
18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 1

Abstract—A smart device that will automatically keep track of

your kitchen's inventory for you. This project consists of one or

more embedded devices that propagate information to a cloud

server. The user can interact with a web application to view their

current kitchen inventory, and/or create a shopping list based on

recipes that the user has added.

Index Terms— Classification, Cloud Computing, Computer

Vision, Localization, OpenCV, SIFT, Smart Home, SSIM, Web-

Application

I. INTRODUCTION

N the hustle and bustle of the modern world, oftentimes it

can be challenging to keep track of the exact contents of your

kitchen when going grocery shopping once-weekly. This can

lead to purchasing items you already have, or forgetting to

purchase an item that you may need. The former leading to

wasted food (if the item is perishable), while the latter leading

to wasted time from returning to the store to buy any

accidentally omitted items, or the creation of an imperfect meal,

all relatively common occurrences for anyone who does any

amount of home cooking. As such, we aim to provide a solution

in the form of an embedded smart device.

At its core, our project is an inventory tracking system. It

maintains an automatically generated inventory of items in the

user’s kitchen using a Raspberry Pi (RPi) and an embedded

camera, and cloud-side computer vision (CV). This hardware

sits on the ceiling of a storage area like a fridge or a cabinet and

captures images of the interior to send to a cloud computing

server for processing.

Existing kitchen inventory solutions generally belong to two

categories: focused exclusively on restaurant inventory

management, and app-based tracking systems. Restaurant

systems are not only costly and complicated, averaging $99 to

$129 per month for point-of-sale integrated systems for small-

business use cases, but also extremely excessive for the average

consumer in a home kitchen [5]. App-based tracking systems

on mobile devices, like Out of Milk and NoWaste, have the

most similar use-case, but most (if not all) rely on the user

manually inputting items, and quantities into the app with little

to no automation. (If automated solutions exist, they have failed

at informing and/or capturing the market.) As such, our system

reduces the user burden by using computer vision to identify

items and automatically cataloging them whenever possible.

II. USE-CASE REQUIREMENTS

Ease of use: Given our market niche, from a usability

perspective our project should be as unobtrusive as possible. All

in all the system should take a minimal amount of time to set

up, minimal input from the user to operate, and minimal

disruption to the user's normal routine when storing/retrieving

groceries. To quantify these requirements, the total setup time,

including account creation on the web-app and registering the

sensor, should take less than five minutes to complete. This

time amount is relatively arbitrary, but seems reasonable for

what a user would expect of a smart device that only needs a

one-time setup process. The system should update

automatically in the background, and only notify the user in a

limited handful of scenarios, adhering to the principle of

minimal user disruption.

Multiple Users: The database should be able to handle

multiple registered users, and multiple devices per user. Having

this use-case requirement makes future scaling of our system

much easier to implement.

Response time: Research suggests that most web-app users

expect responses within 3 seconds [1]. Therefore, it would be

good if the total response time of the system, from door close

to web-app update, was less than three seconds. (See Section IV

for further breakdown of expected response time values).

Item Handling: Our project should be able to handle both

supported and unsupported grocery items. While we try to

support a number of common grocery items, different users

with diverse culinary preferences likely have wildly varying

purchasing habits with regards to groceries. We’d like to ensure

that our system is flexible enough to handle such cases without

breaking or returning an error, while also ensuring manual item

entry works as expected. The user is notified of any

TABLE I. POSSIBLE CV OUTCOMES

Itemsa
CV Possible Outcomes

ID’d as A ID’d as B Fails to ID

Supported

item A

True positive
→ good ID

85%

False positive
→ bad ID

5%

False negative
→ failed ID

10%

Unsupported

item

False positive

→ bad ID

5%

True negative

→ no ID (good)

95%

a. Let X and Y be arbitrary supported items, A ≠ B

Fig. 1. Table breakdown of identification cases. Notice that each row should

sum to 100%.

Food Tracker

Jaeyoon Choi, Zhengze Gong, Keaton Drebes

Department of Electrical and Computer Engineering, Carnegie Mellon University

I

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 2

Fig. 2. System block diagram.

unsupported items, also pursuant to the earlier goal of minimal

user disruption.

Erroneous Identification: Additionally, we would like to

minimize the number of identification errors, which includes

false positives and false negatives (see Fig. 1). It is especially

important that we minimize false positives (incorrectly

identifying one object as another), which would cause the

greatest disruption in kitchen inventory assumptions. False

positives are more likely to go unnoticed until the user reaches

into their cabinet and notices the distinct absence of a key

ingredient, and could lead users to either not purchase an item

that they mistakenly believe they have, or double-stock an item

that they do have but was misidentified. That is to say, we

would much rather have a failed ID than a bad ID.

