18-500 Design Project Report: CO CodeSwitch 03/04/2022

CodeSwitch

Marco Yu, Nick Toldalagi, and Honghao Chen

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of handling English/Mandarin
code-switching for use in ASR instant messaging applications.
Current systems dynamically select between models using a
separate LID module which have been shown to be less effective
in CS contexts than jointly trained LID and CS models. The
system should be plausibly deployable for use in mobile devices.
This drives requirements for the end-to-end transcription
system’s size, speed, and throughput.

Index Terms— Automatic Speech Recognition, Code-switching,

Deep-learning, End-to-end, Instant Messaging, Language
Identification, Self-supervised learning, Speech-to-text,
Transformers.

L INTRODUCTION

Automatic Speech Recognition has been an area of great

focus for machine learning researchers. In the dozen years
since 2010, use of the technology has burgeoned from
academic experimentation to wide adoption in
consumer-facing applications. Thanks to larger labeled speech
copri, better computational resources, and advancements in
model architecture, performance metrics of state of the art
ASR systems have practically saturated—surpassing even
humans in WER performance.

ASR systems are currently widely available in a range of
applications and devices where users are able to harness
speech-to-text tools for writing documents, sending text
messages, and recording conversations. While training of
these deep models requires significant computational
resources they have seen successful deployment even on
mobile and edge devices such as the iPhone through the
combined use of a cloud-based computation client and special
native neural hardware. Though the recognition of dozens of
languages are individually supported on these devices,
situations in which speakers may switch between languages
mid-sentence are not specifically handled.

For conversation and messaging use-cases between
multilingual speakers, the accurate handling of code-switching
is a must to allow participants the ability to express
themselves authentically, naturally, and efficiently while
capturing their words with precision. This system focuses on
handling CS within the context of instant messaging which has
motivated our design decisions surrounding its architecture,
size, latency, and throughput. The less-formal nature of these

communications allows us to limit the vocabulary which the
model will need to learn. It is also a context in which we
expect the real-world prevalence of CS to be high.

The goal of this implementation is ultimately to emulate the
experience of current monolingual ASR systems which
provide the kind of easy-of-use, fast response times, and
accuracy which make them competitive with a traditional
instant messaging experience.

Current implementations such as Apple’s text-to-speech
feature available in its Messages app perform exceptionally
well for day to day wuse. Though the specifics of its
implementation is difficult to find, evidence from
experimentation with the feature seems to indicate the use of
individually-trained state of the art end-to-end ASR models
per language in combination with a small LID model used for
choosing the correct model per word [3]. This results in some
instances of confused multi-lingual transcriptions in which
individually switched words are missed or badly transcribed
within the context of the sentence. We plan to overcome these
deficiencies by using a jointly-trained LID/ASR architecture
which is able to capture multi-lingual contextual information
on both the LID and ASR portions of the transcription
problem. A tunable feature extractor and transformer model
front-end which has been pre-trained on multilingual speech
will help to provide usable language and contextual
information for the down-stream modules of the model as a
whole.

1I. USE-CASE REQUIREMENTS

An implementation capable of addressing an instant
messaging use-case must meet requirements for size, speed,
and accuracy first and foremost. The trained model without
the feature extractor/encoder head must be no larger than
20MB prior to any compression attempts. This corresponds
roughly with the size of the Apple’s latest mobile chip’s L2
system cache (A12). UPL must be no more than 3 seconds,
similar to an iPhone’s current response time for the first word
returned from an ASR transcription. We expect the system’s
accuracy (measured with WER) to be directly related to the
input audio’s SNR so we formulate this as a bucketed
requirement. For any audio with a SNR greater than 20dB
(30dB is considered clean speech), the WER should be no
greater than 25% while audio with a SNR down to 5dB should
be no greater than 30%. A reasonably large vocabulary size of

18-500 Design Project Report: CO CodeSwitch 03/04/2022

5000 words will accommodate most day-to-day conversations
we can expect in instant messaging. Though we do not expect
most users to be submitting messages longer than 10 or 20
seconds, we will require that the system be capable of
handling single messages which correspond with up to a
minute of audio. Since the average typing speed on a phone is
about 50 words per minute [2], the system should provide a
comparable transcription speed. This results in an end-to-end
throughput requirement of 1.2 seconds/word.

The user interface to the system will need to abstract away
any depence the implementation has on file formats,
converting raw audio into a standard file format for model
consumption. The system must also not suffer any
performance loss due to concurrent users of the system. This
requires that the cloud-based application allow for
theoretically arbitrary scalability = with independent
transcription requests that are submitted simultaneously.

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our architecture consists of a web-based user-interface (UT),
cloud-hosted application backend and language model. Fig. 1
page 11 shows this organization. This architecture reflects the
fact that we anticipate the need for considerable computational
resources for translation. Though we target a mobile-centric
instant messaging use-case, we judged that the development
effort needed to implement an mobile application as well as
compress our language model for partial deployment on a
mobile device would exceed the time available for this project.

The system’s architecture is broken into six software
functional modules. Two modules run on a user’s device
locally while the rest are hosted in the cloud.

Module 5 is the webapp Ul frontend, which includes an
audio recorder supporting start/stop recording through button
clicks and a text output displayer supporting real-time text
propagation. A user should click to start audio recording, start
speaking and expect text transcript to real-time propopate in
the text output displayer. The text displayer accumulates the
text outputs within an entire start-to-stop recording session. As
new text transcription comes back from the server it will be
appended to the already displayed text. When the user stops
recording and restarts recording, the transcription from the
previous recording session will be kept on the web page, and
the transcription for the new session will be displayed in a new
text area mimicking a new message.

Module 3 is the audio stream sender that runs within the
user’s browser, which chunks an incoming recorded audio
stream into 2-second audios (which should contain more than
one full word) to send to the server through http requests.
Besides chunking the audios, this module also adds metadata
on each request, which includes audio properties (sampling
rate, number of channels) and a sequence ID that notifies the
server of the order of these audio chunks. The sequence IDs
can then be referenced to manage the order of text

transcription when multiple server responses come back,
possibly in different order from how the audio chunks were
originally ordered.

