
18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 1 

 

Abstract—A smart device that will automatically keep track of 

your kitchen's inventory for you. This project consists of one or 

more embedded devices that propagate information to a cloud 

server. The user can interact with a web application to view their 

current kitchen inventory, and/or create a shopping list based on 

recipes that the user has added.  

 
Index Terms— Classification, Cloud Computing, Computer 

Vision, Localization, OpenCV,  SIFT, Smart Home, SSIM, Web-

Application 

 

I. INTRODUCTION 

N the hustle and bustle of the modern world, oftentimes it 

can be challenging to keep track of the exact contents of your 

kitchen when going grocery shopping once-weekly. This can 

lead to purchasing items you already have, or forgetting to 

purchase an item that you may need. The former leading to 

wasted food (if the item is perishable), while the latter leading 

to wasted time from returning to the store to buy any 

accidentally omitted items, or the creation of an imperfect meal, 

all relatively common occurrences for anyone who does any 

amount of home cooking. As such, we aim to provide a solution 

in the form of an embedded smart device. 

At its core, our project is an inventory tracking system. It 

maintains an automatically generated inventory of items in the 

user’s kitchen using a Raspberry Pi (RPi) and an embedded 

camera, and cloud-side computer vision (CV). This hardware 

sits on the ceiling of a storage area like a fridge or a cabinet and 

captures images of the interior to send to a cloud computing 

server for processing. 

Existing kitchen inventory solutions generally belong to two 

categories: focused exclusively on restaurant inventory 

management, and app-based tracking systems. Restaurant 

systems are not only costly and complicated, averaging $99 to 

$129 per month for point-of-sale integrated systems for small-

business use cases, but also extremely excessive for the average 

consumer in a home kitchen [5]. App-based tracking systems 

on mobile devices, like Out of Milk and NoWaste, have the 

most similar use-case, but most (if not all) rely on the user 

manually inputting items, and quantities into the app with little 

to no automation. (If automated solutions exist, they have failed 

at informing and/or capturing the market.) As such, our system 

reduces the user burden by using computer vision to identify 

items and automatically cataloging them whenever possible. 

II. USE-CASE REQUIREMENTS 

Ease of use: Given our market niche, from a usability 

perspective our project should be as unobtrusive as possible. All 

in all the system should take a minimal amount of time to set 

up, minimal input from the user to operate, and minimal 

disruption to the user's normal routine when storing/retrieving 

groceries. To quantify these requirements, the total setup time, 

including account creation on the web-app and registering the 

sensor, should take less than five minutes to complete. This 

time amount is relatively arbitrary, but seems reasonable for 

what a user would expect of a smart device that only needs a 

one-time setup process. The system should update 

automatically in the background, and only notify the user in a 

limited handful of scenarios, adhering to the principle of 

minimal user disruption.  

Multiple Users: The database should be able to handle 

multiple registered users, and multiple devices per user. Having 

this use-case requirement makes future scaling of our system 

much easier to implement. 

Response time: Research suggests that most web-app users 

expect responses within 3 seconds [1]. Therefore, it would be 

good if the total response time of the system, from door close 

to web-app update, was less than three seconds. (See Section IV 

for further breakdown of expected response time values). 

Item Handling: Our project should be able to handle both 

supported and unsupported grocery items. While we try to 

support a number of common grocery items, different users 

with diverse culinary preferences likely have wildly varying 

purchasing habits with regards to groceries. We’d like to ensure 

that our system is flexible enough to handle such cases without 

breaking or returning an error, while also ensuring manual item 

entry works as expected. The user is notified of any  

 

TABLE I.  POSSIBLE CV OUTCOMES 

Itemsa 
CV Possible Outcomes 

ID’d as A ID’d as B Fails to ID 

Supported 

item A 

True positive  
→ good ID 

85% 

False positive  
→ bad ID 

5% 

False negative  
→ failed ID 

10% 

Unsupported 

item 

False positive  

→ bad ID 

5% 

True negative  

→ no ID (good) 

95% 

a. Let X and Y be arbitrary supported items, A ≠ B 

Fig. 1. Table breakdown of identification cases. Notice that each row should 

sum to 100%. 
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Fig. 2. System block diagram. 

unsupported items, also pursuant to the earlier goal of minimal 

user disruption. 

Erroneous Identification: Additionally, we would like to 

minimize the number of identification errors, which includes 

false positives and false negatives (see Fig. 1). It is especially 

important that we minimize false positives (incorrectly 

identifying one object as another), which would cause the 

greatest disruption in kitchen inventory assumptions. False 

positives are more likely to go unnoticed until the user reaches 

into their cabinet and notices the distinct absence of a key 

ingredient, and could lead users to either not purchase an item 

that they mistakenly believe they have, or double-stock an item 

that they do have but was misidentified. That is to say, we 

would much rather have a failed ID than a bad ID. 

User Recipes: Users can add their own recipes to their 

personal cookbook, and the system automatically checks 

whether the user has all of the necessary ingredients for a given 

recipe. If there are any ingredients missing, the system 

automatically generates a grocery list, which the user can 

access. Relatedly, the system supports sending the user a 

grocery list with the said ingredients via both text and email. 

Users can also share their recipes and view recipes shared by 

others on a dedicated page. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The project consists of one (or optionally more) hardware 

unit(s) that captures photos, a cloud server that handles the 

computer vision, and a web-app that presents the information to 

the user in a legible format (Fig. 2). 

On a high level, the hardware component captures an image 

of the storage area when the user closes the door, represented 

by a ‘button press’ from a cabinet door closing, and sends it to 

a cloud server running our computer vision algorithm. The  

algorithm tries to identify the item added/removed by the user. 

If the item can be successfully identified, the server updates the 

user’s inventory in the database. Otherwise, it notifies the user 

and asks them to label the item manually. The user can view 

their inventory or label unidentified items through a web 

application. 

Our system has a few minor changes from those initially 

specified in the design report. Firstly, the camera was changed 

to be placed directly above the storage location as opposed to at 

a 45 degree angle, which allowed better captures of any item 

labeling. Additionally, we specified that the grocery lists can be 

sent via text and email (we weren’t certain we would get to it, 

at time of writing the design doc). 

A. Hardware 

The hardware unit consists of an RPi attached to a wide-angle 

camera module, and a pushbutton switch. The camera is placed 

directly above the items in the storage location, at such a height 

as to ensure full view of the items. For the purpose of  our demo, 

the hardware unit was attached by a flap to the top of a 

cardboard box (our storage unit). 

 

 

 

Fig. 3. Labeled hardware unit. 
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B. Hardware to Cloud 

The hardware component communicates with the cloud 

deployment with a POST request containing the device’s ID, a 

serialized image, the serial number of the RPi, an integer 

timestamp, and a secret validation string. Each of the hardware 

units are given a secret validation string, so that a malicious 

actor can’t impersonate another device and post fake JSON with 

just the serial number. Similarly, the timestamp exists so that 

the server can ignore repeated requests, if a malicious actor tries 

to repeatedly send a message (replay attack). For security 

reasons the POST requests are encrypted, and the server verifies 

the correctness of the string via its internal mapping using a 

JSON schema before processing the rest of the request. 

C. Computer Vision Algorithm 

From here, our cloud deployment of our CV algorithm 

identifies the item from the image sent. For the computer vision 

component, we use SIFT[3], as it was found to be the most 

effective of the algorithms which we tested. In addition to SIFT, 

we also use some secondary checks in order to increase the 

accuracy in cases known to cause confusion. (See Section V for 

a more comprehensive comparison of the potential advantages 

and disadvantages of the available algorithms). 