User Recipes: Users can add their own recipes to their

personal cookbook, and the system automatically checks

whether the user has all of the necessary ingredients for a given

recipe. If there are any ingredients missing, the system

automatically generates a grocery list, which the user can

access. Relatedly, the system supports sending the user a

grocery list with the said ingredients via both text and email.

Users can also share their recipes and view recipes shared by

others on a dedicated page.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The project consists of one (or optionally more) hardware

unit(s) that captures photos, a cloud server that handles the

computer vision, and a web-app that presents the information to

the user in a legible format (Fig. 2).

On a high level, the hardware component captures an image

of the storage area when the user closes the door, represented

by a ‘button press’ from a cabinet door closing, and sends it to

a cloud server running our computer vision algorithm. The

algorithm tries to identify the item added/removed by the user.

If the item can be successfully identified, the server updates the

user’s inventory in the database. Otherwise, it notifies the user

and asks them to label the item manually. The user can view

their inventory or label unidentified items through a web

application.

Our system has a few minor changes from those initially

specified in the design report. Firstly, the camera was changed

to be placed directly above the storage location as opposed to at

a 45 degree angle, which allowed better captures of any item

labeling. Additionally, we specified that the grocery lists can be

sent via text and email (we weren’t certain we would get to it,

at time of writing the design doc).

A. Hardware

The hardware unit consists of an RPi attached to a wide-angle

camera module, and a pushbutton switch. The camera is placed

directly above the items in the storage location, at such a height

as to ensure full view of the items. For the purpose of our demo,

the hardware unit was attached by a flap to the top of a

cardboard box (our storage unit).

Fig. 3. Labeled hardware unit.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 3

B. Hardware to Cloud

The hardware component communicates with the cloud

deployment with a POST request containing the device’s ID, a

serialized image, the serial number of the RPi, an integer

timestamp, and a secret validation string. Each of the hardware

units are given a secret validation string, so that a malicious

actor can’t impersonate another device and post fake JSON with

just the serial number. Similarly, the timestamp exists so that

the server can ignore repeated requests, if a malicious actor tries

to repeatedly send a message (replay attack). For security

reasons the POST requests are encrypted, and the server verifies

the correctness of the string via its internal mapping using a

JSON schema before processing the rest of the request.

C. Computer Vision Algorithm

From here, our cloud deployment of our CV algorithm

identifies the item from the image sent. For the computer vision

component, we use SIFT[3], as it was found to be the most

effective of the algorithms which we tested. In addition to SIFT,

we also use some secondary checks in order to increase the

accuracy in cases known to cause confusion. (See Section V for

a more comprehensive comparison of the potential advantages

and disadvantages of the available algorithms).

D. Cloud Deployment

Both our CV algorithm and our web application (web-app)

run on the same EC2 instance. Doing so cuts down on our cost

of running two servers, while reducing our complexity in

implementation. Furthermore, because SIFT is a comparatively

lightweight algorithm that doesn’t require much computing

power, we felt it didn’t warrant using dedicated GPU resources

or running on multiple instances.

E. Models used in the Database

Within the scope of this project, we have several models used

to store data. Of note beside the standard User, Device, and

Recipe classes is the distinction between Category and

ItemEntry. Categories describe general types of items. For

example, Milk is an item Category. If a user adds a bottle of

milk to a cabinet, then an ItemEntry instance with the Category

of Milk is made for that specific bottle. This distinction is

needed so that the CV code can classify objects correctly. This

also allows users to create recipes without being beholden to the

list of ingredients currently in their kitchens.

F. Web Application (Web-app)

As mentioned above, the web-app and the CV code run on

the same EC2 instance. Users can log in, view their registered

devices and inventories of those devices, add and modify

recipes that they have stored, based on the ingredients the user

is missing. The shopping lists can be sent to the user via either

email or text. All of the supported items are stored in a database

with quantity currently in the fridge and descriptors of the

iconic images.

The system also notifies the user if/when an unsupported

item is placed in the cabinet, by displaying a list of UNKNOWN

ITEM’s for each storage location. The user can then manually

Fig. 4. User action flow chart.

identify the item, tagging it as either an existing category of

item (the 10 supported item classes by default), or register it as

a new item category class. Should the user register the item as

a new class, it can be detected in the same manner as the other

registered items, but only for that user. For example, if user A

registers say, duct tape, any duct tape stored by user B will not

be identified as duct tape unless they also go through the

process of registering it (see Section V for more information on

why we do this).