Module 5 is the backend APIs of our webapp. The main
APIs of our app include wav file generator and the loader of
our recognition model. The wav generator receives http
requests that contain audio data, which is encoded in webm
format, and generates .wav files (.wav files will be inputs for
our CTC model and LID model). The model runner module
creates a singleton instance of model runner class that loads
the same model (Module 6) on initialization. The model
runner class keeps track of a queue of .wav file paths and
incrementally processes them.

Module 6 encapsulates an instance of the system’s
transcription module. For scalability and workload balancing,
independent instances of this module may be launched
independently. Inside, this module contains an input buffer for
transcription requests received from the web applications
Backend API (Module 4). Each request is treated as logically
independent of others. As requests are fulfilled, their
transcriptions populate an output buffer which returns
transcription results to the requesting clients. Transcriptions
are differentiated by unique request IDs which identify the
clients which made the original request. The same request IDs
are associated with each request which populates the input
buffer. Between these buffers lies the audio-to-text
transcription pipeline. Raw audio files are fed into the feature
extractor/decoder head which returns frame-level contextual
representations of the audio. Representations then flow into
both the LID module as well as the ASR module.

Module 1 is responsible for identifying the language of
audio frames while Module 2 is responsible for transforming
context representations into the words of the system’s
supported vocabulary. The outputs of these modules are logits
represeenting the probability of a given language or given
word for modules 1 and 2 respectively. For final prediction,
these logits are combined before passing into a CTC
component. This final component will be responsible for
completing a “soft-alignment” of audio frames into predicted
words, thus there is no need for the system to attempt to
segment the audio input into words segments during an early
step.

During training, modules 1 and 2 will be evaluated using
separate loss criterion which will be interpolated into a single
loss value for combined end-to-end training. Gradients will be
allowed to flow all the way from this interpolated loss through
the pre-trained extractor/decoder head which allows for the
head’s fine-tuning to our specific use-case and its languages.
This procedure is central to the formulation of our solution as
it allows the language model to adapt specifically towards the
case of code-switching as it should result in a model that is
more smoothly optimized for recognizing language switches
between frames as well as contextual information from

18-500 Design Project Report: CO CodeSwitch 03/04/2022

multiple frames. Joint training will cause the feedback from
mispredictions to assign blame to the submodules in a way
that is proportional to each submodule's contribution to the
misprediction. It will also allow both submodules to provide to
the feature extractor/decoder about what information is
relevant and what is not.

IV. DESIGN REQUIREMENTS

To achieve the system’s use-case requirements they must be
further partitioned into specifications for modules and
submodules of our architecture. Certain requirements naturally
envelope multiple modules. Combining these parent
requirements with information about inter-module dependency
informs the specifications for the sub-modules themselves.

Model size is dependent on the sizes of both Module 1
(LID) as well as Module 2 (ASR). The overall budget of
20MB will be roughly allocated such that Module 1 receives
9.5MB while Module 2 receives 11.5MB to account for the
larger BLSTM component of Module 2.

The processing time between the moment after a 2-second
audio chunk is recorded and the transcription for this chunk to
appear on the webapp frontend needs to be within 3 seconds to
achieve the real-time requirement of our app. This requires
high performance design in Module 3 (audio stream sender),
Module 4 (backend APIs) and Module 6 (language model) so
the critical path from Module 5 — Module 3 — Module 4 —
Module 6 — Module 5 are within 3 seconds.

A. Module 1&2: LID & ASR Model

The requirements for these modules are almost identical
since they are considered to be running in parallel. As
prescribed earlier, Module 1 must be no more than 9.5MB in
size while Module 2 must be no more than 11.5MB. Both
modules must be able to achieve the system’s overall
throughput requirement of 1.2 seconds per word. Since the
maximum amount of data allowed for a single transcription
request is more a function of other modules, it is not a
requirement which applies to Module 1 or 2. Both modules
should achieve the required noise tolerance however which
will be tightly linked with their individual accuracy
requirements. Module | is measured by a frame-by-frame
classification error rate which is the percentage of frames it
misses compared with the ground truth. This should be no
more than 10% at greater than 20dB (clean audio). Module 2
is measured by WER which is a function of the number of
changes needed to change a predicted transcription to the
ground truth. This should be no more than 16%. These are
roughly derived from the use-case requirement of a WER of
25%. We’d expect about a 75% percent chance of a successful
transcription per word which requires both models to be
correct thus 0.9 X.84 = .756. A similar calculator can be
performed for the modules’ performance in noisy conditions.
A classification error rate of no more than 12% for Module 1

will require that Module 2 have a WER of no more than
20.3% which is similarly derived from .88 Xx.797 = .701.

Latency requirements per module are difficult to estimate
but since they are derived from the budget allocated to Module
6 (1.5s) they can be roughly derived based on the relative
model size of the components within Module 6. Allowing for
throughput budget to be allocated both the
extractor/transformer head as well as the logit scaling and
CTC algorithm, both Modules 1 and 2 are allocated .4 seconds
of throughput time.

B. Module 3: Audio Streaming

Module 3 chunks the ongoing recording audio stream into
2-second chunks to the server. The latency between a user
finishing speaking for a 2-second interval and the
corresponding http request being received on server needs to
be within 0.2 seconds so that there is enough room for
backend processing and server response to come back to the
frontend. We cannot control the network latency, so a user
under a flaky network may experience longer processing time;
however, each request only contains 2-second audio data, each
request is not a heavy load, so the bandwidth will not impose
significant limitations on our app performance. The text
transcription should be rendered on the web page in the same
order as the audio recording chunks.

C. Module 4: Backend API

Module 4, the backend API group should include a .wav
generator API and a model runner API. The .wav generator
should be able to write audio data received at the server end
into .wav files which will be the inputs to our ASR model. The
.wav generation time should be under 100ms for a 2-second
audio so that we leave enough time for the model to run on the
audio. The model runner API should be capable of processing
audios in parallel to optimize our deployment server’s
utilization and our app performance.

