a minute of audio.
Originally, the throughput requirement for the system focused
on matching the average speed a human is capable of typing
on  a mobile device or ~1.2 seconds/word. The team realized
that not only was this too low, but it did not focus on the
purpose of meeting a throughput target. Instead, the system
only needed to ensure a high enough throughput to create back
pressure on the translation pipeline. Therefore, the updated
requirement became that a second of raw audio take less than
a second to process on average.

Another requirement which we planned to achieve was
limiting the size of the model to no more than 20MB prior to
compression attempts. This was meant to roughly correspond
with the size of Apple’s latest mobile chip’s system cache
(A12). This was excluding the feature extractor/encoder head
as they were expected to consist of at least 1GB and would
therefore live in a cloud instance in a commercial
implementation.

The user interface to the system needed to be simple to use
and support multiple browser and audio file types for eventual
consumption of the prediction model. To emulate the
experience of typing, the interface also had to provide visual
feedback to the user by updating in real-time.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The coarse architecture of our system remains relatively
unchanged from our original proposal. The system still
consists of a browser-based user interface transmitting audio
to and receiving transcriptions back from a cloud-hosted

backend. Most of the computation of the system resides in the
backend. This remains aligned with our intention to focus on
creating a functional translation system as our primary
objective of the project rather than attempt a full deployment
of the system onto a mobile device that is better aligned with
our use case. A visual specification of the system can be found
in Figure 8 on page 14. It’s broken into six software modules.
Two reside locally while the other four are hosted and run
remotely. Audio is chunked by the frontend to allow for the
appearance of continuous audio streaming and translation.
Corresponding translation chunks are returned to the UI by the
backend through the same API that accepts the audio chunks.

Module 5 consists of the UI of our webapp. It presents the
user with the record button that reacts to indicate whether the
system is actively recording. This raw audio is fed directly
into Module 3. Module 5 is also responsible for sorting and
displaying text chunks received back from the backend in case
of out-of-order arrival of transcription chunks due to the
network jump. These chunks are accumulated and displayed in
real time. Once a new “session” has begun by stopping and
starting the recording using the provided button, the new
transcription text is displayed below the old, mimicking a new
message in the conversation. No major changes were made to
this model from the original proposed design.

Module 3 is the audio streamer responsible for processing
the raw audio recorded into a stream of data used by the
downstream system that is capable of giving the appearance of
continuous processing to the user. Before sending the audio
across the network jump to the backend, it is chunked. The
length of these audio chunks was initially a system
hyperparameter set statically. However, after experimentation
we realized that, by its nature, our translation model
performed best when audio segments included entire words or
phrases. This led to an architectural addition of a silence
detector and partitioner submodule which is capable of
splitting raw audio chunks that are dynamically segmented by
silence. The threshold for the detection of this silence then
became the new hyperparameter for tuning.

Module 4 acts as the API for the system’s backend,
handling the communication to and from the front-end
modules. As it receives web-formatted audio data chunks for
Module 3, it converts to .wav chunks which are passed on to
Module 6 as logically independent transcription requests. The
corresponding text transcriptions will pass back through this
module before passing directly on to the frontend UI in
Module 5. A small optimization we made for accuracy was to
add an English spell-checker in this module that can correct
for small transcription errors in the English text only. It is not
capable of large fixes but with a low latency overhead it
provides a quick solution to small mistakes.

Module 6 as a whole did not change significantly from the
first architectural design. It encapsulates all of the translation
logic of the system with the underlying logic being separately
encapsulated by modules 1 and 2. To support scalability of this
system, this module is the finest granularity that would be
required for replication to handle frontend inputs from many
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users. Transcription requests arrive as audio chunks from
Module 4 and populate an input buffer upon arrival. Since
each request is treated as logically independent, requests from
several sources could arrive at a Module 6 simultaneously and
be handled without interference. Before passing through the
translation modules, the audio is passed through the XLSR-53
feature extractor whose embeddings are then passed to both
the LID and ASR translators. This is why the feature extractor
is considered to reside in this module. Previously, this module
was also responsible for the fusion of prediction logits
returned by the LID and ASR modules. These were then
passed through a CTC module which generated the final
sequence of tokens or “text” corresponding to the input audio
chunk. Having switched to a multiplexed prediction strategy,
the output of the prediction logic is now a collection of
Mandarin token chunks and English token chunks returned by
the Mandarin and English ASR models, respectively. A single
one of these chunks does not correspond to the entire input
audio chunk but instead a small segment of it. This is
explained further in the architectural section concerning
Modules 1 and 2. Module 4 is solely responsible for
interleaving and joining these text chunks into a final
transcription passed onto Module 4.