IV. DESIGN REQUIREMENTS

For our design requirements, most of the requirements we

discussed in Section II can be carried forward into the final

design requirements, provided we place a greater burden on the

user than we would ideally want to. While this is unfortunate,

we saw no other way if we wanted to keep this project within a

reasonable scope.

The first requirement we place on the user is the requirement

to only retrieve/store one item at a time. While this is a hefty

requirement, but it is needed to satisfy a different use case

requirement, the ability to handle unsupported items. This

enables us to perform SSIM differentiation (a type of pixel

differentiation) to localize any object that we do not support.

This also helps us with localization in general, which makes it

easier to perform accurate classification.

The second requirement is that the user arranges objects

within the storage location such that the label is visible to the

camera. Attempting to classify objects without the labeling

being visible is simply not possible, so we must place this

burden on the user. While this could be remedied by installing

additional cameras, our use-case requirement of minimal user

effort during installation and the ease of implementation

ultimately led to this decision.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 4

While researching, we found an example of using YOLO for

object localization/classification with messy backgrounds for

grocery items that managed to achieve ~85% mean average

precision [2]. Given that we really don’t have to handle

localization at all, and we do classification with an uncluttered

background, we feel that an 85% accuracy rating is achievable

for our use case. We also feel that this is a reasonable

requirement, given our initial success with testing the various

algorithms (see Section V).

 For the time delay, while doing the tests to compare the

various algorithms, we found that the keypoint/feature

extraction with SIFT on a basic laptop took about .55 seconds

per image on average, with worst case images taking about 4.5

seconds. The manually taken Apple Sauce and Crushed Tomato

Sauce images taking about 4.5 seconds each. The feature

matching took an average of .033 seconds, with a worst case of

about 0.25 seconds. Again, most of the worst cases were

comparisons with the manually taken Apple Sauce and Crushed

Tomato Sauce images. At this time, we are uncertain of exactly

why there is such a variance between the average and worst case

times. Therefore, we decided to base our update time

requirement on the worst case scenarios of the CV component;

We allow for no more than 10 seconds from item placement

to website update.

Fig. 5. The item with the longest feature matching. The can of crushed

tomatoes took about 4.5 seconds to extract features.

Fig. 6. Breakdown of approximate time spent for any given item.

V. DESIGN TRADE STUDIES

There were several major decisions we made while iterating

on our design.

A. SQLite vs. Alternatives

SQLite is generally considered to be less effective when

handling large numbers of transactions concurrently. For larger

industrial deployments, MySQL could be a worthy investment

for security and scalability, especially when considering that

our main user-facing interactions happen on a web-app.

However, it’s clear that, at least for now, the costs outweigh the

benefits. Aside from not having the capital or the infrastructure

to run a database, our project is lightweight enough to run on an

EC2 instance even with multiple users, and we anticipate each

user not generating a large number of transactions. According

to a study by a consumer group in the UK, people open a cabinet

~9 times a day. we estimate ~10 (non-heartbeat) transactions

per user per day [4] on average, given how often people .

Additionally, we are using Django for the web-app, which

already supports SQLite as the default database backend.

Therefore, we decided to use SQLite given the lack of

performance concern and due to the time cost of switching to

an alternative.

B. SIFT vs. Alternatives

When determining the algorithm to use for object detection

and classification, we looked at SIFT, ORB, BRIEF, and YOLO

for detection in conjunction with a CNN for classification.

While we were doing our preliminary investigations, we found

that the non neural network algorithms seemed to perform

sufficiently well for our purposes (provided that the labeling

was visible). While the neural network based classifiers had the

potential to be better, we had no guarantee. Additionally, while

we found several datasets of grocery images, none of them

worked for our purposes, so the amount of effort that would be

required to generate the required training data would have likely

been substantial. Finally, if we used a neural network based

algorithm, we would have been unable to register arbitrary

grocery items on the fly, since we couldn’t expect the user to

provide enough training data to retrain the model every time

they need to register a new grocery item. Therefore, we decided

against using them, and instead focused on SIFT, ORB, and

BRIEF, which already showed us tangibly successful results.