D. Module 5: Web Frontend

Module 5 is the frontend interface of our web app. It should
be accessible through a http:// url on a laptop Chrome browser
that is relatively recent (Chrome version after 1/22/2022). The
interface has an audio recorder for our users to click to
start/stop recording using their laptop microphones. As they
are recording, the text transcription of their speech should be
generated in a text area on the web page as they are recording.
The transcription will be a mix of English and Chinese texts
that match the code-switch pattern of the users’ speech. The
transcription should display words or phrases in the same
order of the users’ speech. The delay between a word being
spoken and its transcription being displayed should be under 3
seconds.

E. Module 6:Language Model

The throughput and accuracy requirements for this module
are identical to the design-level requirements for the system

18-500 Design Project Report: CO CodeSwitch 03/04/2022

since the language model fully encompasses the modules
which will affect the accuracy metric and since the throughput
requirement remains constant throughout the system. This
applies to the modifications in those requirements concerning
noise tolerance. Its accuracy metric will be solely WER since
its output is the combination of the two submodules 1 and 2.
As described earlier, its total size must be no greater than
20MB. The latency requirement for this module is budgeted at
1.5s, exactly half of the design-level requirement since the
calculations performed within will likely be the greatest single
contributor of UPL in the entire system. Modules 1 and 2 are
allocated .4s of this time so that the remaining time (1.1s) may
be allocated between the a forward pass of the XLSR-53 [13]
model as well as the logit scaling calculation and CTC
algorithm.

V. DEsIGN TRADE STUDIES

A. Module 3: Audio Streaming

To achieve a 2-second delay from when a user finishes
speaking a word to the word’s transcription appearing on the
web page, the amount of time taken for audio stream
transmission from the frontend to the server needs to be as low
as possible to reserve more time for model runtime. The
transmission delay is highly dependent on the network latency
between user device location and our deployment server.
According to our research, the round trip latency between
northern Virginia (our deployment server location) and
Pittsburgh, PA is 14ms, but the latency across states in the US
can be as long as 60ms. So ideally, the users within the US
will experience under 60ms (3% of the 2 second total time)
round trip network latency for each request. Each 2-second
audio data in webm format is 10KB whereas audio in wav
format is SOKB for the same length. Therefore, we choose to
send audios from the frontend to the server using webm
format, so given a 1MBps network (we choose to use
somewhat pessimistic network assumption), the small audio
data chunk will still be trivial compared to the bandwidth.

U.S. Network Latency
Figures are in ms. Thresholds are distance sensitive.

PARS A
Austin 21 Aus
Cambridge 26 48 Cam Current
Chicago 22| 380 22 Chi A?l:?;;lel
Cleveland 16 32 16 6 Cle
Dallas 15 6 41 25 31 Dal
Denver 33 24 41 19 24 18 Den
Detroit 20 42 21 10 5 37 26 Det
Houston 18 6 45 30 33 5 23 37 Hou
Indianapolis Ind
Kansas City 21 14 30 11 17 9 14 19 14 Kan
LosAngeles 42 29 65 42 49 27 24 50 31 39 LA
Madison Mad
Nashville 6 22 27 17 10 19 31 15 21 16 46 Nas
New Orleans (11 13 37 32 26 12 30 31 7 20 38 17 NO
New York 21 M 6 18 12 36 36 17 39 25 59 23 32 NY
Orlando 10 25 35 32 25 25 42 29 19 30 52 1513 30 Orl
Philadelphia 20 45 7 16 9 38 34 14 37 24 58 21 31 3 29 Pa
Phoenix 33 20 59 43 45 19 33 53 22 27 10 35 28 55 41 57 Phx
SanAntonio 22 2 48 33 35 8 25 44 5 16 27 23 11 42 23 44 18 SA
San Diego 42 26 69 45 51 26 27 55 28 34 3 44 35 62 47 61 725 SD
San Francisco 51 40 67 45 50 35 28 53 40 41 8 60 48 62 59 61 19 37 13 SF
St. Louis 16 22 25 6 12 17 20 18 22 5 44 12 27 21 25 19 35 24 43 49 St
Seattle 62 52 63 41 47 48 29 48 52 42 26 57 58 58 71 57 36 55 30 20 47 Sea
Washington 17 37 10 19 13 32 37 17 34 21 61 24 27 526 4 51 39 56 63 16 60 Was
B. Module 4: Backend API

We did not find specific data about the optimal conversion
rate from webm to wav and disk write rate into a wav file, so
we performed multiple runs of tests to use ffmpeg to convert
webm data to wav and write into a .wav file and measured the
time taken. The time was measured between the server
receiving a request embodying audio data and the server

finishing generating a .wav file. The average time was 100ms.

0:00/0:00

1645307922460
[[DeleteJ*server receive time": 1645307922 4859772, "server fnish time": 1645307922.689076)

0:00/0:00

1645307924460
[Delete ("server receive time": 1645307924 498448, "server finish time": 1645307924.588546)

0:00/0:00

1645307926460
[[Deeto J¢"scrver receive time": 1645307926 498367, "scrver fnish time: 1645307926.604602)

0:00/0:00

1645307928461
(Dt J("server receive time": 1645307928.493412, "server finish time": 1645307928.553331}

> 000 Yy

We designed our model to load at server start, so we do not
expect the model loading to take any portion of the 2-second
per audio processing time limit. We will use the python
multiprocessing package to start multiple processes to process
audio data coming from different clients concurrently. So our
app load tolerance can be scalable by adjusting the GPU core
number of our deployment server.

C. Module 5: Web Frontend

To make the audio recorder, for implementation efficiency,
we chose to use the standard JavaScript navigator class to
trigger user device microphone permission on the browser and
display the default audio recording box interface at the
webpage.

To make the text transcription displayer, we plan to use
HTML textareas, of which their innertext can be easily
modified. This will support our initial plan for text
propagation is to append text transcription to the already

18-500 Design Project Report: CO CodeSwitch 03/04/2022

displaying transcription to create the real-time text
propagation experience.
JavaScript that is runnable on most browsers today will

enable us to implement the sequence ID management logic.