Modules 1 and 2 contain the heart of audio to text
prediction pipeline. From the beginning, the concept of
splitting the problem of CS speech recognition has been
separating the task of language identification (LID) and
automatic speech recognition (ASR). Module 2 comprises the
ASR models while Module 1 contains the LID model. Module
1 has not changed. It still accepts embeddings from the
XLSR-53 feature extractor and decoder, returning logits over
three tokens: English, Mandarin, and blank (silence). While
these would have previously been fused directly with logits
from Module 2, they are now fed into Module 2 as a sequence
of LID “tags” with each tag representing the most likely
frame-level prediction of any of the three tokens. The crux of
our multiplexed implementation now takes place in Module 2.
Using the boundaries between LID tags, the embeddings from
the feature extractors could now be segmented into suspected
English and Mandarin segments (with no prediction needed on
chunks of silence). These segments are passed through their
corresponding ASR models (of which we now have two rather
than a single English/Mandarin model). Finally, a collection of
English and Mandarin tokens chunks are produced whose
union corresponds to a transcription for the original input
audio to Module 6. This updated strategy of text prediction
increased the critical path through the translation pipeline
compared with the joint LID-ASR model we’d originally
proposed since LID and ASR prediction must now be done
sequentially instead of in parallel. The effect of this extra
latency did not prevent us from meeting our latency targets,
however, as presented in section VII.

IV. DESIGN REQUIREMENTS

The requirements identified for this system's use case early
in this document had to be achieved by a further partitioning

of these requirements into specific requirements for the
various modules and components of its design. Certain
requirements could be shared by several modules with the
interactions between these modules informing the quantitative
requirements that were actually assigned to each module.

Model size was dependent on the sizes of both Module 1
and Module 2. The overall budget of 20MB was split between
the two with rough considerations given to the relative
complexity of each module. Originally, Module 2 received
11.5MB and Module 1 received 9.5MB. Since the design now
uses three distinct models (2 for ASR for LID), the
requirement was updated such that Module 2 now received
14MB and Module 1 received 6MB as Module 2 contains an
extra model that was also anticipated to be larger than the LID
model.

Overall latency was also treated as a budget which could be
assigned between each module of the system. The initial
budget considered for latency was 3 seconds to correspond
with the time roughly measured for Apple’s speech-to-text
iPhone messaging feature. As development began, this was
found to be too lenient and easy to achieve so it was lowered
to 1 second. This meant the design requirement had to account
for a roundtrip time for an audio chunk to travel the path from
Module 5, then 3, then 4, then 6, then back again to be less
than a second.

A. Modules 1 & 2: LID & ASR Model
Specifications for the requirements of these modules in

early design documentation for this project considered the
modules are run in parallel. As a consequence of the updated
architecture, their requirements had to be updated to reflect the
fact that they now run sequentially, with the outputs of Module
1 (LID) flowing into Module 2 (ASR). The combined latency
of this critical path is limited by the latency budget allotted to
their parent Module 6 which is .5s.All prediction operations in
the ASR and LID modules are GPU accelerated and were
therefore anticipated to be very fast on the small inputs that
they would receive for each chunk. Any extra work not
capable of being performed on the GPU was thus considered
the primary factor in how to decide the latency requirements
for each module. Of the two, the ASR module has to perform
additional logit segmentations not present in the LID module
and therefore received more of the .2s budget allotted to
Modules 1 and 2. In the end, Module 1 received .05s of
latency and Module 2 was allotted .15s.

Accuracy of the overall transcription is related to the
accuracy of both the LID and ASR modules. Though the
requirement metric CER (measured at the character level)
cannot be directly tied to the outputs of these modules (which
are token predictions at the audio frame level), some rough
calculations can be done to decide on the accuracy needed
from each model to reach the system’s CER requirement.
When we recalculated design-level requirements, Module 1’s
error was reconsidered to be measured by CER the same as
Module 2’s rather than with a frame-level classification error
to allow for a more correct mathematical combination of the
two. When presented with clean audio (greater than 20dB
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SNR), the LID module was required to have a CER of no
more than 10%. Consequently, the ASR module needed to
have a CER or no more than 16% to achieve an overall CER
of 25%. This follows from the fact that we’d expect a 75%
chance of being successful for each character which would be
met with these requirements due to

. One can proceed with the same0. 9 ×. 84 =  . 756 >  . 75 
thinking for noisy conditions. A LID error no more than 12%
requires an ASR error of no more than 20.3% derived
similarly from . It should be noted that. 88 ×. 797 =  . 701
these calculations rely on the weak assumption that the CER
of the ASR module is independent of the CER of the LID
module which is no longer true due to the multiplexed
architecture of the updated system.

B. Module 3: Audio Streaming

As it is responsible for audio chunking and streaming, this
module’s primary requirement lies in its latency. Originally
this module only dealt in 2-second audio chunks. These were
not thought to be large for network bandwidth to be a
significant bottleneck. This assumption did not change with
the updated dynamic chunking based on silence which the
system now uses as most chunks would now be even smaller
though we would expect some small rise in the rate of chunks
being sent to the backend by this module. Scaling the original
.2 seconds for a 3 second total latency requirement would
result in a new Module 3 latency of ~.066s. However, with the
addition of the silence detection and chunking unit, the
internal latency of the was expected to rise resulting in a final
latency of .08s between the moment the first audio data was
fed into the module and the moment the first chunk of that
audio was received by Module 4 in the backend. The team
recognized that this latency could vary significantly based on
the connectivity, but this was accepted as out of the project’s
scope or control.

C. Module 4: Backend API

Module 4 includes a .wav generator for incoming audio
chunks and an English autocorrector for outgoing text
translations. The overhead for autocorrection is considered
nearly negligible as from testing it completed nearly instantly
and most returned transcriptions correspond to less than 2
seconds of audio (a short amount of text) anyway so that
latency should not be especially variable. As such, the latency
for a request returning from Module 6 to Module 5 was set at
.05s. Audio conversion to a .wav took longer and was more
directly dependent on the audio chunk size. Compared with
our early proposal, a majority of chunks received by Module 4
are now smaller than 2s as they are dynamically sliced on
silence. This allowed for an aggressive cutting of Module 4s
inbound latency also down to .05s.

