Problem Illustration

English meaning: Want steak or salmon for dinner?

iPhone voice message app voice to text output:

Correct output: 今晚想吃steak还是salmon

English meaning: I want to eat this Sam for dinner

Use Case

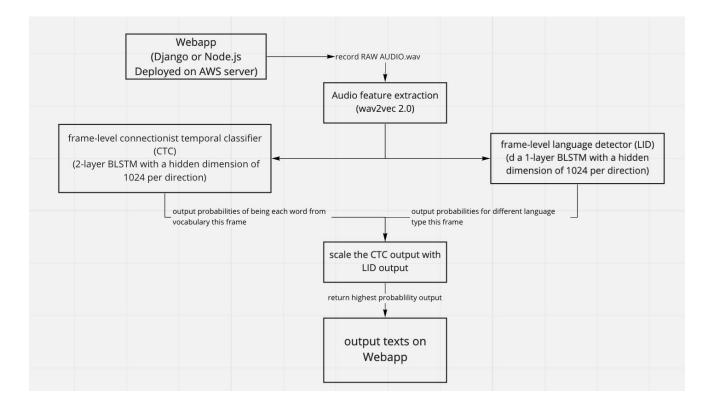
- Problem:
 - Most speech recognition apps today only accurate in recognizing single language
- Stakeholders:
 - Mandarin-English bilinguals, Chinese international students
- Use Scenario:
 - Voice-texting with a mix of Chinese and English
- Goal:
 - Design an app that provides real-time voice-to-text recognition for speeches mixed with English and Mandarin

Use-case Requirements

- Reasonable output
 - Audio >> Mandarin-English-mixed text transcript
 - Word error rate (WER) < 10%
 - Popular speech recognition apps (Google, Apple ...) WER 5%~10%
- Reasonable vocab recognition
 - Recognize daily words in English and Mandarin
 - Recognize 60K most frequent English words and Mandarin words
 - Vocab size used by many research papers
- Real-time text output
 - matches human normal speaking rate (100 words per second)
 - End to end latency within 1 second

Use-case Requirements

- Noise tolerance
 - Recognition remains accurate when input audio is noisy
 - Signal to noise ratio (SNR) 16-24dB (decibels) is usually considered poor
 - Remain < 10% word error rate when SNR in the audio is higher than 25dB
- Cross-device support
 - App should be **usable on common laptop OS (MacOS, Windows, Linux)**
 - Shall be usable on the newest Chrome browser (version released after 1/12) on a laptop
- Reasonable speech length
 - Support recognition on long continuous speech (**up to 1 minute audio input**)


Technical Challenges

- Shortage of public code-switching codebase
 - Mitigation:
 - experiment with a model combination described in an academic paper
 - try combining existing language detection models and speech recognition models
- Lack of available code-switching datasets
 - Existing code-switching papers used datasets that cost beyond our budget
 - Mitigation: found a free Mandarin-English **100+ hours audio+transcript dataset**

Technical Challenges

- Uncertainty in model training time and cloud computing resources
 - Existing papers do not show the duration of their training phase
 - Full dataset used in relevant academic papers are hundreds of hours
 - Mitigation: always test models on small datasets first before running it on large datasets
- Restraint on deployment server computation power
 - Most speech recognition models today rely on GPUs, hard to get many
 - Mitigation:
 - set the audio **recording time limit to 1 minute** (<10MB audio data)
 - may need faculty help to request GPU resources

Solution Approach

Tools

- Django framework for web app
 - Backend support Python
 - Existing package for sending and reading audio stream to wav file
- Tensorflow
 - Neural network initialization and training
- Transformer library
 - Existing speech recognition models
 - Existing feature extraction code such as wav2vec 2.0
- Google Colab
 - Model training and tuning
- AWS server
 - App deployment

Testing & Verification

- Latency test
 - Measure the average time taken for transcription to begin once the first audio is recorded
 - Should be < 2000ms
 - Based on result tune the time interval we pack an audio stream to send to server
- Throughput test
 - Measure the average number of transcribed words per second when speaking at 100 words per second
 - Should be > 1 word per second
- Error rate test
 - Measure the **average word error rates** for audio test dataset
 - Should be < 10%

Testing & Verification

- Noise test
 - Using matlab to compute and group test audio datasets by SNR (25dB, 30dB, 40dB, 50dB)
 - measure **average translation error rate** on each group
 - Should be < 10%
- Vocab test
 - measure the average translation error rate when audio includes random vocabs in English and Chinese
 - Should be < 10%
- Browser test
 - measure average translation error rate of our app when running on Chrome browser on Linux, MacOS, Windows devices

Schedule

Research	16.8 days? 1	L/31/22 8:00 AM			
Design	14.4 days? 2	2/13/22 8:00 AM			
Design Presentation Work		2/13/22 8:00 AM			
Design Presentation		2/21/22 8:00 AM		₹ 2/21	
Detailed Architecture		2/19/22 8:00 AM		Marco;Nick	
LM Architecture 1		2/16/22 8:00 AM			
LM Architecture 2		2/16/22 8:00 AM			
Design Document		3/2/22 8:00 AM		₩ 3/2	
Implementation	31.2 days? 2	2/22/22 8:00 AM			
⊡Web App		2/22/22 8:00 AM	T		
UI Frontend		2/22/22 8:00 AM		Tom	
Backend		3/4/22 8:00 AM			Tom
Live Voice Translation	4 days? 3	3/22/22 8:00 AM			Tom
Dataset Compilation	4 days? 2	2/22/22 8:00 AM		Nick;Marco	
□Language Model	27.2 days? 2	2/27/22 8:00 AM			
CTC Training	23.2 days? 2	2/27/22 8:00 AM	•		- Nick;Marco
LID Training	23.2 days? 2	2/27/22 8:00 AM			Nick;Marco
Testing	3.7 days? 3	3/28/22 11:00 AM			Nick;Marco
System Testing	5.6 days? 4	1/2/22 8:00 AM			Nick;Tom;Marco
Integration	15.8 days? 4	4/1/22 12:00 PM			
LM/Web App Integration	15.8 days?4	4/1/22 12:00 PM			Nick;Tom;Marco
Midpoint Demo	0.8 days 4	1/4/22 8:00 AM			♦ 4/4
Final Presentation Work	4.8 days 4	4/16/22 8:00 AM			Tom;Nick;Marco
Final Presentation	0 days74	1/25/22 8:00 AM			♦ 4/25

Task Division

Webapp Development (Honghao)

- 1. Web app frontend UI development
 - a. Audio recording
 - b. Text transcription display
- 2. Server deployment
 - a. Setup app frontend interface and server communication
 - b. Added trained model into backend logic

Language Detection and Speech Recognition Models (Marco, Nicholas)

- 1. Dataset preprocessing for training and validation
- 2. Training
 - a. Literature review for various models and parameter tuning techniques
 - b. Developing training pipelines for models
- 3. Validation
 - a. Developing evaluation scripts for multiple models
 - b. Compare model performance (average processing speed per word and accuracy)