D. Module 6: Language Model

Model architecture was the first choice to be made in the
language model. Since we are using an XLSR-53 head (which
is already a very large model of 300M parameters), we
considered there to be a significant amount of frame-level
contextual information already at our disposal. A choice
between using a Recurrent Neural Network (RNN) structure
and a simple fully-connected layer for the LID and ASR
modules had to be made. Fully connected layers would be
much smaller and introduce far fewer complications in terms
of inference since they only require a single time step to be
passed through in order to make predictions. This could have
been sufficient for the LID task since it is much simpler but
likely would not have been adequate for the ASR task. This is
because ASR generally relies on contextual information (that
is information more than just the current frame) to make an
accurate prediction of the word to be transcribed. Audio
frames are unlikely to correspond to an entire word, but more
likely a part of one. A memory based layer like BLSTMs
allows for contextual information to be considered both from
the future of the sequence as well as the past which allows for
not just better combinations of multiple frames to create a
word, but also to decide precisely what word that should be
given the previous and future words predicted. Since accuracy
must ultimately be the primary requirement, the choice of
using a BLSTM architecture seemed logical though we may
consider making comparisons between a single
fully-connected layer and BLSTM architecture just for LID
task if time permits.

Achieving a reasonable model size, throughput, and latency
all rely partially on the components used in the language
model. Currently, the largest component by far is the
XLSR-53 model which contains 300M parameters.
Attempting to distill or compress this model to fewer
parameters will likely result in greater throughput and latency
times as well as increase the feasibility of deploying the
overall architecture in a mobile application. Research suggests
that shrinking this model by a factor of 3.6x [1] is possible
with only a .1% degradation in WER. This would bring the
model below 300M parameters, significantly increasing space
efficiency and inference time. This is achieved through
quantization of the model. Though we do not consider
addition to the design a requirement for our minimum viable
product, it is an improvement we are strongly considering for
additional iterations of our system to drastically increase our
chances of meeting our system requirements.

Vocabulary size will affect our model’s size requirements,
inference time, and practical useability. We currently plan on a
combined vocabulary size of 5000 tokens between Mandarin

and English. We can roughly approximate the effects of this
size on our model’s usability by beginning with Heap’s law
which can be used in reverse to approximate the number of
tokens we could encounter before our vocabulary would need
to grow bigger. Given a vocabulary of size 5000 the law

5000 % _ 190000 i
= = tokens using standard

constants of the law. This is of course, a very rough estimate
of the number of tokens we would need to encounter before
we encountered one that is not within our vocabulary. The
probability that this would prove to be false is, of course, still
significant but it allows us to begin to characterize the effect
that our vocabulary size would have on the usability of our
system. Growing this vocabulary would only be a boon to the
system in terms of usefulness but we feel that this is a
reasonable size for the scale of this project. It should be noted
that these laws describe fundamental aspects of language
distribution and are not specific to any one language.

would predict

VI. SYSTEM IMPLEMENTATION

A. Module 1: LID Model

The LID model will convert context representations from
the XLSR-53 feature extractor/transformer head into logits for
three categories: English, Mandarin, and blank. Blank will
indicate that the model believes there is no output and is an
essential part of using the CTC algorithm for final
transcription. The architecture itself is simple with a
fully-connected layer used to summarize the outputs of the
head. This sequence of summary vectors is then fed into a
single layer BLSTM module whose hidden outputs (size 1024)
are then passed back through a fully connected layer which
performs the final classification into English, Mandarin, and
Blank logits. When trained on its own (without
back-propagating through to the head module or jointly
training with the ASR module), this model will use a
Cross-entropy loss criterion. To perform this loss calculation,
Montreal Forced Aligner [4] will be used to segment between
words in the audio samples for calculating the loss of a
forward pass. It will be implemented using the TensorFlow
library.

B. Module 2: ASR Model

The ASR module uses a very similar architecture to Module
1. It is deeper since we use two-layer BLSTM components. It
uses a similar fully-connected layer for summarizing the
output of the XLSR-53 contexts as well as a fully-connected
layer for classifying the current frame into one of the tokens of
the vocabulary. As a consequence, the size of the output
fully-connected layer is the size of the vocabulary (including a
blank token) as opposed to 3 for Module 1. It will also be
implemented using the TensorFlow library. Since Module 2
and Module 1 make logically different predictions, they can be
initially trained separately along with the XLSR-53 head.
Once training or implementation of the opposing module is

18-500 Design Project Report: CO CodeSwitch 03/04/2022

complete, they can be combined to proceed with joint training
along with the head component.

C. Module 3: Audio Streaming

The Django framework supports JavaScript logic that sends
http requests and waits to receive responses to the backend.
Each http request embodies a unique sequence ID before being
sent. The JavaScript also maintains an ordered array of these
sequence IDs so that in Module 5, this array can be referenced
as a ground truth of the order in which the transcriptions
should be displayed. The sequence ID of a request marks the
request-corresponding chunk’s order compared to other
chunks. The server receiving a request keeps the sequence ID
for this request and includes the same ID along with model
output in the response to the request. In this way, the text
displayer in Module 5 can refer to the sequence ID of
responses to manage the displaying order of response texts.

D. Module 4: Backend API

Under the Django framework, the .wav generator logic will
be contained in views.py. The request url routing will be set so
that http request bodies passed from the frontend can be
received by the views.py .wav generator function. When
receiving a http request, the .wav generator logic reads the
FILES field of the incoming request to get the webm audio
data and writes them into a .webm file. Then the API will use
ffmpeg toolkit to convert the .webm file into a .wav file.

To implement a model runner, a python script will be
triggered to run by a bash script at server boot time. The script
creates a singleton python instance of model runner class. The
model runner instance will maintain a queue as its attribute
that contains the list of unprocessed .wav file paths (along
with their corresponding sequence IDs. Using
multiprocessing.pool supported in python, the instance can run
the model on multiple .wav files concurrently in separate
processes. For each processed .wav file, the model output (the
text transcription) will be packed into a http response body
along with the .wav file’s sequence ID. The response will be
sent back to the frontend. The processed .wav files will be
then deleted from the server to optimize the server disk
memory efficiency.