In order to do a simple benchmark of the three algorithms,

we tested the effectiveness of the classification by measuring

the quantity of total matches/good matches using Lowe's ratio

test [8]. For the Iconic images, we used images taken from

grocery store online catalogs. For the actual images, we took

photos of the products, and manually cut out the background, to

simulate the pixel differentiation that would take place. This

does not perfectly simulate the photos taken from the sensor for

a number of reasons: The final images have some lens

distortion, and the focus is not as good. However, we feel that

this test was effective for the purpose of comparing the given

algorithms.

As shown in Table IV (Appendix), SIFT completely trounced

the other algorithms. BRIEF misidentified 10/11 of the item

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 5

classes which were tested, ORB failed slightly better,

misidentifying 4/11 of the items tested. SIFT failed for only

2/11 item classes (Eggs and Milk). Additionally, SIFT tended

to have a much greater difference between the correct/incorrect

items. For BRIEF, the difference in positive feature matches

between the identification with the most positive matches and

all other identifications was, on average, 7.55%. This was

57.4% for ORB, and 76.4% for SIFT. This shows that SIFT is

much better at distinguishing between items in the success

cases.

C. Cloud Deployment vs. Jetson Nano

A popular device for performing CV computations is the

Jetson Nano, whose powerful specs are more than capable for

our use case. However, we decided not to use this specialized

hardware for the following reasons.

• Low utilization: our use case has very low utilization
because a user is only likely to move grocery items ~22
times a day [4]. Although we can get lower latency with
local instantiation, the computational resources of the
Jetson Nano would be wasted when the system is idle.

• Lag tolerance of the system: the lag penalty for doing the
CV remotely is a fairly minor issue because we don’t
expect the user to check their inventory right after they
put items into the storage area.

• Miniscule data transfer: our project already necessitates
a network connection for the item list to be accessible
anytime via the web-app. Since the data we are
transferring over the network only consists of an image
and some text fields, which is expected to be around
2~3MB, the user’s network throughput is unlikely to
pose an issue.

• Physical Size: adding a Jetson Nano to our hardware
module would have required a larger physical footprint
in terms of volume. As our goal is to make the hardware
module as unobtrusive as possible, a Jetson Nano would
make the user installation more inconvenient.

• Cost: a typical mini fridge costs around $150~$250 on
Amazon, and a Jetson Nano kit is listed at $100+, which
is more than half the price of some fridges. If our product
were to be commercialized and scaled, the cost of a
Jetson Nano alone could be a high barrier to entry that
would dissuade many users.

Therefore, given how difficult we felt it was to justify the

cost of having dedicated local hardware, and given how flexible

our use case was to alternative solutions, we ultimately decided

to do the computer vision processing remotely.

D. RPi vs. Alternatives

There were several possibilities for the embedded hardware

we could use, Jetson Nano, Aduino, etc. Ideally, we would want

the cheapest possible hardware that could take a photo, and send

a post request to the web-app with the required information.

However, we decided to use the RPi because it was simpler to

prototype: in addition to being widely available, it has built-in

wifi capabilities, a selection of camera modules that had a

python package that allowed for easy control of the camera

module, and ample documentation online for troubleshooting.

E. OAuth vs. Proprietary Account Management

Our use case requires us to maintain the inventory of several

different users concurrently. Therefore, we need some method

of handling login and password management. Our options were

to utilize OAuth, or to store the information ourselves. OAuth

provides superior security and user experience, as it is much

more convenient than creating a separate username and

password for this specific service. Additionally, we don’t

anticipate implementing OAuth to be any more difficult than

handling it ourselves.

F. Global vs. Local Updates to Supported Items

To define Global and Local updates to supported items: A

global update is when a user stores an item that is not supported,

provides an iconic image when prompted, and the item is added

to the global set of supported items for all users. A local update

is when the user goes through the same process, but the item is

only added to the user’s own personal set of supported items.

Ultimately, we decided on local updates for two main

reasons. Global updates to the supported items list would leave

the CV algorithm vulnerable to potential griefing by a handful

of malicious users who could intentionally mislabel common

goods, or even label them with obscenities. Furthermore,

Global updates would also result in additional image

comparisons for every item in every user’s inventory, even if

they don’t regularly use the item in question, significantly

driving up response time and hindering user experience. Global

updating does have the advantage that we won’t have multiple

users running into the same coverage gaps—perhaps this could

be leveraged into a new feature in future improvements.

G. Django vs. Flask

Members of our team already had experience using Django,

and there weren’t any specific features offered by Flask which

are needed for our use case. Therefore, we’ve decided to just

use Django as the framework of choice.