D. Module 5: Web Frontend

The frontend UI is the only portion of the system directly
visible to users. As such, it must be easy to use and clear in its
function. Random hiccups that may occur somewhere in the

pipeline must therefore be handled silently and reasonably. To
begin with this means that the transcription output must be
reasonable. No random symbols should be displayed other
than Mandarin, English, or spaces (this is a requirement also
shared by Modules 1, 2, and 6). Transcription chunks should
also never appear out of order. If the network reorders them,
they must be properly organized by this module before they
become visible to the user. To keep our web app accessible
and technically supported, we targeted the easy to use and
widely adopted Chrome browser for compatibility with our
UI. Regardless of their device, anyone capable of
downloading the latest version of Chrome had to be able to
access the app.

E. Module 6: Language Model
This module and its components are nearly entirely

responsible for the accuracy of the system and were
anticipated to be the largest contributors of UPL latency in the
pipeline. Because of this Module 6 was originally granted half
of the total latency requirements or 1.5s. With the scaling of
the original latency requirement, this fell to .5s. With a longer
critical path introduced in the transcription task performed by
Modules 1 and 2, they received a larger portion of the
module's allowed latency, leaving .3s for the module to
perform the other tasks surrounding transcription. These other
tasks consist of passing the audio through the feature extractor
and joining the collection of Mandarin and English token
chunks together into a final transcription.

The translation accuracy requirements for this module are
identical to that of the system since it is the combined
accuracy of its modules which contribute entirely to this
metric.

V. DESIGN TRADE STUDIES

Over the course of our development, to achieve different the
two main design requirements of our project, short end-to-end
latency and high transcription accuracy, we experimented with
multiple approaches to implement various parts of our system,
including our audio stream chunking mechanism and
architecture of our transcription and language identification
model.

A. Audio Chunking Mechanism
From the start of our development phase, we have been

consistently using the technique of sending chunks of ongoing
audio recorder streams for transcription to achieve the effect
of real-time transcription. segmentation mechanism of input
audio stream.

1) Fixed-sized vs. variable-sized chunking
Our initial approach was to send fixed length chunks. Our

hope was that through benchmark testing, we could find an
optimal chunk length. If each chunk is too long (> 3000ms), a
frame of input audio is sent out only every 3 seconds, meaning
that the speaker would see the transcription of what they spoke
at least 3 seconds later. If each chunk is too short, a single
spoken word is likely to be cut off into different chunks and



5
18-500 Final Project Report: C0 CodeSwitch 05/07/2022

fed into the transcription model separately leading to
inaccurate transcription for both chunks. However, through
rounds of parameter tuning, we realized that the
fixed-chunk-size would never be able to fully remove the
possibility of cutting into a single word, as illustrated in Fig. 1.

Fig. 2. This figure illustrates the problem of fixed-sized chunking. Simply
changing the chunk size does not remove the probability of cutting off a
spoken word.

Therefore, we began exploring variable-sized chunking
mechanisms more capable of preserving the integrity on word
level and preferably on phrase level. Inspired by the common
speech pattern that pauses often exist between words and
between phrases, we decided to use silence detection to
identify significant pauses in the input audio stream and use
them as boundaries for chunking the stream.

2) Silence Detection on Frontend vs. on Backend
We also faced design choices of performing audio chunking

on the frontend or on the backend server.
Ideally, where we perform silence detection would not

affect any correctness; however, based on our system design
and the difference in silence detection tools available for
frontend JavaScript and backend Python, there are advantages
and drawbacks for each choice.

Performing silence detection on the frontend directly on the
recorded audio stream can help limit the number of requests.
On the frontend, we know precisely when there is a significant
silence gap in the audio stream. Therefore, we only need to
make a transcription request only when a silence gap is
detected. If silence detection is performed on the backend

server, the frontend would not have the direct knowledge of
the occurrence of the silence gap until making a request to the
server. In this case, the frontend could only make decisions on
when to make a request based on some arbitrary semantics
other than silence gaps, which could cause many unnecessary
requests made to the server and consequently more
unnecessary server load and more complexity on managing
server responses that may contain overlapping transcriptions.

On the other hand, the drawback of performing silence
detection is the limitation of off-the-shelf audio processing
tools for JavaScript. Most audio processing packages for
JavaScript only support processing an entire audio file. In our
system design, audio processing needs to be performed on an
audio stream that is still actively growing since the user is
expected to see transcription as they continue speaking into
the microphone. JavaScript packages that support audio
analysis (such as measuring audio amplitude) on active media
streams are limited according to our research. Web Audio API
is the only package we found that safices our needs. And Web
Audio API only supports getting the raw magnitude from the
audio stream, so we would have to implement our own silence
detector which could be less reliable in terms of accuracy
compared to those commonly used audio processing libraries
that directly provide silence detection available for Python.