E. Module 5: Web Frontend

The JavaScript logic that is responsible for Module 3 audio
chunking and making requests will also be responsible for
waiting to receive the responses from the server. When a
request’s response comes back, the JavaScript will read the
transcription text and sequence ID from the response body.
The sequence ID will be searched in the array of IDs
maintained in the script. If the text transcription of all IDs
before this ID have all been displayed, then the transcription
of this sequence ID will be also appended to the already
displayed text and thereby achieving the effect of real-time
text transcription. If the server response of some ID before the

current response’s sequence ID is still not received, we will
hold from the current sequence ID’s transcription and keep the
transcription of the ID until it is ready to be displayed.

F Module 6: Language Model

The language model as a whole encompasses both Modules
1 and 2 as well as other pre-built and custom components.
This module represents a single instance of the language
model which may be replicated as needed. Transcription
requests will be distributed to instances of the language model
by Module 4. Should multiple requests be distributed to a
single instance, an input buffer will store and process them in
a FIFO input buffer as well as return their corresponding
transcriptions using a FIFO output buffer. Upon system
startup, Module 4 (which will be the initial trigger for the
entire system startup since we will consider it to be the
primary server of our web application) will be responsible for
prompting language model instances to first pre-load models
from SSD and then transfer them into GPU memory. This will
include loading the extractor/transformer, the LID module, and
the ASR module.

The feature extractor/transformer head will be the
pre-trained multilingual model XLSR-53 from the fairseq [14]
library which contains 300M parameters. It has been trained
using a self-supervised learning technique to extract and
encode features from 53 different languages. For fine-tuned
training, it is capable of being switched from a SSL loss to
whatever loss criterion is used by the modules it is attached to
downstream. Once the LID and ASR modules are complete in
their implementation and preliminary training, they will be
logically grouped into a single object. This object will then be
further logically combined into a Wav2Vec2Processor object
which can then directly combine with the CTC tokenizer
component described later in this section.

To combine the output logits of Module 1 and 2, one of
whose outputs is size 3 while the other is the size of the
vocabulary, respectively, the logits must be combined (referred
to as scaling in the diagram). This is done by iterating over the
values returned for each token by Module 2 and adding to that
value each the value returned by Module 1 for the given
token’s language (e.g. the token “the" will have the logit value
for English added to it). Then a softmax is performed. When
training, these logits are passed into the CTC loss component.
Logits from Module 1 are also passed into a Categorical
Cross-entropy loss. These two losses are linearly interpolated
with a hyper-parameter A to create a single final loss which is
used for back-propagation.

The CTC module implementation known as
Wav2Vec2CTCTokenizer is also provided by the same fairseq
library from Facebook AI which provides the XLSR-53 head.
This provides a soft-alignment scheme which is capable of
translating a sequence of distributions over the vocabulary into
a likely sequence of output tokens without the need for hard
alignment between audio frames and ground-truth labels. It is

18-500 Design Project Report: CO CodeSwitch 03/04/2022

also capable of calculating a loss value which is related to the
probability of calculating the ground truth sequence given the
current estimates of token probabilities.

All of Module 6 as well as its submodules will run on a
GPU-enabled AWS EC2 instance. Any non-tensor operations
will be performed on the instance’s standard CPU. The model
itself will sit on GPU memory with input audio sequences and
output logits having to be transferred into and out of GPU
memory which we anticipate will be a source of additional
latency.

VIIL. TEST, VERIFICATION AND V ALIDATION

The testing and verification process for our system will be
divided into three stages: unit, integration, and system testing
and verification. Unit testing will focus on measuring whether
individual modules meet their assigned requirements as
described later in this section. These tests will need to be
completed before integration testing begins. As each model’s
testing is completed, modules will be integrated with each
other one by one with further testing being performed for
those requirements which may be affected by the integration
(e.g. an increase in latency once language modules 1, 2, and 6
are fully integrated. System-level testing will focus on
measurements for meeting high-level design requirements.
Unit tests will be derived from the procedures of system tests
unless otherwise specified. Each test is identified with an
identifier (e.g. TO).

A. System Tests

An UPL test (TO) will measure the time required for the
system to produce the first transcription response when it first
begins receiving audio. A software timer will be used to make
the measurement, starting when the system first begins
accepting audio and terminating when the first word of the
transcription has been displayed to the UI. Three clips, one
English, one Mandarin, and one mixed will be utilized.
Throughput (T1) will be similarly measured using a software
timer and three one-minute audio clips. The timer shall begin
at the moment we begin accepting audio and terminate once
the last transcription has been returned to the UI. One clip will
contain only English, one clip Mandarin, and one clip a
mixture. Five trials will be conducted for each clip with the
resulting throughput measurement calculated as the average of
all trials. The same procedure shall be used for the UPL test as
well.

Model accuracy (T2) will be tested using the WER metric
from the JIWER open-source library [7]. This metric shall be
calculated by passing audio samples which are already
withheld in the SEAME [8] testing directory through the
model. There are separate test sets biased towards English and
Mandarin. Though our final WER value shall be an average of
average WER returned from running against these two sets,
we’d expect both the average WER from both sets
individually to meet our design WER requirement. Samples
used in this test shall be considered “clean” audio (which we’ll

consider to be >20dB SNR). A separate test (T3) to measure
the robustness of our system to audio noise will be conducted
using a subset of both the English and Mandarin biased tests
sets. Three audio files from each shall be selected and
augmented with gaussian noise to produce files with 5dB,
10dB, 15dB SNR. The standard WER test will be repeated at
each SNR with the final noisy WER returned as the average
across trials.

System portability (T4) will be tested by running a single
trial of TO and T2 on the Chrome browser on Linux (Ubuntu
18.04), Windows 10, and MacOS (Monterey) systems. The
system shall pass this test if UPL and WER are no more than
5% different than the values found by running TO and T2.