D. Cloud Deployment 

Both our CV algorithm and our web application (web-app) 

run on the same EC2 instance. Doing so cuts down on our cost 

of running two servers, while reducing our complexity in 

implementation. Furthermore, because SIFT is a comparatively 

lightweight algorithm that doesn’t require much computing 

power, we felt it didn’t warrant using dedicated GPU resources 

or running on multiple instances. 

E. Models used in the Database 

Within the scope of this project, we have several models used 

to store data. Of note beside the standard User, Device, and 

Recipe classes is the distinction between Category and 

ItemEntry. Categories describe general types of items. For 

example, Milk is an item Category. If a user adds a bottle of 

milk to a cabinet, then an ItemEntry instance with the Category 

of Milk is made for that specific bottle. This distinction is 

needed so that the CV code can classify objects correctly. This 

also allows users to create recipes without being beholden to the 

list of ingredients currently in their kitchens. 

F. Web Application (Web-app) 

As mentioned above, the web-app and the CV code run on 

the same EC2 instance. Users can log in, view their registered 

devices and inventories of those devices, add and modify 

recipes that they have stored, based on the ingredients the user 

is missing. The shopping lists can be sent to the user via either 

email or text. All of the supported items are stored in a database 

with quantity currently in the fridge and descriptors of the 

iconic images. 

The system also notifies the user if/when an unsupported 

item is placed in the cabinet, by displaying a list of UNKNOWN 

ITEM’s for each storage location. The user can then manually 

 

Fig. 4. User action flow chart. 

identify the item, tagging it as either an existing category of 

item (the 10 supported item classes by default), or register it as 

a new item category class. Should the user register the item as 

a new class, it can be detected in the same manner as the other 

registered items, but only for that user. For example, if user A 

registers say, duct tape, any duct tape stored by user B will not 

be identified as duct tape unless they also go through the 

process of registering it (see Section V for more information on 

why we do this). 

IV. DESIGN REQUIREMENTS 

For our design requirements, most of the requirements we 

discussed in Section II can be carried forward into the final 

design requirements, provided we place a greater burden on the 

user than we would ideally want to. While this is unfortunate, 

we saw no other way if we wanted to keep this project within a 

reasonable scope. 

The first requirement we place on the user is the requirement 

to only retrieve/store one item at a time. While this is a hefty 

requirement, but it is needed to satisfy a different use case 

requirement, the ability to handle unsupported items. This 

enables us to perform SSIM differentiation (a type of pixel 

differentiation) to localize any object that we do not support. 

This also helps us with localization in general, which makes it 

easier to perform accurate classification. 

The second requirement is that the user arranges objects 

within the storage location such that the label is visible to the 

camera. Attempting to classify objects without the labeling 

being visible is simply not possible, so we must place this 

burden on the user. While this could be remedied by installing 

additional cameras, our use-case requirement of minimal user 

effort during installation and the ease of implementation 

ultimately led to this decision. 
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While researching, we found an example of using YOLO for 

object localization/classification with messy backgrounds for 

grocery items that managed to achieve ~85% mean average 

precision [2]. Given that we really don’t have to handle 

localization at all, and we do classification with an uncluttered 

background, we feel that an 85% accuracy rating is achievable 

for our use case. We also feel that this is a reasonable 

requirement, given our initial success with testing the various 

algorithms (see Section V). 

  For the time delay, while doing the tests to compare the 

various algorithms, we found that the keypoint/feature 

extraction with SIFT on a basic laptop took about .55 seconds 

per image on average, with worst case images taking about 4.5 

seconds. The manually taken Apple Sauce and Crushed Tomato 

Sauce images taking about 4.5 seconds each. The feature 

matching took an average of .033 seconds, with a worst case of 

about 0.25 seconds. Again, most of the worst cases were 

comparisons with the manually taken Apple Sauce and Crushed 

Tomato Sauce images. At this time, we are uncertain of exactly 

why there is such a variance between the average and worst case 

times. Therefore, we decided to base our update time 

requirement on the worst case scenarios of the CV component; 

We allow for no more than 10 seconds from item placement 

to website update. 

 
Fig. 5. The item with the longest feature matching. The can of crushed 

tomatoes took about 4.5 seconds to extract features. 

 
Fig. 6. Breakdown of approximate time spent for any given item. 

V. DESIGN TRADE STUDIES 

There were several major decisions we made while iterating 

on our design. 

A. SQLite vs. Alternatives 

SQLite is generally considered to be less effective when 

handling large numbers of transactions concurrently. For larger 

industrial deployments, MySQL could be a worthy investment 

for security and scalability, especially when considering that 

our main user-facing interactions happen on a web-app. 

However, it’s clear that, at least for now, the costs outweigh the 

benefits. Aside from not having the capital or the infrastructure 

to run a database, our project is lightweight enough to run on an 

EC2 instance even with multiple users, and we anticipate each 

user not generating a large number of transactions. According 

to a study by a consumer group in the UK, people open a cabinet 

~9 times a day. we estimate ~10 (non-heartbeat) transactions 

per user per day [4] on average, given how often people . 

Additionally, we are using Django for the web-app, which 

already supports SQLite as the default database backend. 

Therefore, we decided to use SQLite given the lack of 

performance concern and due to the time cost of switching to 

an alternative. 

B. SIFT vs. Alternatives 

When determining the algorithm to use for object detection 

and classification, we looked at SIFT, ORB, BRIEF, and YOLO 

for detection in conjunction with a CNN for classification. 

While we were doing our preliminary investigations, we found 

that the non neural network algorithms seemed to perform 

sufficiently well for our purposes (provided that the labeling 

was visible). While the neural network based classifiers  had the 

potential to be better, we had no guarantee. Additionally, while 

we found several datasets of grocery images, none of them 

worked for our purposes, so the amount of effort that would be 

required to generate the required training data would have likely 

been substantial. Finally, if we used a neural network based 

algorithm, we would have been unable to register arbitrary 

grocery items on the fly, since we couldn’t expect the user to 

provide enough training data to retrain the model every time 

they need to register a new grocery item. Therefore, we decided 

against using them, and instead focused on SIFT, ORB, and 

BRIEF, which already showed us tangibly successful results. 

In order to do a simple benchmark of the three algorithms, 

we tested the effectiveness of the classification by measuring 

the quantity of total matches/good matches using Lowe's ratio 

test [8]. For the Iconic images, we used images taken from 

grocery store online catalogs. For the actual images, we took 

photos of the products, and manually cut out the background, to 

simulate the pixel differentiation that would take place. This 

does not perfectly simulate the photos taken from the sensor for 

a number of reasons: The final images have some lens 

distortion, and the focus is not as good. However, we feel that 

this test was effective for the purpose of comparing the given 

algorithms. 

As shown in Table IV (Appendix), SIFT completely trounced 

the other algorithms. BRIEF misidentified 10/11 of the item 



18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 5 

classes which were tested, ORB failed slightly better, 

misidentifying 4/11 of the items tested. SIFT failed for only 

2/11 item classes (Eggs and Milk). Additionally, SIFT tended 

to have a much greater difference between the correct/incorrect 

items. For BRIEF, the difference in positive feature matches 

between the identification with the most positive matches and 

all other identifications was, on average, 7.55%. This was 

57.4% for ORB, and 76.4% for SIFT. This shows that SIFT is 

much better at distinguishing between items in the success 

cases. 