If silence detection is performed on the backend, then we
would have to make sacrifices on allowing some extra
unnecessary server load and having to handle server responses
that might contain transcriptions on overlapping audio
portions on the frontend. However, the expected accuracy of
silence detection is much higher in this case. The first reason
is that when the audio data reaches the backend, it is already in
the form of an entire audio file. Therefore, we do not have the
problem of having to deal with an actively recording/growing
audio stream on the frontend. The second reason is the higher
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availability of audio processing libraries available in Python.
Libraries like pydub [19] and librosa [18] directly provide
commonly used and well tested silence detection functions,
which could give us more accurate silence detection.

Based on our system design, we decided to perform silence
detection on the frontend for our webapp product in order to
avoid the complexity of handling server responses that
potentially contain transcriptions on overlapped audio
portions. For the local version of our system that is purely
Python-based, we choose to use librosa library for silence
detection.

B. Joint LID-ASR Model vs. Multiplexed Architecture
With the originally proposed “combined” model that used

separate networks for LID and ASR tasks, this model’s logits
were supposed to be fused directly with the ASR logits and
softmaxed for inference. The difficulty with this combination
was the fact that the gradient flow was not optimal. When
combined, the LID model’s E (English) logit was added to all
of the ASR model’s English logits (A-Z, e.g.) and likewise
with the M (mandarin) logit and B (blank) logit. Because of
this, on any given prediction the LID model’s efforts were
punished. If the true output token was C, and the ASR model
predicted C and the LID model predicted E, the ASR model’s
weights would be adjusted to favor C and disfavor all other
logits given the current context–the correct behavior.
Meanwhile, the LID model’s weights would be updated with
negative feedback on all of its logits since a majority of the E
prediction negatively affected the final prediction. The
learning signal here becomes very weak. This concept is
illustrated in TABLE I. To avoid this, a second loss geared
only towards the LID model could be devised using a
classification scheme with Cross-Entropy loss (CEL). Fusing
these losses would take a hyperparameter λ which would
balance these effects so both models would learn. The subtle
difficulty in this is that CEL requires a frame-wise labeling
which is not immediately extractable from the audio (as this is
the very task we are attempting to solve). The team had
planned to use forced aligner software which would be
capable of aligning a given sequence of labels to an audio
vector, but the biggest issue was finding one capable of
handling CS speech. All libraries we could find used speech
models only meant for a single language. At this point, the
team could have committed further effort into surmounting
this issue using a more clever, complicated, and risky forced
alignment procedure that would some combination of silence
detection and multiplexed English and Mandarin forced
aligners, but we decided we needed to prioritize a working but
simpler end-to-end system.

TABLE I.  COMPARATIVE MODEL PERFORMANCE

Architecture CER* WER*

Single_v1 .36 1.00

Single_v2 .23 .64

Combined_v1 .22 .59

Architecture CER* WER*

Combined_v2 .22 .58

Muxed_v1 .18 -

a. Performance on the entire evaluation set.

Comparison of attempted model architectures compared to key metrics. CER
became the target objective once it was realized WER was not accurately
representing the performance of the system on CS speech.

VI. SYSTEM IMPLEMENTATION

A. Module 1: LID Model
The LID model converts context representations (or

features) created by the pretrained XLSR-53 feature extractor
and encoder. It has an output of dimension three
corresponding to the logits values for a Mandarin, English,
and blank token. These logit values represent the relative
probabilities that the model believes should be assigned each
of the three output classes. Due to the time constraints the
team was under by the time we decided to switch
architectures, a simpler model architecture was used than was
initially planned for the final stage of the model. A  single
BLSTM layer sandwiched between summarization and
prediction FC layers comprises the final portion of the LID
model. Though this grows the network and increases inference
and training times, it provides the network with important
contextual information about the sequence of audio over
which it is run so it does not have to make “instantaneous”
predictions about what language a single contextual
embedding of the audio represents. The team hypothesized
that recognizing switches between the languages would be an
especially important part of accurate LID performance.

After updating the architecture, the LID model’s job did not
change, training it now became an entirely separate procedure
from the overall model. Force alignment using standard
libraries still couldn’t be used, but labels could still be
generated using a custom model to perform the forced
alignment. Using an earlier single end-to-end CS model the
team had developed during early experiments, the force
alignment procedure could still be used. With this older model,
the training data for the ASR model was preprocessed such
that the new LID model was now fed solely frame-level LID
labels and trained using CEL. After training, the best
performing iteration of the new LID model was combined
with the ASR models in a new multiplexed architecture.

B. Module 2: ASR Model
There are two ASR models in our system: one for Mandarin

and one for English. The English ASR model is taken from
[21]. It is originally from the base model XLSR-53, a large
model pretrained in 53 languages released by Facebook, and
fine-tuned on English using the Common Voice corpus, which
contains almost 3000 hours of labeled English speech. The
English model achieves a WER of 19.06% and a CER of
7.69%. The Mandarin ASR model is trained by us using a
Mandarin corpus consisting of over 70 hours of labeled
speech. It achieves a CER of 24.09%.
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C. Module 3: Audio Streaming
This module needs to be capable of two primary tasks:

identifying the silence gaps in the audio stream and dividing
the stream into chunks at the silence gaps to send separately to
the server for transcription.