All of these tests directly measure the metrics prescribed in
the design requirements. Meeting these tests will directly
meeting the design which are
themselves derived directly from our use-case requirements.

indicate requirements

B. Module 1 Unit Testing

Testing Module 1 will involve very similar tests to the
system tests since its requirements are either identical or
directly derived from them. Module 1 will need modified
versions of TO, T1, T2, and T3 performed. The only changes
necessary would be to update the T2 and T3 metrics to use
classification error rate as opposed to WER. The passing
requirement for TO will also be different since Module 1°s
throughput budget is different from that of the design-level
requirement.

C. Module 2 Unit Testing

Like Module 1, Module 2 will require tests TO, T1, T2, and
T3 to be performed. It will have the same passing criteria for
TO as Module 1 while all other aspects of the procedure and
metrics will be identical to those of the system level tests.

D. Module 3 Unit Testing

Module 3 Audio Streaming will be tested on two aspects:
latency and sequence IDs. The latency between a user
finishing speaking a 2-second interval and the corresponding
http request is received on the server will be tested and
compared with our network network approximation (60ms).
100 requests will be made to verify if all of the requests are
received on the server and correctly processed into .wav files.
We will also verify that unique sequence IDs are indeed
generated for each request. The procedure to measure one-way
latency will be as follows: keep recording audio for 1 minute,
log the physical timestamp right before a request is sent out on
the Javascript side and the physical timestamp when the server
receives that request; the difference between the 2 timestamps
is the one-way latency if assuming the server and the client
share global physical time.

E. Module 4 Unit Testing

Module 4 Backend APIs will be tested on audio quality of
output .wav files from the wav generator API, the latency to

18-500 Design Project Report: CO CodeSwitch 03/04/2022

convert webm data and generate .wav files and the model
preloading. We will compare the audio quality of the original
audio recording and .wav file generated on the server.

The testing procedure for .wav audio quality is as follows:

keep recording audio for 1 minute, which should generate ~30
.wav files each with 2-second audio on the server. Use matlab
to invert the audios in the .wav files and add each inverted
audio to the original audio. The total difference should be <
1% of the original audio volume.
The testing procedure for .wav conversion and generation will
be to log the physical timestamp right after receiving a request
and the timestamp right after finishing .wav file generation
and get their difference.

For the model loading test, we will print a message for
every model loading action. We will restart the server to see if
the model loading is triggered. Then we will send a 1-minute
audio from our web app to the server to verify if the server
does not have to load the model again and is ready to directly
use the preloaded model for processing.

F Module 5 Unit Testing

Module 5 Web Frontend will be tested on the
“real-timeness” and order correctness of text transcription
display. We will measure the time from speaking a word into
our recorder to the word transcript appearing on frontend by
continuously recording an audio for 1 minute using our app;
server returns a log for every incoming request; we logs the
http responses to the browser console and measure the average
number of http responses logged within 1 minute. We will
check the correctness of text outputs by comparing the
displayed transcription to our speech content and measure
word error rate of the transcription. The word error rate also
accounts for the ordering difference of words, so incorrect
transcription word ordering will be detected with a high word
error rate.

G. Module 6 Unit Testing

Unit tests for Module 6 can be thought of as integration tests
for Modules 1 and 2 since they are both encompassed within
this module. Module 6 will also require tests TO, T1, T2, and
T3 to be performed on it with no variation from the system
tests except for the passing criterion for TO since its latency
budget is not the same as the entire system. Otherwise, we
expect the results of these tests to be identical to those of the
system-level tests. If they are not, we can be sure there is some
confounding factor elsewhere in the system leading to worse
performance.

H System Validation

Our use-case involves direct user interaction, thus our
validation process will rely on random users to interact with
our system and provide feedback. We’ll aim to have a group of
at least 5 participants interact with the system through the UL
We’ll ask them to try giving the system different phrases and

evaluate the performance they observe. We will ask that the
group in all try at least 5 English phrases, 5 Mandarin phrases,
and 5 CS phrases. They will then provide short written or
verbal feedback as well as a rating between 1 and 5 in each of
the following categories (speed, accuracy, ease of use, and
usefulness). We could consider average scores of 4 and above
to be a success in each of these categories.

VIIL
A. Schedule

The project development schedule is shown in Fig. 2 on
page 13. Work on the web application and language model
will occur concurrently. A total of thirty days is allocated for
system implementation with another two weeks allocated for
integration. Model testing is included with development time
while the week allocated for system testing is partially
included with integration.

PRrOJECT MANAGEMENT

B. Team Member Responsibilities

Nick and Marco are responsible for the implementation and
training of the deep ASR model. Shared tasks will include
fine-tuning of the off-the-shelf transformer/decoder, data
augmentation for generalizability, and final system end-to-end
training. Nick will focus on training and designing the LID
model while Marco will focus on training and designing the
English/Mandarin ASR module. They will work together to
monitor and adjust the joint training of the two modules as
well develop the peripheral components surrounding the
model such as the logit combination, joint training loss, and
input and output buffers.

Tom is responsible for the implementation of all front-end
and back-end web app modules. This will include designing a
front-end UI for accepting raw speech audio, chunking this
audio as needed and developing an API backend which will
accept audio chunks and requests for transcription. Finished
transcriptions will be returned to the frontend where a live text
display will present transcriptions message by message as they
arrive from the cloud. He will also be responsible for
providing scalability to the web application to allow for the
servicing of multiple independent users concurrently.

C. Bill of Materials and Budget

All of our system’s components are purely digital. The
budget is used exclusively for cloud hosting costs of server
instances as well as compute instances needed for model
inference and training as well as data storage. A detailed
breakdown may be found in the Bill of Materials and Budget
on page 14, Table .

D. Risk Mitigation Plans

There are several areas of the project which pose potential
risks to the successful implementation of the system. Though
we have group members who are experienced with
implementing and training deep models—even in the

18-500 Design Project Report: CO CodeSwitch 03/04/2022

sequence-to-sequence context-model training is inherently
uncertain in several aspects and especially with a limited time
frame. Data is always a worry in speech recognition tasks
since we require a large quantity of high-quality recordings
and corresponding labels. Though we are feeling somewhat
more confident now that we have gained access to the large
SEAME Mandarin-English Code-Switching in South-East
Asia dataset, there is still the potential that this dataset met not
be large enough to train the model robustly on transcribing
English and Mandarin words since it is a more difficult
problem than LID and the dataset is somewhat biased towards
Mandarin recordings and is made up of Singaporean and
Malaysian speakers. If validation indicates that it is necessary,
we have additional datasets with which we could augment
SEAME such as the LibriSpeech ASR Corpus (Eng.) [9] or
Aishell (Mand.) [10].