C. Cloud Deployment vs. Jetson Nano 

A popular device for performing CV computations is the 

Jetson Nano, whose powerful specs are more than capable for 

our use case. However, we decided not to use this specialized 

hardware for the following reasons. 

• Low utilization: our use case has very low utilization 
because a user is only likely to move grocery items ~22 
times a day [4]. Although we can get lower latency with 
local instantiation, the computational resources of the 
Jetson Nano would be wasted when the system is idle. 

• Lag tolerance of the system: the lag penalty for doing the 
CV remotely is a fairly minor issue because we don’t 
expect the user to check their inventory right after they 
put items into the storage area. 

• Miniscule data transfer: our project already necessitates 
a network connection for the item list to be accessible 
anytime via the web-app. Since the data we are 
transferring over the network only consists of an image 
and some text fields, which is expected to be around 
2~3MB, the user’s network throughput is unlikely to 
pose an issue. 

• Physical Size: adding a Jetson Nano to our hardware 
module would have required a larger physical footprint 
in terms of volume. As our goal is to make the hardware 
module as unobtrusive as possible, a Jetson Nano would 
make the user installation more inconvenient. 

• Cost: a typical mini fridge costs around $150~$250 on 
Amazon, and a Jetson Nano kit is listed at $100+, which 
is more than half the price of some fridges. If our product 
were to be commercialized and scaled, the cost of a 
Jetson Nano alone could be a high barrier to entry that 
would dissuade many users. 

Therefore, given how difficult we felt it was to justify the 

cost of having dedicated local hardware, and given how flexible 

our use case was to alternative solutions, we ultimately decided 

to do the computer vision processing remotely. 

D. RPi vs. Alternatives 

There were several possibilities for the embedded hardware 

we could use, Jetson Nano, Aduino, etc. Ideally, we would want 

the cheapest possible hardware that could take a photo, and send 

a post request to the web-app with the required information. 

However, we decided to use the RPi because it was simpler to 

prototype: in addition to being widely available, it has built-in 

wifi capabilities, a selection of camera modules that had a 

python package that allowed for easy control of the camera 

module, and ample documentation online for troubleshooting. 

E. OAuth vs. Proprietary Account Management 

Our use case requires us to maintain the inventory of several 

different users concurrently. Therefore, we need some method 

of handling login and password management. Our options were 

to utilize OAuth, or to store the information ourselves. OAuth 

provides superior security and user experience, as it is much 

more convenient than creating a separate username and 

password for this specific service. Additionally, we don’t 

anticipate implementing OAuth to be any more difficult than 

handling it ourselves. 

F. Global vs. Local Updates to Supported Items 

To define Global and Local updates to supported items: A 

global update is when a user stores an item that is not supported, 

provides an iconic image when prompted, and the item is added 

to the global set of supported items for all users. A local update 

is when the user goes through the same process, but the item is 

only added to the user’s own personal set of supported items. 

Ultimately, we decided on local updates for two main 

reasons. Global updates to the supported items list would leave 

the CV algorithm vulnerable to potential griefing by a handful 

of malicious users who could intentionally mislabel common 

goods, or even label them with obscenities. Furthermore, 

Global updates would also result in additional image 

comparisons for every item in every user’s inventory, even if 

they don’t regularly use the item in question, significantly 

driving up response time and hindering user experience. Global 

updating does have the advantage that we won’t have multiple 

users running into the same coverage gaps—perhaps this could 

be leveraged into a new feature in future improvements. 

G. Django vs. Flask 

Members of our team already had experience using Django, 

and there weren’t any specific features offered by Flask which 

are needed for our use case. Therefore, we’ve decided to just 

use Django as the framework of choice. 

H. Wide Angle Lens vs. Standard Lens 

  Initially, we wanted to use a wide angle lens in order to 

ensure that we had full vision of the items, regardless of how 

close the camera was to the items. The distance of the lens to 

the item  ultimately was a non-issue, while the usage of a wide 

angle lens became slightly problematic due slightly incorrect 

undistortion (see Section VI). Additionally, due to replacing our 

original set of camera modules, we were unable to easily 

remove the lens. Ultimately, since the issues with distortion 

were minor, we decided to continue using the wide angle lens 

instead of purchasing another camera module. 

VI. SYSTEM IMPLEMENTATION 

A. Hardware 

The hardware component consists of a Raspberry Pi (RPi) 

model 4B, the OV5647 Arducam camera module, and a 

pushbutton wired to the RPi. While we initially specified an RPi 

3B, as it is a cheaper model, our hardware requirements only 
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Fig. 7. Computer Vision flowchart. 

require built-in wifi connectivity and a 15-pin MIPI Camera 

Serial Interface Type 2 (CSI-2) port for the camera hardware. 

Accordingly, when the CSI port on the 3B was accidentally 

broken, we replaced our design specification with the 4B as it 

was the model that could be delivered the fastest. Because of 

this hardware component, we do require that the RPi have some 

power supplied to it either in the form of a power bank or an 

outlet connection. 

Our system also has a button connected to GPIO pin 5 of the 

RPi, and placed by the cabinet door to “sense” (read: simulate) 

door closure. While it’d be wonderful for a hypothetical real-

world deployment to have an integrated sensor unit built into a 

smart storage appliance, having a simple button to detect 

cabinet closure also allows for retrofitting existing “dumb” 

appliances and standard cabinets with minimal installation, and 

in a way is more flexible and accessible to more people. 

The OV5647 Arducam camera module connects directly to 

the RPi’s CSI port. This sensor works in the same manner as 

the native RPi camera module, meaning we can use the picam 

Python package to easily control it. The OV5647 comes pre-

equipped with a wide angle M12 lens. 

Each RPi knows its own serial ID, the number of messages it 

has sent to the web server, and its secret string, all of which are 

used when communicating with the web-app. The sensor sits 

idle until it detects a door closing (reads a button press on GPIO 

pin 5). When this happens the RPi takes a photo, and sends it to 

the web-app by an HTTP POST, before returning to idle. (See 

Section VI.C for details on the communication between the 

web-app and the hardware component.) 

B. Web-app 

The web-application is hosted on an AWS EC2 instance. The 

EC2 instance we used for the live demo was t3-2xlarge, which 

has 8 virtual CPU cores (vCPU) and 32 GB of memory. During 

testing, it was hosted on t2.xlarge, which has 4 vCPUs and 16 

GB memory. While the upgrade wasn’t strictly necessary, we 

wanted to minimize the number of possible hiccups during the 

live demo, as well as demonstrate that scaling up using AWS is 

a seamless process. We use an Apache server in order to 

connect the Django backend to the  incoming HTTP traffic. 

We assigned an elastic IP on AWS for our EC2 instance so 

that the IPv4 address for the server stays constant upon reboot. 

We purchased a domain (b6foodtracker.com) for our web-app 

and redirected its traffic to the elastic IP of our web server. We 

also generated an SSL certificate from the free service Let’s 

Encrypt to enable HTTPS for better security. 

The Django framework handles any incoming requests from 

the hardware components as well as displaying the inventory 

information to the user. As mentioned earlier, we use the default 

SQLite database to store user information. Django’s Model-

View-Controller pattern provides us with a great interface to 

interact with the database on a high level, and we use model 

classes for the creation of different objects like users and 

devices. A class diagram can be found in the Appendix (Fig. 

15). 