To identify silence gaps on frontend, we utilized Web Audio
API available for JavaScript. Specifically, we used the
.getFloatTimeData method from AnalyzerNode class [22] to
measure the amplitude of each sample frame of the audio
stream. Through testing, we found the optimal amplitude
threshold to be considered as a silence frame is below 10*10-6.
The audio is sampled every 100ms. Any frame below this
value would be considered as a silence frame. In order to
avoid oversensitive chunking, we defined a silence gap to be
at least 3 consecutive silence frames, which equals 300ms of
silence.

To divide an ongoing recording audio stream into chunks by
silence gaps to send to the server, we applied the
mediaRecorder API available for JavaScript, which provides
an audio recorder interface and supports periodic callbacks for
newly recorded audio data. The period is a custom parameter.
Using the API, every 500ms, a callback along with the new
audio data recorded in the last 500ms. In the callback, we
check if there is a silence gap within the last 300ms, by
checking if the count of consecutive silence frames at the
moment exceeds 3. If this callback is detected to happen in a
silence gap, a transcription request to the server is made that
sends the entire audio stream recorded so far along with a
quantity l, that represents the length of audio data when the
last transcription request was made. The mechanism is
illustrated in Fig. 3. The server receiving the request will
retrieve the most recent chunk that has not been transcribed
from the audio data using L. The detailed mechanism to
retrieve the most recent chunk will be discussed in the next
section.

Fig. 3. This figure illustrates how silence detection is used to control the
trigger of a transcription request.

D. Module 4: Backend API
This module needs to be capable of four primary tasks:

identification of the untranscribed chunk from input audio
buffer, .wav generation, transcription autocorrection, and
interfacing with the language model. It uses the Django
framework and routes http request bodies to a .wav generator
function within views.py. The model is loaded and stored in a
Python runtime instance when the server is first booted. When
future transcription requests arrive, the model is ready by
directly referring to the existing runtime instance.

When the server receives a transcription request, the FILES
field of the request is converted into a .webm file which is
finally converted to a .wav file using the ffmpeg toolkit. As
requests are received, their sequence IDs and expected .wav
local paths are also stored into a Python data structure. Then
the variable L is retrieved from the request, which represents
how long the audio stream was when the last transcription
request was made. In other words, L means the length of the
portion of the audio that has been transcribed. Therefore, the
portion after length L is untranscribed and should be extracted
and fed into our model.

The output transcriptions from our ASR models are run
through the autocorrect library also provided by Python [15] to
correct very small errors. The final transcriptions are packed
in an http response body along with the appropriate sequence
ID which is then sent to UI. Files are deleted from the server
to prevent memory starvation. The main changes in the
module from our original design were the addition of retrieval
of the untranscribed portion and the auto correction on the
output.

E. Module 5: Web Frontend
Nothing changed in the design of this module, so its

requirements did not change either as it was not considered a
source of overall system latency. The in Module 3 for sending
audio chunks to the cloud backend is also responsible for
listening for and receiving requests from the server. The text is
received with a sequence ID that is identical to one which was
assigned to its corresponding audio chunk when it was first
sent to the backend API by Module 3. Internally, the software
is required to maintain a record of the sequence IDs it has
received and which ones it has displayed so that it doesn’t
append text to the UI out of order. This is intended to deal
with the weak ordering semantics of the transmission protocol
from the backend. Using a strictly ordered protocol would
unnecessarily decrease the system’s throughput.

F. Module 6: Language Model

The formulation of the language transcription pipeline was
reworked several times as the team identified and tackled
difficulties encountered during implementation. Rather than
fusing the predictions of separate LID and ASR models
mathematically, text predictions are now generated in Module
2 by either the English or Mandarin ASR models. The job of
Module 6 is now to ensure the correct ordering of prediction
chunks as they are returned from Module 2. When the LID
model segments contextual representations into Mandarin and
English chunks, they are assigned sequence numbers
representing their order within the context of a single
transcription request originally fed into this module. Using
these ids, the prediction chunks are reordered and joined into a
final text prediction corresponding to transcription request
whose own sequence ID will be used in the system frontend to
correctly order and display the transcription in real time. A
further discussion of the weaknesses and difficulties of the
original implementation plan for Module 6 are discussed
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further in section V. In contrast with the originally proposed
implementation, this system was also exclusively trained on
the ASCEND [20] dataset rather than the much larger and
more comprehensive SEAME [8] dataset. This was due to
serious resource limitations encountered when trying to
preprocess and train the system on the SEAME dataset. The
team’s best hypothesis about why this occurred was due to the
fact that individual training samples (an audio and
transcription pair) proved extremely large. A single audio file
provided could contain hundreds of individual samples, so
loading a random collection of samples actually resulted in the
loading of hundreds of MBs quickly into and out of GPU
RAM which seemed to overwhelm the system during training.
Careful processing of the dataset could have split the training
samples further into smaller audio files and label pairs to
allow for a better granularity for moving data into and out of
GPU memory.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for End-to-end Latency & Throughput
In order for our system to operate smoothly and efficiently,

we used two metrics to measure the performance of our
system. The first is end-to-end latency, which measures the
time it takes for the transcription of a segment of audio to the
user interface. For this metric, our expectation is for the
system to return the transcription of the first audio segment in
no more than 1 second. We tested this metric by measuring the
time difference between request to AWS instance and the
returned result through multiple trials. The system, on average,
took 800 milliseconds to respond, which achieved our initial
expectation.