Model accuracy issues could also arise as a function of time
constraints or model-size. Since full training epochs are
anticipated to take a substantial amount of time (a dozen hours
perhaps), we may find that the model does not appear to be
converging in performance fast enough. To tackle this we
could launch a second training instance with a smaller
vocabulary size, simplifying the problem and leading to a
short time till model convergence. Whichever model results in
better WER will be selected. Should training proceed more
quickly with limited performance a second but larger instance
could be launched to compete against the former with the best
being selected for deployment.

Finally, achieving our throughput targets remains an
ambitious and central goal in order for our system to be viable
for real deployment in our messaging use-case. Major sources
of latency will be the network jump to and from the web
application backend (which are difficult to predict day to day)
as well as inference time through the model. Shrinking the
latter is our best option if we find that the end-to-end UPL
does not meet our target during integration. We can achieve
this by shrinking or compressing both the model as well as the
feature extractor/encoder head. We will have to carefully
balance this against accuracy. Another option would be to try a
larger EC2 compute instance (one with more virtual CPUs to
allow more of the model to run in parallel at a time) or to fully
parallelize the LID and ASR models by running them on
separate machines altogether.

IX. RELATED WORK

Solving ASR in the context of code-switching for practical
use is an ongoing area of research.

A research paper published in October, 2021 is closely
related to our objective. The paper is titled Mandarin-English
Code-switching Speech Recognition with Self-supervised
Speech Representation Models. Similarly to our objective, the
paper aims to define a model architecture that can determine
the language mode (English/Chinese/blank) for each frame of

input audios. The paper’s architecture basically contains one
feature extraction layer, two parallel models that both take in
extracted audio features and output probability distributions
that will be combined to compute a loss for iterative training
using logit scaling. The feature extraction layer used by the
paper is wav2vec 2.0 that takes in .wav files and extracts audio
features into vector form. The vectorized features are fed into
a CTC model and a LID model that run in parallel. The CTC
model outputs a probability distribution of word tokens for the
transcription of the input audio; the LID model outputs a
probability distribution of language for each frame of the input
audio. The pair of probability distributions are joined to
compute a loss, which completes a training pipeline. The
paper then tests different model choices for language detection
and speech-to-text transcription hoping to find the optimal
model combination that gives the lowest translation error rate.
The result of the paper shows that using the multilingual
XLSR model to learn features from mandarin-English-mixed
audios and then applying the joint CTC/LID architectures
gives the lowest translation error rate of 18%.

We also see a similar objective in the dictation feature in
i0S devices. The dictation feature supports users to speak into
their device and their voices will be transcribed into texts in a
real time manner. Below is the screenshot of the dictation
feature.

@

This is a quick

* OO ¢ £ 7 €

@

The transcription is accurate when the input language is
single language mode; however, a test with speaking a mix of
Mandarin and English into the dictation app shows low
transcription accuracy, which inspires our project.

X. SUMMARY

Our design uses a joint LID and ASR model training
scheme to separate the burden of performing the LID and

18-500 Design Project Report: CO CodeSwitch 03/04/2022

speech transcription tasks onto different models. The theory is
that this will allow for better handling of the CS use case in
instant messaging. The system will be deployed in the cloud to
allow for a powerful compute backend (GPU) to perform
model inference attached to a frontend UI which will be
responsible for accepting raw audio input and returning live
transcriptions. The use of a pre-trained multilingual feature
extractor and decoder will help provide useful language
contexts before end-to-end fine-tuned training even begins.

We anticipate most of our implementation challenges to lie
in the training and fine-tuning of the model given that this will
require significant software development effort to orchestrate
as well as many hours of continuous training. The anticipated
performance of the system is difficult to predict until
significant training has been performed which presents a risk
to achieving a useful final product. This must be completed
successfully in order to meet our accuracy requirements.
Given that achieving accuracy relies on using large models
and special dedicated compute resources, meeting our latency
requirement will likely be an equally challenging task that will
require carefully optimizing every step of the system’s
pipeline.

GLOSSARY OF ACRONYMS

ASR — Automatic Speech Recognition

BLSTM - Bidirectional long short-term memory
CS - Code-switching

CTC - Connectionist temporal classification

FC - Fully-connected

LID - Language Identification

SNR - Signal to noise ratio

SSL - Self-supervised Learning

UPL - User perceived latency

WER - Word Error Rate

REFERENCES

[1] Peng, Zilun, et al. “Shrinking Bigfoot: Reducing WAV2VEC 2.0
Footprint.” ArXiv.org, 1 Apr. 2021, https://arxiv.org/abs/2103.15760.

[2] Aalto University. "Smartphone typing speeds catching up with
keyboards." ScienceDaily. ScienceDaily, 2 October 2019.
<www.sciencedaily.com/releases/2019/10/191002075925 . htm>.

[3] Tseng, Liang-Hsuan, et al. “Mandarin-English Code-Switching Speech
Recognition with Self-Supervised Speech Representation Models.”
ArXiv.org, 7 Oct. 2021, https://arxiv.org/abs/2110.03504.

[4] “Montreal Forced Aligner Documentationy.” Montreal Forced Aligner
Documentation - Montreal Forced Aligner 2.0.0 Documentation,
https://montreal-forced-aligner.readthedocs.io/en/latest/.

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14

=

10

“Hey Siri: An on-Device DNN-Powered Voice Trigger for Apple's
Personal Assistant.” Apple Machine Learning Research,
https://machinelearning.apple.com/research/hey-siri.

“Language Identification from Very Short Strings.” Apple Machine
Learning Research,
https://machinelearning.apple.com/research/language-identification-from
-very-short-strings.

“Jiwer.” PyP]I, https://pypi.org/project/jiwer/.