When a user first visits the web-app, they are first greeted  

 

 
Fig. 8. Website flowchart. 
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with a splash page showcasing our product, and then prompted 

to register an account via OAuth with Google or Facebook. The 

registration attempt is only considered complete when the user 

enters a valid phone number—otherwise, we continuously  

redirect to the registration page. The phone number is needed 

in order to send shopping lists via SMS to the user. 

User authentication is implemented using the Django 

component of the python-social-auth library called social-app-

django, which supports logging in from a number of different 

services through the OAuth protocol, including Google, 

Facebook, Twitter, etc. We associate each user with their email 

address, so a user logging in from different providers with the 

same email address would log in to the same account in our 

system. The social-app-django library follows a login pipeline, 

which consists of functions that fetches the user’s id from the 

provider, checks if the user already exists in the system, etc. We 

added custom functions to the pipeline to fetch users’ profile 

pictures and email addresses. Fetching email addresses is 

needed because some OAuth providers (like Facebook) don’t 

provide this information by default. To comply with OAuth 

requirements, we also have a privacy policy page stating the 

reason and scope of our minimal user data collection.  

Phone number validation is implemented using the django-

phonenumber-field library, which provides a phone number 

field for our object models. It can parse and validate phone 

numbers by checking the area code (first three digits), the 

central office code (middle three digits), and the line number 

(last four digits). Currently we only support US numbers, but 

this can be easily expanded in the future. 

After the user is authenticated, the user must register a device 

with the web-app in order to use the service. We maintain a list 

of all the devices we have “manufactured” to prevent fraudulent 

device registration. When the user enters the serial number of  

their new device during device registration, we activate this 

device and assign the current user as its owner. To prevent 

malicious actors brute forcing all possible serial numbers, we 

added reCAPTCHA (a CAPTCHA system developed by 

Google) to the registration form to block any automated 

registrations. Relatedly, attempting to register an already-

registered device either (1) shows a generic error message, or 

(2) shows a warning message if the device in question is already 

 

 
Fig. 9. Screenshot of the device registration page. 

assigned to the current user. Showing a generic error message 

was a conscious choice to leak as little information to the user 

as possible to minimize potential attacks by a malicious actor. 

When handling incoming POST requests from the hardware 

module, the web-app invokes the CV component for object 

classification. If the CV component is able to classify the 

object, the web-app updates the inventory in the database 

accordingly. Otherwise, the web-app classifies the item as an 

unregistered item, and keeps a thumbnail of the object obtained 

from SSIM difference calculations in the CV component. When 

viewing any storage location, the web-app displays a list of 

unregistered items, and a prompt for users to manually classify 

them. If the user interacts with the prompt, the website displays 

the thumbnail image and prompts the user to select from the 

existing categories, or manually enter an item category. 

Each identified item is assigned a location field to indicate 

the device that currently holds the item. These items are then 

filtered through a Queryset by location on the server side to 

generate an inventory list on the web-app. If the user owns 

multiple devices, the web-app can also display a combined 

inventory with a Queryset of all devices owned by a User, 

which is useful to see the combined ingredients currently in the 

kitchen, perhaps for any recipes that call for ingredients stored 

in multiple locations. 

We designed two models for the recipes, Recipe and 

PublicRecipe. The former is private and only viewable by its 

creator while the latter is viewable by anyone. When a user 

creates a recipe, we use the Recipe model, and if the user 

decides to publish it, we copy its contents and create a new 

instance of the PublicRecipe with them. Similarly, we create a 

new Recipe instance if the user wants to save a public recipe. 

Each recipe contains a list of ingredient Categories, and we 

iterate through all items a user owns and check against this list 

to generate a shopping list upon request. 

C. Communications 

The hardware component and the cloud server communicate 

through HTTP POST requests. The POST requests are 

generated via python’s requests package and its content is a 

serialized JSON string. 

When the device takes a photo, it converts it to a string of utf 

characters using python’s base64 package. (See Fig. 10 for full 

schema.) 

The web-app only accepts requests coming from activated 

devices. It also stores the hashed secret key for each device in 

the database to validate requests. Using the secret key ensures  

 

 

Fig. 10. Schema for the JSON message. 
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that a malicious actor will not be able to modify someone else’s 

inventory by simply modifying the serial number in the request; 

hashing the secret keys is an added security measure to ensure 

the system’s operation in case of a data leak. 

The hardware device also sends POST requests with an 

empty “image” JSON field every 15 minutes (we used 1 minute 

during the live demo in case we had to showcase the 

functionality) as heartbeat messages to the server to indicate its 

online status. If the server hasn’t received any messages from 

an activated device for 45 minutes (missing three heartbeats), 

its owner is notified via an online/offline status icon on the 

website. 

When the user visits the website, the client-side JavaScript 

code uses AJAX to pull information from the server every 10 

seconds to get the most recent inventory. This step enables 

dynamic updates to the webpage when the inventory in the 

database is modified without the need to refresh the page. 

D. CV Component 

To review from Section V, a globally registered grocery item 

is a grocery item that can be recognized by all users’ tracker. A 

locally registered grocery item is an item that can only be 

identified by a specific user’s tracker. 

At startup, the CV component extracts the features and key 

points from the iconic images for each of the 10 default globally 

registered image classes. The grocery items that are registered 

globally are as follows: Applesauce, crushed tomatoes can, 

shredded cheese bag, spaghetti, baking powder, yogurt, cereal, 

and Ritz crackers. The descriptors for each of these image 

classes are held in a global state variable, and are used until the 

web server shuts down. 

When invoking the computer vision code, the web 

application passes the following information: image of previous 

state, image of new state, the set of items already present in the 

storage location, and a map of locally registered item categories 

to their descriptors. The CV component performs four passes in 

order to classify the object. A visual demonstration of each of 

these passes is provided in Fig. 11. 

First, we undistort both of the images with two distortion 

coefficient matrices, K and D, which are obtained by taking 

pictures containing a 9x9 checkerboard and feeding them to an 

OpenCV algorithm that approximates the K and D values 

(cv2.fisheye.calibrate). We took 92 Checkerboard images in 

total. This process does not perfectly undistort the image; 

however, additional calibrations were providing only negligible 

improvements, and for our purposes the undistortion was 

working sufficiently well. 

The CV component first performs a Structural Similarity Index 

Measure (SSIM) differentiation between the image of the 

previous state and the image of the new state. This is an 

algorithm that performs a pixel by pixel similarity measure, in 

such a way that is more in line with how humans perceive 

difference than a simple pixel diff [7]. Using SSIM helps us to 

mitigate the effects of slight changes in lighting. We then 

perform contour detection on the SSIM diff, to produce a list of 

regions of difference between the two images. We isolate the 

largest region of change, as we expect the added/removed item 

 

  

Fig. 11. Showcase of the CV processing. Initial raw image taken by RPI, top 

left. Undistorted image, top right. Image with annotated regions of change, 

lower left. Localized image, lower right.  

 

Fig. 12.  Iconic image and target image, showing descriptors and keypoints of 

SIFT algorithm. 

to be present in that region. This step occurs after the 

undistortion, as we have found it to work slightly better on 

undistorted images. 

Next, we run SIFT to extract the keypoints and descriptors 

from the region of interest of the new state image. We then 

attempt to match the descriptors to each of the known grocery 

items’ descriptors. If we fail to find any items of interest, we 

repeat the above process on the region of interest in the old state 

image, restricting the comparison to items that we know are 

present in that location. 