The second metric we used is throughput, which measures
the processing power of the system. Ideally, we want our
system to process audio faster than audio input. More
specifically, the system needs to at least process 1 second of
audio within 1 second. Throughput was measured by testing
the average processing time between input and output on AWS
instance. The final result we achieved was 0.7s/s, which
means that it takes the system 0.7 seconds to process 1 second
of audio input.

B. Results for Real-time Text Output
We want our users to feel like the system is quick and

responsive, not clunky and laggy. Thus, it is crucial for the
system to process audio as quickly as possible while
maintaining a reasonable accuracy. The results we achieved
guarantees two things: the system responds quickly
(end-to-end latency) and it does not clog up due to the amount
of audio input (throughput). Consequently, the system allows a
user to actively speak at a reasonable rate (of around 100
words per minute) while returning transcriptions in a
comparable amount of time as typing.

C. Results for Character Error Rate
Character error rate is the most crucial metric for our

system, since it governs the accuracy of the transcription. As a
reference, the best result we’ve found for a Mandarin-English
code-switching ASR is released by Tencent [17]. Their model,
exceeding in size, is trained with over 2000 hours of speech.
Tencent’s model is able to achieve a CER of 7.69%. In our
case, we have about 80 hours of speech. Thus, for this metric,
we set a goal of a CER lower than 25%. It is measured by
testing our system on multiple corpuses and computing the
average character error rate across all the samples in the
dataset. For convenience, the metric is calculated using
HuggingFace’s cer tool [18]. On a code-switch dataset, the
system achieved 22.94% CER. On a dataset containing
English, Mandarin, and code-switching speech, it achieved
18.25% CER.

D. Results for Reasonable Output & Vocab Recognition
We want our system to output reasonable results, which

means that it should not output gibberish and should recognize
vocabularies used in daily conversations in both English and
Mandarin. For the most part, this was achieved. We saw that in
most daily conversations the system is able to pickup most of
the vocabulary. However, due to the fact that our system
outputs at a character level, it sometimes outputs words that
sound the same phonetically, but aren’t actually English
vocabs. This has both advantages and disadvantages. The
advantage is that the system is not limited by vocabulary,
meaning that even if it sees a word that is not in the dictionary,
it is able to “sound it out”. On the flip side, it will make
mistakes on some of the common words where the sound is
not exactly as it spells.

E. Results for Noise Tolerance
The system should be resistant to some noise and still

output reasonable transcriptions. This metric is measured by
testing on a dataset with samples of low signal-to-noise ratio
audio segments. Our goal is to maintain the CER under 30%
when signal-to-noise ratio is lower than 20dB, which means
that the output is still relatively intelligible. Unfortunately, we
were unable to achieve the target, ending with only 31.28%.

F. Results for Robustness in Environment
Our intent was for our system to be able to function in

various environments, including ones that are noisy. However,
our system was shown to be not effective in dealing with
noise. The noise impacts two aspects of our system. First, the
silence chunking mechanism cannot detect silence properly
since it depends on the average amplitude of the input audio.
Second, the ASR models cannot decipher the audio inputs
properly due to the added noise. The combination of these
results in the system that is both slow in terms of real-time
output and inaccurate in terms of error rate.

G. Results for Supporting Environment
One of our design requirements is for the system to support
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different environments and usages. We implemented two
versions of the system: one running locally using Python and
one allowing user to interact with Chrome browser. For
testing, the system is run on Python local environment and
through Chrome browser on both MacOS and Windows. The
local Python script is able to run on any OS, provided that
Python 3.8 is installed and a valid audio support is available.
For the Chrome version, the system runs smoothly on both
MacOS and Windows.

H. Results for Cross-device Support
We want our system to be accessible from all devices. Since

we support the application on Chrome, any laptop with a
Chrome browser will be able to access the website (assuming
the production is deployed). For the Python version, anyone
can clone the GitHub repository, install the required
dependencies, and use the system.

Fig. 4. This figure shows the  Python version running locally on MacOS.

Fig. 5. This figure shows the webapp interface on a Chrome Browser.

I. Results for Max Data per Input
One design requirement is that we want our system to be

able to take in a long segment of audio. This ensures that the
system will not break with long, uninterrupted speech. For this
metric, we set the objective as the system should be able to
transcribe a maximum of 1 minute of audio in a single input
instance from a user. The testing is straightforward: testing if
audio segments longer than 1 minute will return with
reasonable outputs. In general, our system is able to handle 1
minute long audio. However, this is dependent on the memory
of the GPU (if the models are run on GPU) or the size of the
RAM (if the models are run on CPU). Any input size that
exceeds the memory size will result in the system crashing.
Nonetheless, when testing with Nvidia’s RTX 3060 Ti GPU,
the longest possible audio segment exceeds 90 seconds.

J. Results for Reasonable Speech Length
The results from our test above ensures that the system has

the capability to transcribe a useful quantity of speech in one
shot. In scenarios such as conferences with long speeches, the
system is able to process these kinds of audio without any
interruptions.
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VIII. PROJECT MANAGEMENT

A. Schedule

Fig. 6. This figure shows the schedule of our project progress during the
entire semester.