Nanyang Technological University, and Universiti Sains Malaysia.
Mandarin-English Code-Switching in South-East Asia LDC2015S04.
Web Download. Philadelphia: Linguistic Data Consortium, 2015.

Panayotov, Vassil, et al. LIBRISPEECH: An ASR Corpus Based on
Public Domain Audio Books.
https://www.danielpovey.com/files/2015 icassp_librispeech.pdf.

Fu, Yihui, et al. “AISHELL-4: An Open Source Dataset for Speech
Enhancement, Separation, Recognition and Speaker Diarization in
Conference Scenario.” ArXiv.org, 10 Aug. 2021,
https://arxiv.org/abs/2104.03603.

Velardo, Valerio, Deploying the Speech Recognition System with
uWSGI, youtube.com, 13 Apr, 2020,
https://www.youtube.com/watch?v=7vWuoci8nUk

musikalkemist,
Deep-Learning-Audio-Application-From-Design-to-Deployment,
github.com, 13 Apr 2020,
https://github.com/musikalkemist/Deep-Learning-Audio-Application-Fr
om-Design-to-Deployment/tree/master/6-%20Deploying%20the%20Spe
ech%20Recognition%20System%20with%20uW SGl/code

Conneau, Alexis, et al. “Unsupervised Cross-Lingual Representation
Learning for Speech Recognition.” 4rXiv.org, 15 Dec. 2020,
https://arxiv.org/abs/2006.13979.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,
Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A Fast,
Extensible Toolkit for Sequence Modeling. In Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages 48-53, Minneapolis,
Minnesota. Association for Computational Linguistics.

https://github.com/musikalkemist/Deep-Learning-Audio-Application-From-Design-to-Deployment/commits?author=musikalkemist
https://github.com/musikalkemist/Deep-Learning-Audio-Application-From-Design-to-Deployment/tree/master/6-%20Deploying%20the%20Speech%20Recognition%20System%20with%20uWSGI/code
https://github.com/musikalkemist/Deep-Learning-Audio-Application-From-Design-to-Deployment/tree/master/6-%20Deploying%20the%20Speech%20Recognition%20System%20with%20uWSGI/code
https://github.com/musikalkemist/Deep-Learning-Audio-Application-From-Design-to-Deployment/tree/master/6-%20Deploying%20the%20Speech%20Recognition%20System%20with%20uWSGI/code
https://aclanthology.org/N19-4009
https://aclanthology.org/N19-4009

: CO CodeSwitch 03/04/2022

18-500 Design Project Report

_HvA 219 IEo;g._um_._s._.pxo:._mt;mSeso

UlBpUBN_____)
sibu—— >

S19GE] 9SIM-BWEI]

palosLu0g-Alin4

(Kem-yoea
Wip uapply $Z01 Jakel-1) IS8

Buyeos ufioT «—!

ysy|buz

LIBpUB}Y

pajsuuog-Ajin4

(kem-yore
201 4okelg) WIS

'
'

'

'

i

'

0 (02eW) usy wip uappiy
0 N

" Zanpoly

'

'

'

XoWoo

pojasuucy-Ajin4

paidon

Jisus-8ul-jo

JInc-wojsny

.

(ES-HSTX) J0P02B/BUNOJSURIL

(02/epM9IN) 2Inpop [epol 2benbueT 9 8npol

—

_ (new ojpne meJ) Joyng induy

SRS

v

1dV puexoeg p ajnpoy

\elepOipNE
(woy) sndoaugam

i
i

o € 7 3

i unua 1xal| [yunya 1xal| | yunya xal
i

|

1
+——uondyiosues,
safedsiq xa | hal L

1

d3asn

fispioaa
bm1o3=;=oo

| (woy) puajuoig ddy g ainpoly 3

Japiooay oipny (¢-0IPNY .smmlt

[P [———

;
Al

LYY || Z3unuo | | EXUNYD | ..t
opnesz || ojpnesz | | opne sg !

'

'

(woy) m_.__s_wo.:m"
olpny £ c__.___oe_"

]
.

Saemssssssssmssm==ar

va01

System Architecture

Fig. 1.

18-500 Design Project Report: CO CodeSwitch 03/04/2022

12

13

: CO CodeSwitch 03/04/2022

18-500 Design Project Report

N
W

mm
!

vy ®

0DURW:IUO L DIIN

&~ rY

02EWIWO | HPIN
02EWHPIN

SIAI LM LIS S|4/ LM LIS S/ 4/ UM LIS S 4/ LM LW S S 4 LM LW S S 4 LMLWS S 4 LMLNS S 4 LM LNSS 4 LMLNS S 4 LMLWSS 4 LMWLINS S 4 UMWLINS S 4L

2z 1dy 2 2zady 21 2z dy 01 Cgidy g

02BN

CC BN LT

g BN 0C

CCIeN €T

¢ BN 9

zle ¢
E

Zcqed Le

22924 0¢

CC9RAIET

729249

Y

uoneIuasAd [EUly
JIOM UOIBIUBSI [BUlY

owaq wiodpiy

uonesbaiu ddy gam/w1
uoneibayug

Bunsa| walsAs
bBunses)
bBulures] an
Bulures] 315

12pow abenbue

uonepdwo) 1ase1EQ

UONE|SUBI L 3IOA Al
puadeg
puaiuoid In
ddy gamz
uoneuawdw|g

awnoq ubisag

Z In3UYLY W1

T 2N3ANYIY W1

ainpPalydLy pajie1aq

uoneuasald ubisag

5OM UonEIWAS3Id UBIsag
ubisagg

Yoleasay

Project schedule with milestones and team responsibilities

Fig. 2.

18-500 Design Project Report: CO CodeSwitch 03/04/2022

Table 1. Bill of Materials

Table I. Bill of Materials

Manufac
Description Model # | turer |Quantity| Cost @ | Total
AWS GPU Instance
for LID Module,
CTC Module and app

deployment, each
instance estimated 7 | g4dn.xlar

full days of runtime ge AWS 3 $.526/hr | $265.10
AWS EBS 1.5 $.1/GB-
Months SSD Storage gp2 AWS 1 Month | $19.50

Grand Total $284.60