Finally, we perform some heuristics to help mitigate common 

confusions. Notably, the largest region of change often captured 

large, and variable amounts of background. Therefore, most of 

these checks were designed with the assumption that the size of 

the region of change was often larger than the object, but very 

rarely smaller. This also meant that checking for the ratio of 

colors seen in an image was often inaccurate in the case that 

large swaths of background was present. The secondary checks 

included: Preemptively removing items from consideration if 

the region of change is smaller than the given item, deciding in 

favor of milk and Yogurt if the object was predominantly white, 

deciding in favor of crushed tomatoes if there was red in the 

image and SIFT was torn between tomatoes and applesauce. 

These were performed according to the most common 

confusions seen in our confusion matrix. Please see Tables V, 

VI, VII in the appendix for the confusion matrices obtained 

throughout testing, and the confusion matrix of the final 

product. 
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If we successfully identify any grocery items in the new state 

image, it means that the user has added that grocery item to the 

storage location.  If we successfully identify any grocery items 

in the old state image, it means that the user has removed that 

item from the storage location. If we fail to identify any 

registered grocery items, it means that the user has added an 

unregistered item. The new item is given a temporary 

UNKNOWN_ITEM category by the web component, and its 

descriptors are then added to the user’s map of registered 

grocery classes items. This is done so that if the item is removed 

prior to the user manually specifying the item, we can still 

identify it. 

E. Overall difference with our original design document 

Overall, there were few changes with respect to our design 

document. The largest changes include the addition of recipes, 

and the ability to share them on a public Discover page. There 

were also several additions to the CV process: the undistortion 

step, the secondary heuristic step, and the change from pure 

pixel diff to using SSIM. 

There were also several changes in this section, where we 

added a bit of specificity that we hadn’t decided on at the time 

or writing the design document: Apache, bootstrap CSS, etc. 

VII. TEST, VERIFICATION AND VALIDATION 

In order to test our device, we repeatedly simulate updating 

a “kitchen” inventory. To do this, we subdivided our storage 

location into 9 general regions, all the cardinal/intercardinal 

regions (45°, 90°… 360°), and center. We then pick a random 

grocery item, and a random location in which to store that item. 

If the grocery item is already being stored, we first remove it. If 

the location where we are placing the item is occupied, we 

remove the items until we can fit our randomly chosen grocery 

item. 

If the item could be rotated, it is placed in such a way as to 

best orient the label towards the camera. If the location is not 

center, we place the item as close to the wall of the container as 

we can. In the event that an error occurs, we manually update 

the information on the database so that it was accurate for the 

next update. We feel that this is a reasonable simulation of how 

a typical user might store an item in a storage location. This 

process was used for both Response time testing, and 

Classification accuracy testing. The procedures are listed in 

more detail below. (See the appendix Tables VIII and IX for the 

complete dataset.) 

Originally, we wanted to have two distinct storage locations, 

and pick the location from between the two locations (IE, a 

random choice of 18 possible locations). However, we were 

unable to due to unfortunately breaking the CSI port on one of 

our RPi’s, and being unable to procure a replacement in time 

(see Section VIII.E). 

During testing, our website was hosted on t2.xlarge EC2 

instance, which has 4 vCPUs and 16 GB memory.  

A. Response Time 

In order to test update speed (i.e. time from button press to 

website update), we simply measure the amount of time that  

 
Fig. 13. Graph of response times. 

passes from when the hardware component sends the item, to 

when the hardware component receives an acknowledgement. 

While this does not account for the travel time of the 

acknowledgement, that time should be fairly minor in the face 

of the server processing time (several seconds vs 10’s of 

milliseconds) This provides us with a fairly accurate measure 

of the response time of a typical update to a user’s storage 

location. This testing was done in conjunction with the 

classification accuracy test. 

  Our results were very good: we had a mean response time 

of 7.006 seconds, a median response time of 6.78 seconds, and 

a worst case response time of 12.825 seconds. Therefore, we 

can confidently state that, in the general case, the response time  

is within 10 seconds. (See Fig. 13 for graph.) 

B. Classification Accuracy 

To check classification accuracy, we repeatedly updated the 

kitchen’s inventory using the process described at the beginning 

of this section, keeping track of the success, failures, and 

misidentifications per item. (See Fig. 1 for how we classify 

different failures.) We repeat this until we’ve seen every item 

10 times or we have 200 trials, whichever takes longer. Given 

that we expect the update process to closely simulate the 

behavior of a typical user, this should be a fairly accurate 

measure of classification accuracy for a typical user over the 

course of their using the device. 

Our first round of testing took 272 trials (see Table VIII). We 

achieved an accuracy ratio of 93.75%, a false positive ratio of 

6.25%, and a false negative ratio of 0%. This false positive ratio 

was greater than our allowed 5%, and we deemed it a failure. 

We made some changes to the heuristic step, to make the 

heuristic functions more liberal in making changes. We also 

added a check for the difference between the most likely object 

class, and the second/third most likely class according to SIFT. 

If this difference wasn’t sufficiently large, we would choose to 

fail to ID the item. We also tried putting blank white paper at 

the base of the storage location, to hopefully provide a more 

distinct background. 

The overall result of the second round of testing was very 

poor (see Table IX). We called the testing early, at 58 trials. We 

achieved an accuracy ratio of 46.55%, false positive ratio of 

5.17%, and a false negative ratio of 48.28%. We discontinued 

testing at this point, and reverted to the previous setup. 
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Overall, we failed to achieve our desired results, due to the 

overprevalence of false positives. 

C. Heartbeat Testing 

To test the heartbeat mechanism, we disconnected the RPI 

from the internet for 45 minutes, and then reconnected it. This 

test was successful. This testing was likely insufficient, as we 

did encounter one error at time of live demo, wherein the device 

would be set to offline when first registered, depending on the 

time that device was added to our database. This is now fixed. 

VIII. PROJECT MANAGEMENT 

A. Schedule 

We’ve divided our Gantt chart into subsections (Appendix, 

Fig. 16): CV proof of concept, Web App Component, 

Benchmarking, Integration, Website enhancements, and 

Documentation. The first three sections are the initial work that 

can be done in parallel, that are necessary for the MVP. 

Integration is self-explanatory. Website enhancements consist 

of a number of user quality of life improvements that, while 

important, are not needed for the MVP. 

When comparing our original Gantt chart to our final version, 

there are several noticeable differences. First, work on CV 

optimizations and CSS  continued pretty much up until the very 

end. This was caused by placing greater priority on other 

functionality, and since work on both CV optimization and CSS 

could be completed piecemeal, work was often start and stop. 

Second, AJAX took much longer than expected due to a relative 

lack of familiarity compared to other components of the project, 

which had a knock-on effect on delaying other components 

further downstream. Finally, some other smaller items that 

could be delayed until the final demo (hardware button, 

HTML/CSS improvements, etc.). 

B. Team Member Responsibilities 

Generally speaking, Keaton was primarily responsible for 

writing and testing the CV used for object classification. Harry 

also contributed some optimizations, specifically with regards 

to the SSIM localization. Harry was primarily responsible for 

the overall system design, webpage styling using Bootstrap, and 

web-app backend development including OAuth and backend 

logic. Jay helped with this, especially as it pertained to his 

primary work with the front end. Jay was primarily responsible 

for the web application front end (AJAX and HTML) and 

assisting implement the backend. Many responsibilities for the 

web-app switched hands between us three members as we 

found out which of us had more free time between course loads 

as well as maneuvering personal experience. 

C. Bill of Materials and Budget 

Overall, we are well within the bounds of our budget, sitting 

at $370 spent (see Table III).  