The only change in our schedule is the addition (marked
red) of the implementation of our multiplex architecture that
uses our LID model to segment an audio buffer into chunks
with the same language tag and feeds each chunk into the ASR
model corresponding to their language.

B. Team Member Responsibilities
The division of the team member responsibilities has not

changed since our design review.
Nick focused on training and designing the LID model

while Marco focused on implementing our Python-based local
system and the multiplex architecture.

Tom was responsible for the implementation of all front-end
and back-end web app modules. This included designing a
front-end UI for accepting raw speech audio, audio detection
on audio stream on the frontend, backend retrieval of
untranscribed chunks from the audio data and auto correction
of the transcription output of the ASR model.

The detailed team member responsibilities are labeled in
Fig. 6.

C. Bill of Materials and Budget
All of our system’s components are purely digital. The

budget is used exclusively for cloud hosting costs of server
instances as well as compute instances needed for model
inference and training as well as data storage. A detailed
breakdown may be found in the Bill of Materials and Budget
on page 15, Table II.

D. AWS Usage
AWS instances were used in both training and the

deployment of the system. 3 g4dn.xlarge instances totalling
$265.10 were used for training the ASR models. 1 p2.xlarge
instance totalling $64.80 was used for app testing and
deployment. $19.50 of gp2 storage was used to operate the
instances. A special thanks to AWS for providing the credits
and GPU usage.

E. Risk Management
There are several areas of the project that posed risks to the

successful implementation of the system. Though we have
group members who are experienced with implementing and
training deep models–even in the sequence-to-sequence
context–model training is inherently uncertain in several
aspects and especially with a limited time frame. Data is
always a worry in speech recognition tasks since we require a
large quantity of high-quality recordings and corresponding
labels. Although we had access to the large SEAME
Mandarin-English Code-Switching in South-East Asia dataset,
there is still the potential that this dataset met not be large
enough to train the model robustly on transcribing English and
Mandarin words since it is a more difficult problem than LID
and the dataset is somewhat biased towards Mandarin
recordings and is made up of Singaporean and Malaysian
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speakers. If validation indicates that it is necessary, we have
additional datasets with which we could augment SEAME
such as the LibriSpeech ASR Corpus (Eng.) [9] or Aishell
(Mand.) [10]. In addition, we built a data collection website
(https://codeswitch-data-gatherer.vercel.app/upload) to
crowdsource additional audio recording and transcript from
our Mandarin-English bilingual friends and families.

Fig. 7. This figure shows the interface of our data collection site.

Model accuracy issues could also arise as a function of time
constraints or model-size. Since full training epochs are
anticipated to take a substantial amount of time (a dozen hours
perhaps), we may find that the model does not appear to be
converging in performance fast enough. To tackle this we
could launch a second training instance with a smaller
vocabulary size, simplifying the problem and leading to a
short time till model convergence. Whichever model results in
better WER will be selected. We did not encounter a
significant lack of time issue for model training with the help
of powerful instances provided by AWS EC2.

Finally, achieving our throughput targets remains an
ambitious and central goal in order for our system to be viable
for real deployment in our messaging use-case. Major sources
of latency will be the network jump to and from the web
application backend (which are difficult to predict day to day)
as well as inference time through the model. We achieved our
desired end-to-end latency by reducing unnecessary server
requests by performing silence detection on the frontend and
only making transcription requests when there are significant
silence gaps detected. And we chose to deploy our app using
p2.xlarge instance type which has a GPU and enough memory
to run our web app and LID and ASR models.

IX. ETHICAL ISSUES

As this project does not concern a life or safety-critical
product, the ethical issues it presents are more concerned with
the subtler implications it would have to its users.

The first of these would be an issue of privacy. Instant
messaging today is considered personal and private whether it
technically could be or not (encrypted or not encrypted). As
such, a user of our system would not expect their messages or
audio to be stored anywhere other than within their message
history or a personal profile account like iCloud. They would
also expect that their identity be obfuscated enough to make it
impossible for someone administering this service to identify
them from stored metadata associated with their audio input or
text transcription. A commercial implementation of this

system could address these issues by using secure
communication protocols between the frontend and backend,
encrypt data in transit, and never associate location metadata
with a transcription request (which the system does currently).

Another area of concern that is more unique to our
application space is the usability of our system by a wide
range of users. There are over a billion people in the world
who speak either Mandarin or English or both and they
represent a wide range of accents and colloquial vocabularies.
To achieve the best user experience, a system like this would
strive to consider all of these diversities. This presents a
serious technical challenge to a system like this as the
underlying models can only be as robust as their training sets
are diverse. CS is the hardest aspect of our ASR problem but
is also the one with the most limited number of datasets which
themselves are biased since they usually only cover a
population of individuals from a specific region (such as
Taiwan, e.g.). With more time and by combining multiple
datasets during training, we could work to overcome this
challenge by pushing our model to generalize further. A
commercial implementation could also use several versions of
the backend LID and ASR models which have each been
tuned to specific regions and could be chosen automatically
based on a user’s location or explicit preference. Still, this is
an issue that persists with the current implementation. During
testing, the system presented several specific examples in
which the pronunciation of a word clearly confused the system
resulting in either a cross-misprediction (English to Mandarin,
e.g.) or a misprediction between English words.