Of our initial purchases at the beginning of the semester, 

there were several things we ended up not using: two of the 

three OV5647 camera modules, which may or may not be 

broken, and the lenses for those camera modules. Additionally, 

the two RPi’s which we ordered did not actually arrive due to 

P-card ordering issues. We do not know for certain the final 

status of this order. Upon last talking with Quinn, the order had 

been canceled, but independent of our Capstone he had placed 

a separate order to have a spare RPi on hand. Even with both 

RPi’s still included in our cost breakdown as a worst case 

scenario, we remained under budget. 

D. AWS Usage  

At the time of writing, the usage for our AWS credits is as 

follows: 

TABLE II.  AWS COST BREAKDOWN 

Service Hourly rate Time (hrs) Cost 

EC2 On Demand Linux 

t2.xlarge Instance 

$0.1856 5.709 $1.06 

EC2 On Demand Linux 

t3.2xlarge Instance 

$0.3328 30 $9.98 

Elastic IP addresses $0.005 114.8 $0.57 

Total cost:  $11.61 

Fig. 14. Breakdown of AWS cost, per item, per hour. 

Our AWS credits were used to run one EC2 instance which 

did dual duty running our CV code, which identified grocery 

items from a RPi camera module, and a web-app which was 

used to send that image from the camera to our CV code and 

display it on a web application in a user-friendly way. We 

launched a t2.xlarge instance for development and upgraded to 

a more powerful t3.2xlarge instance for our final capstone 

demo, as we had leftover credit. We also used the Elastic IP to 

attach to our purchased domain, b6foodtracker.com. In total, 

$11.61 of our allotted $50 were consumed at the time of writing. 

We’d like to express our gratitude to AWS for providing the 

Electrical and Computer Engineering department at Carnegie 

Mellon University with these free credits. 

E. Risk Management 

Most aspects of our project were done independently, and 

there was little to no risk of catastrophic failure. In the design 

document, we viewed the two most risky portions of the project 

to be the possibility of not meeting the accuracy requirements 

for the CV device, and not meeting the update speed 

requirements. 

For the accuracy requirements, we did end up adding several 

heuristic checks, and performing many tweaks. Unfortunately, 

we were unsuccessful in our ability to meet the accuracy 

requirements. The major timesink actually ended up being the 

time required to perform the test, it took about three hours to 

take all the photos for the first test. A more thorough test should 

have been performed earlier into the project, or we should have 

come up with a faster way to perform a unit test on the CV 

component itself. 

The update speed requirements actually ended up being a non 

issue, we were well within the bounds without the need for any 

optimizations. Additionally, as we mentioned in the design 

report, we were able to even further speed up the overall 

response time by using a higher capacity EC2 instance. 

Besides the two risks we identified going into the project, we 

also had an unexpected hardware issue when the CSI port on 
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our RPi broke, and we didn’t have a replacement. Additionally, 

our order for a second RPI that we had ordered to demonstrate 

multiple concurrent users was canceled due to logistical 

difficulties with the CMU P-card ordering procedures. 

Thankfully, Quinn was very helpful, and loaned us a 

replacement that he had on hand that also worked with our 

hardware specifications mentioned in Section VI.A, Hardware 

System Implementation. 

IX. ETHICAL ISSUES 

First, given that we can only guarantee accuracy for the set 

of items we’ve explicitly supported, there is the potential 

unfairness to users who generally use grocery items different 

than those that we explicitly support. This may be due to 

individual variance, or perhaps users that belong to a culture 

that generally uses different grocery items. Additionally 

different cultures may use different labeling techniques, which 

may have effects on the accuracy of SIFT. For example, labels 

containing Japanese hiragana may be more/less recognizable by 

SIFT, which would lead to increased/decreased accuracy. 

While this certainly could become an issue, it is difficult to 

diagnose, given the vast number of different written languages, 

and grocery items. We view this as an issue to diagnose once 

if/when we decide to expand this product to an international 

marketplace. 

Second, was the potential for using our device as a spycam. 

IE, a user could place the device in a public location, hotwire 

the hardware unit to take a photo every few seconds, and scrape 

the relevant information from the web application. Due to the 

nature of our design, it would need to be placed in a location 

with consistent lighting, and whatever object/entity it would be 

looking for must be easily recognizable by the SIFT. This 

would only be doable by a very knowledgeable malicious user, 

and it would likely be easier and much more effective for such 

a user to build their own spycam rather than retrofit our project. 

Third, systems that require registration can be exploited by 

malicious actors brute forcing all the possible inputs, which in 

our case is the serial number of the devices. Since we have 

incorporated OAuth in our system for secure authentication, 

and implemented secret key hashing and reCAPTCHA as safety 

measures, our system is tolerant against such attacks. 

Fourth, since we store private information about users like 

email and phone number, data leaks could have serious 

consequences. Therefore, the security of the system needs to be 

upgraded and rigorously tested in the future. Additionally, we 

have a privacy policy that clearly delineates the scope and 

intended use of any personal information, and any opt-out 

procedures for deleting a user’s account. 

Lastly, since our system supports sharing recipes, which 

consists of texts like recipe names given by the user, there is a 

possibility for malicious users to spread illicit or hateful words. 

However, this is easily solvable in the future by setting up a 

monitoring system. 

X. RELATED WORK 

There were also a number of similar projects from previous 

years that we investigated while working on designing our own. 

“Backpack buddy”, Spring 2021 C0, is a project that tracks the 

location of the user's items using RFID tags. It was our principal 

source of inspiration before we switched to using computer 

vision. “SmolKat”, Spring 2021 D3, is another similar project 

that focused on identifying items in a storage location. They 

used Google’s Cloud Vision API as their classification system, 

as opposed to SIFT. “Sous-Chef” Spring 2020 A4, also focused 

on identifying items in a storage location using CV. However, 

they focused on looking for barcodes, as a method of 

identifying the item. “Fresh Eyes,”  from this Spring 2022 B3, 

also developed a kitchen inventory app, but their use case 

focused more on produce expiration dates. As mentioned in an 

earlier section, we came across a similar project online, “Grocer 

Eye” which we used as a reference for our potential accuracy. 

XI. SUMMARY 

Overall, while we were unable to meet all of our design 

requirements, we came very close. Therefore, we feel fairly 

happy with the state of our project.  

A. Future work 

Given more time, the first priority would be to optimize the 

CV component, such that we could meet our design 

requirements. I think this could be done fairly easily, given how 

close we were. 

Supporting a greater list of items, and possibly using a CNN 

could easily be managed with more time, and with more people 

available using the product to generate training data for the CV 

algorithm. 

Several stretch goals for the website, such as integrating 

some online recipes functionality, would have been a fantastic 

addition to our system had we had more time. User-created 

recipes supporting notes for the actual recipes would also have 

made our product more holistic. 

Given a huge amount of extra time and funding, we could try 

and create an actual demo smart appliance, as opposed to just 

using a cardboard box. Perhaps the increased stability from 

such a hardware build would also improve pixel diff 

calculations in our CV component. 

B. Lessons Learned 

Personally, we feel that there were two major lessons. First, 

when working with embedded devices, cost permitting, have 

backup hardware in case of emergency. Secondly, in situations 

where performance is paramount, do rigorous unit testing as 

early as possible, and ensure that your unit testing can be 

performed fast enough that you can iterate on the results as 

needed. 

C. Closing Thoughts 

Our inspiration for this project has deep personal relevance 

to us all. We feel that this problem of grocery inventory is 

overwhelmingly common, and we hope that someday our 

project can be improved upon, and made into a commercially 

successful tracker that will fulfill the grocery-shopping needs 

of every home cook. Thank you for reading. 
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GLOSSARY OF ACRONYMS 

AWS - Amazon Web Services 

BRIEF - Binary Robust Independent Elementary Features 

CAPTCHA - Completely Automated Public Turing test to 

tell Computers and Humans Apart 

CSI - Camera Serial Interface 

CV - Computer Vision 

EC2 - Amazon Elastic Cloud Compute 

GPIO - General-Purpose Input/Output 

HTTP - Hypertext Transfer Protocol 

JSON - JavaScript Object Notation 

MVP - Minimum Viable Product 

OAuth - Open Authorization 

ORB - Oriented FAST and Rotated BRIEF 

RPi – Raspberry Pi 

SIFT - Scale Invariant Feature Transform 

SMTP - Simple Mail Transfer Protocol 

SSIM - Structural Similarity Index Measurement 

SSL - Secure Sockets Layer 

YOLO - You Only Look Once 
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APPENDIX 

TABLE III.  ASDF 

 

 

Fig. 15. Class model diagram of database 

  

TABLE III. BILL OF MATERIALS 

Description Model # Manufacturer Quantity Cost @ Total 

RPi Model B 4328498196 RPi Foundation 2* $100 $200 

1/2.7"mm Focal Length 

Lens  Arducam 2 $18 $36 

OV5647 with M12 

Lens Preattached  Arducam 3 $28 $84 

AWS Credit  Amazon 1 $50 $50 

*Order may or may not 

have gone through      

Grand Total $370.00 
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TABLE IV.  COMPARISON OF VARIOUS CV ALGORITHMS.  

The x-axis is the iconic image, and the y-axis is the actual item. 1.000 represents the best number of descriptor matches for the given iconic class. .5 would represent 

.5 * the best number of descriptor matches for the given iconic class. 
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Fig. 16. Gantt chart. 
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Note, for tables V and VI, orientable items (Applesauce, Yogurt, Beans, Crushed Tomato Can, etc.) were not necessarily placed 

angled towards the camera. As such, confusions may be overrepresented for those objects compared to the table VII, where 

printable objects were always oriented towards the camera. 

TABLE V.  CONFUSION MATRIX OF TESTING DATA LOCATED IN THE “TOPDOWN” FOLDER (~100 IMAGES), PRIOR TO IMPLEMENTATION OF HEURISTICS. 

 

 

TABLE VI.  CONFUSION MATRIX OF TESTING DATA LOCATED IN THE “TOPDOWN” FOLDER (~100 IMAGES), POST IMPLEMENTATION OF HEURISTICS. 

 
 

TABLE VII.  CONFUSION MATRIX OF FINAL TRIAL (~270 IMAGES) 
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TABLE VIII.  FINAL TRIAL (~270 IMAGES) 

Item Action Location Failed Time 

cereal add 
 

0 7.74 

cereal remove 
 

0 8.64 

beans add 
 

0 8.593 

Tomato Can add 
 

0 7.196 

beans remove 
 

0 6.651 

beans add 
 

0 6.932 

beans remove 
 

0 7.392 

beans add 
 

0 6.91 

baking powder add 
 

0 6.98 

cracker add 
 

0 7.296 

baking powder remove 
 

0 7.67 

baking powder add 
 

0 8.02 

tomato Can remove 
 

0 8.63 

cracker remove 
 

0 8.635 

cracker add 
 

0 7.51 

baking powder remove 
 

0 6.99 

cracker remove 
 

0 7.555 

baking powder add 
 

0 6.84 

baking powder remove 
 

0 6.42 

cereal add 
 

0 7.607 

spaghetti add 
 

0 7.583 

spaghetti remove 
 

0 6.913 

cereal remove 
 

0 7.036 

milk add 
 

0 8.647 

cheese add 
 

0 7.06 

beans remove 
 

0 6.84 

cheese remove 
 

0 8.44 

applesauce add 
 

0 7.48 

tomato Can add 
 

0 6.71 

tomato Can remove 
 

0 7.27 

milk remove 
 

0 9.19 

cereal add 
 

0 7.8658 

cereal remove 
 

0 7.64 

cracker add 
 

0 7.917 

cracker remove 
 

0 7.194 

baking powder add 
 

0 7.4 

baking powder remove 
 

0 6.615 

cheese add 
 

1 6.74 

cheese remove 
 

1 7.151 

applesauce remove 
 

0 8.42 

applesauce add 
 

0 7.39 

beans add 
 

0 7.79 

baking powder add 
 

0 6.65 

yogurt add 
 

0 6.51 

baking powder remove 
 

0 6.59 

spaghetti add 
 

0 6.63 

baking powder add 
 

0 6.59 

spaghetti remove 
 

0 6.8 

cereal add 
 

1 8.21 

kidney beans remove 
 

0 6.62 

applesauce remove 
 

0 6.92 

spaghetti add 
 

0 6.66 

spaghetti remove 
 

0 7.48 

spaghetti add 
 

0 6.86 

spaghetti remove 
 

0 9.12 

cereal remove 
 

0 7.77 

spaghetti add 
 

0 6.67 

beans add top 0 6.65 

yogurt remove left 0 8.03 

baking powder remove bl 0 8.9 

baking powder add left 0 8.04 

tomato Can add br 0 7.59 

beans remove top 0 6.75 

cracker add top 0 8.4 

spaghetti remove right 0 7.78 

cracker remove top 0 8.02 

spaghetti add center 0 7.78 

baking powder remove left 0 8.13 

cereal add tl 0 7.86 

cereal remove tl 0 8.08 

cracker add tl 0 7.65 

cracker remove tl 0 8.25 

spaghetti remove center 1 8.35 

cracker add b 0 8.72 

tomato Can remove br 0 7.71 

cheese add br 1 7.32 

cheese remove br 1 6.81 

milk add right 0 7.43 

cracker remove b 0 7.12 

cereal add b 0 7.86 

beans add tl 0 6.55 

milk remove right 0 8.48 

yogurt add br 0 6.86 

cracker add left 0 7.17 

cracker remove left 0 6.91 

tomato Can add left 0 7.1 

spaghetti add tr 0 7.24 

beans remove tl 0 6.48 

beans add top 0 6.84 

beans remove top 0 6.78 

cereal remove b 0 7.12 

beans add center 0 6.97 

beans remove center 0 6.74 

spaghetti remove tr 0 7.46 

spaghetti add center 0 6.73 

tomato Can remove left 0 7.12 

cracker add left 0 7.58 

spaghetti remove center 0 6.59 

cracker remove left 0 7.52 

spaghetti add left 0 7.49 

applesauce add b 0 7.03 

applesauce remove b 0 6.93 

applesauce add tr 0 6.86 

yogurt remove br 0 6.65 

applesauce remove tr 1 6.84 

cracker add right 1 7.51 

yogurt add center 0 6.87 

cracker remove right 1 6.9 

beans add right 0 6.93 

applesauce add b 0 6.94 

yogurt remove center 0 7.83 

milk add center 0 7.83 

applesauce remove b 0 7.55 

beans remove right 0 6.5 

cracker add tr 0 6.599 

cracker remove tr 0 6.448 

cereal add br 0 7.09 

yogurt add left 0 6.57 

cereal remove br 0 6.54 

beans add b 0 6.61 

yogurt remove left 0 6.47 

milk add tl 0 6.635 

yogurt add bl 0 6.78 

milk remove tl 0 6.9 

beans remove b 0 6.882 

cereal add top 0 7.18 

cereal remove top 0 6.86 

applesauce add bl 0 8.85 

applesauce remove bl 0 6.83 

spaghetti add tl 0 6.39 

yogurt remove br 0 6.38 

cereal add right 0 6.83 

spaghetti remove tr 0 6.58 

yogurt add Left 0 7.09 

cereal remove right 0 9.993 

applesauce add center 1 7.28 

applesauce remove center 1 6.626 
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milk add right 0 6.52 