Once the system was even observed to produce
unintentionally explicit transcriptions whose pronunciations
were somewhat similar to the input audio but were clearly
erroneous. With additional training this behavior has not been
observed again, but it is not outright prevented. The use of a
fixed prediction vocabulary would help with this by
preventing the production of any words outside of the
specified vocabulary. In this sense, the use of a character-level
prediction schema in this system was probably not optimal as
it does allow for potentially explicit language to be produced
in English transcriptions. Adding a post-processing step to
remove these transcriptions could work but it would also be
limited by the size of its own vocabulary to detect unwanted
words or phrases.

X. RELATED WORK

Building multilingual ASR systems is an area of ongoing
research in the machine learning community. The primary
guidance and inspiration for this project was from a paper
published in October, 2021 titled Mandarin-English
Code-switching Speech Recognition with Self-supervised
Speech Representation Models. This paper aimed to build a
joint ASR/LID model for end-to-end prediction and training
for audio to text transcription. As with our original
architecture, one LID model was optimized on the
classification task of labeling audio frames as
English/Mandarin/blank. These logits were then combined

https://codeswitch-data-gatherer.vercel.app/upload
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with predictions from an ASR model with a large multilingual
vocabulary that used standard characters for Mandarin and
sub-word units for English (a complication and improvement
missing in this system’s formulation). It also solved the
problem of generating frame-wise training labels for  the LID
model using the Montreal Forced-Aligner (MFA). This was a
subtle but technical feature of the implementation since the
team was not able to find a MFA model intended for English
and Mandarin use.

From what the team’s been able to infer from Apple
technical publications [6], the newer version of the
implemented system follows a similar strategy of multiplexing
between language models as their current voice to text feature
available on the Messages application. The publications would
imply that they use a very small version of a contextual LID
model (using BLSTMs) to quickly predict the required model
for transcription which is then selected and utilized for
prediction in the cloud.

XI. SUMMARY

The responsiveness and useability of the final system fell
above the team’s expectations. Latency and throughput proved
not to be an issue with both the quantitative and validation
experiments of the system indicating a very reasonable and
responsive transcription system. As the team had anticipated,
the most challenging part of the system implementation was
achieving the desired accuracy while balancing the
requirement for a real-time experience. The biggest limits
identified originated from the fact that the system was trained
on a smaller than anticipated dataset with a very limited
diversity of speakers and topics and therefore vocabulary. It
struggled to generalize to pronunciations and contextual
information beyond that which it had already seen. More
complex neural architectures with larger BLSTM layers could
also have improved performance. Within the overall design of
the current system, the accuracy is also strictly limited by the
accuracy of the LID model that is the model responsible for
choosing whether English or Mandarin will be returned for a
particular segment of audio. This was also the model with the
poorest labels and the weakest procedure for creating them.
Without ground-truth input for solving this classification
problem and poor training characteristics associated with
fusing its gradients with those returned by the ASR’s CTC
loss, the model performance suffered.

A. Future work
There is some interest by members of the group to continue

pushing the performance of the system by fixing and updating
several aspects of the system. The first step would be to retry
training using a version of the SEAME dataset that has been
better processed for memory efficiency. The team would
anticipate a nearly automatic boost in accuracy simply from
better and more data. Retraining the model to predict on the
word-level for English would also probably help by limiting
the output of the model to a fixed vocabulary, resulting in
more reasonable transcriptions without explicit and misspelled

words. It’s also hypothesized that this would make LID easier
by not requiring that the correct language be identified at the
granularity of the English letter.

Finally, a more involved reformulation of CTC loss is a
possibility that the team has discussed. Although currently the
use of a dual CTC and CEL loss seems to be well founded
theoretically, the generation of LID labels remains. What
future work could entail is implementing a system that is
capable of generating labels on the fly by utilizing information
from within the CTC loss function. As ground-truth labels are
aligned with frame-level token predictions, a separate
frame-wise label could be generated for LID of either M, E, or
B (one of the three LID labels described previously). For
example, the token ‘c’ would then serve as the label for the
ASR model and also be transformed into the token E as a label
for the LID model, removing the need for any forced
alignment procedure. The details and complexities of this
implementation would require significant extra thought, but
the approach seems sound based on the team’s experience this
semester.

There is still room for improvement in the formulation of
solutions to this problem and this project has helped to further
characterize the areas in which future effort must be focused.

GLOSSARY OF ACRONYMS

ASR - Automatic Speech Recognition
BLSTM - Bidirectional long short-term memory
CER - Character Error Rate
WER - Word Error Rate
CS - Code-switching
CTC - Connectionist temporal classification
FC - Fully-connected
LID - Language Identification
SNR - Signal to noise ratio
SSL - Self-supervised Learning
UPL - User perceived latency
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Fig. 8. The current system architecture.
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Table II. Bill of Materials

Table I. Bill of Materials

Description Model #
Manufac

turer Quantity Cost @ Total

AWS GPU Instance
for LID Module,

CTC Module, each
instance estimated 7
full days of runtime

g4dn.xlar
ge AWS 3 $.526/hr $265.10

AWS GPU Instance
for app testing and
deployment, each

instance estimated 3
full days of runtime p2.xlarge AWS 1 $.90/hr $64.80

AWS EBS 1.5
Months SSD Storage gp2 AWS 1

$.1/GB-
Month $19.50

Grand Total $349.40