milk remove right 0 7.59 

yogurt remove Left 0 6.57 

cereal add br 0 6.87 

baking powder add tl 0 6.297 

cereal remove br 0 7.79 

cheese add tr 0 6.87 

cheese remove tr 0 6.56 

cheese add tr 0 6.5 

applesauce add Left 0 6.66 

cheese remove tr 0 6.37 

cheese add right 0 6.9 

cheese remove right 0 6.29 

beans add tr 0 6.66 

yogurt add b 0 6.76 

yogurt remove b 0 7.89 

cheese add br 0 6.75 

applesauce remove Left 0 8.18 

cracker add bl 0 6.725 

cracker remove bl 0 6.52 

tomato Can add center 0 6.69 

tomato Can remove center 0 6.56 

milk add bl 1 7.22 

cheese remove br 0 6.47 

tomato Can add br 0 6.63 

yogurt add center 0 6.54 

beans remove tr 0 6.5 

beans add tr 0 6.5 

baking powder remove tl 0 6.57 

milk remove bl 1 7.67 

baking powder add bl 0 6.39 

yogurt remove center 0 6.45 

cracker add tl 0 6.67 

cracker remove tl 0 6.69 

spaghetti add t 0 6.75 

tomato Can remove br 0 6.657 

beans remove tr 0 6.45 

tomato Can add tr 1 6.3 

spaghetti remove t 0 6.89 

cheese add b 0 6.78 

baking powder remove bl 0 8.75 

baking powder add t 0 6.78 

cheese remove br 0 6.39 

tomato Can remove tr 0 6.3 

milk add right 0 6.919 

baking powder remove t 0 6.82 

baking powder add center 0 12.825 

milk remove right 0 7.65 

cheese add br 0 6.63 

baking powder remove center 0 6.32 

cheese remove br 0 6.47 

cereal add t 0 9.35 

cereal remove t 0 6.75 

cheese add b 0 6.75 

cheese remove b 0 6.62 

milk add t 0 7.04 

milk remove t 0 6.56 

cereal add t 0 7.2 

cereal remove t 0 6.99 

cereal add right 0 6.91 

spaghetti add tl 0 6.75 

cereal remove right 0 6.6 

spaghetti remove tl 0 6.4 

cracker add bl 0 6.44 

cracker remove bl 0 6.47 

cracker add b 0 6.67 

cracker remove b 0 6.82 

cracker add bl 0 6.48 

cracker remove bl 0 6.416 

cereal add b 0 7.06 

cereal remove b 0 7.27327 

applesauce add br 0 7.39 

applesauce remove br 0 6.9 

tomato Can add right 0 6.65 

tomato Can remove right 0 6.57 

cracker add br 0 7.1 

cracker remove br 0 6.55 

applesauce add b 0 6.48 

tomato Can add center 0 6.44 

applesauce remove b 0 6.35 

applesauce add br 0 6.449 

tomato Can remove center 0 6.52 

milk add Left 0 6.87 

cheese add tr 1 8.528 

milk remove Left 0 6.75 

cereal add tl 0 6.72 

cereal remove tl 0 6.79 

applesauce remove right 0 7.39 

applesauce add Left 0 6.396 

cheese remove right 1 6.35 

cereal add right 0 6.89 

cereal remove right 0 6.55 

cracker add tr 0 6.69 

cracker remove tr 0 6.29 

applesauce remove Left 0 6.2 

cracker add center 0 6.75 

cracker remove center 0 6.34 

cracker add tr 0 7.87 

cracker remove tr 0 7.84 

cereal add right 0 6.96 

cereal remove right 0 6.94 

cracker add right 0 6.75 

cracker remove right 0 6.45 

spaghetti add t 0 7.27 

spaghetti remove t 0 6.5 

yogurt add b 0 6.74 

yogurt remove b 0 6.7 

cereal add Left 0 8.08 

cracker add tr 0 7.16 

cracker remove tr 0 6.66 

cheese add br 0 6.61 

cereal remove Left 0 7.77 

beans add b 0 6.82 

baking powder add Left 0 6.9 

beans remove b 0 6.69 

cheese remove br 0 6.69 

milk add center 0 7.24 

milk remove center 0 7.75 

cracker add tr 0 6.73 

baking powder remove Left 0 6.54 

spaghetti add bl 0 6.38 

tomato Can add b 0 6.63 

cracker remove tl 0 6.44 

yogurt add t 0 6.48 

spaghetti remove Left 0 6.62 

spaghetti add right 0 6.62 

tomato Can remove b 0 6.72 

beans add center 0 6.98 

yogurt remove t 0 6.94 

beans remove center 0 6.45 

milk add t 0 7.28 

yogurt add bl 1 6.91 

milk remove t 0 6.91 

yogurt remove bl 0 6.33 

spaghetti remove right 0 6.66 
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TABLE IX.  FAILED TRIAL (~50 IMAGES) 

Item Action Location Failed Time 

cheese add l 0 7.4 

cheese remove l 0 6.4 

cheese add tr 1 6.6 

cereal add tl 0 6.69 

cereal remove tl 0 7.4 

cheese remove tr 1 6.56 

crackers add c 0 6.5 

crackers remove c 0 6.7 

cereal add tl 0 7 

cereal remove tl 0 6.6 

yogurt add c 0 6.5 

yogurt remove c 0 6.2 

crackers add r 0 6.4 

crackers remove r 0 6.6 

baking powder add r 1 6.75 

spagetti add l 0 6.97 

spagetti remove l 0 6.85 

spagetti add t 1 6.62 

baking powder remove r 1 6.23 

applesauce add tr 1 7.27 

applesauce remove tr 1 6.1 

applesauce add r 1 6.2 

applesauce remove r 0 6.4 

spagetti remove t 0 6.47 

cereal add r 0 6.86 

cereal remove r 0 7.478 

beans add tr 1 6.3 

beans remove tr 0 6.55 

baking powder add tr 1 6.7 

spagetti add l 0 6.7 

baking powder remove tr 0 6.67 

baking powder add t 1 6.4 

spagetti remove l 0 6.53 

tomatoes add tl 1 6.6 

tomatoes add tl 1 6.6 

yogurt add tl 1 6.7 

baking powder remove t 1 6.9 

beans add t 1 7.3 

applesauce add br 1 6.88 

yogurt remove tl 1 6.6 

beans remove t 1 6.7 

applesauce remove br 1 6.8 

tomatoes add l 1 6.33 

milk add t 0 8.34 

tomatoes remove l 0 6.78 

tomatoes add l 1 6.87 

milk remove t 0 6.5 

yogurt add b 1 6.5 

yogurt remove b 1 6.7 

tomatoes remove l 1 6.3 

yogurt add bl 1 6.2 

tomatoes add b 1 6.5 

beans add b 0 6.49 

applesauce add br 0 6.45 

beans remove c 0 6.45 

applesauce add br 0 6.45 

cheese add bl 0 6.57 

spagetti add t 0 6.8 
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