H. Wide Angle Lens vs. Standard Lens

 Initially, we wanted to use a wide angle lens in order to

ensure that we had full vision of the items, regardless of how

close the camera was to the items. The distance of the lens to

the item ultimately was a non-issue, while the usage of a wide

angle lens became slightly problematic due slightly incorrect

undistortion (see Section VI). Additionally, due to replacing our

original set of camera modules, we were unable to easily

remove the lens. Ultimately, since the issues with distortion

were minor, we decided to continue using the wide angle lens

instead of purchasing another camera module.

VI. SYSTEM IMPLEMENTATION

A. Hardware

The hardware component consists of a Raspberry Pi (RPi)

model 4B, the OV5647 Arducam camera module, and a

pushbutton wired to the RPi. While we initially specified an RPi

3B, as it is a cheaper model, our hardware requirements only

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 6

Fig. 7. Computer Vision flowchart.

require built-in wifi connectivity and a 15-pin MIPI Camera

Serial Interface Type 2 (CSI-2) port for the camera hardware.

Accordingly, when the CSI port on the 3B was accidentally

broken, we replaced our design specification with the 4B as it

was the model that could be delivered the fastest. Because of

this hardware component, we do require that the RPi have some

power supplied to it either in the form of a power bank or an

outlet connection.

Our system also has a button connected to GPIO pin 5 of the

RPi, and placed by the cabinet door to “sense” (read: simulate)

door closure. While it’d be wonderful for a hypothetical real-

world deployment to have an integrated sensor unit built into a

smart storage appliance, having a simple button to detect

cabinet closure also allows for retrofitting existing “dumb”

appliances and standard cabinets with minimal installation, and

in a way is more flexible and accessible to more people.

The OV5647 Arducam camera module connects directly to

the RPi’s CSI port. This sensor works in the same manner as

the native RPi camera module, meaning we can use the picam

Python package to easily control it. The OV5647 comes pre-

equipped with a wide angle M12 lens.

Each RPi knows its own serial ID, the number of messages it

has sent to the web server, and its secret string, all of which are

used when communicating with the web-app. The sensor sits

idle until it detects a door closing (reads a button press on GPIO

pin 5). When this happens the RPi takes a photo, and sends it to

the web-app by an HTTP POST, before returning to idle. (See

Section VI.C for details on the communication between the

web-app and the hardware component.)

B. Web-app

The web-application is hosted on an AWS EC2 instance. The

EC2 instance we used for the live demo was t3-2xlarge, which

has 8 virtual CPU cores (vCPU) and 32 GB of memory. During

testing, it was hosted on t2.xlarge, which has 4 vCPUs and 16

GB memory. While the upgrade wasn’t strictly necessary, we

wanted to minimize the number of possible hiccups during the

live demo, as well as demonstrate that scaling up using AWS is

a seamless process. We use an Apache server in order to

connect the Django backend to the incoming HTTP traffic.

We assigned an elastic IP on AWS for our EC2 instance so

that the IPv4 address for the server stays constant upon reboot.

We purchased a domain (b6foodtracker.com) for our web-app

and redirected its traffic to the elastic IP of our web server. We

also generated an SSL certificate from the free service Let’s

Encrypt to enable HTTPS for better security.

The Django framework handles any incoming requests from

the hardware components as well as displaying the inventory

information to the user. As mentioned earlier, we use the default

SQLite database to store user information. Django’s Model-

View-Controller pattern provides us with a great interface to

interact with the database on a high level, and we use model

classes for the creation of different objects like users and

devices. A class diagram can be found in the Appendix (Fig.

15).

When a user first visits the web-app, they are first greeted

Fig. 8. Website flowchart.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 7

with a splash page showcasing our product, and then prompted

to register an account via OAuth with Google or Facebook. The

registration attempt is only considered complete when the user

enters a valid phone number—otherwise, we continuously

redirect to the registration page. The phone number is needed

in order to send shopping lists via SMS to the user.

User authentication is implemented using the Django

component of the python-social-auth library called social-app-

django, which supports logging in from a number of different

services through the OAuth protocol, including Google,

Facebook, Twitter, etc. We associate each user with their email

address, so a user logging in from different providers with the

same email address would log in to the same account in our

system. The social-app-django library follows a login pipeline,

which consists of functions that fetches the user’s id from the

provider, checks if the user already exists in the system, etc. We

added custom functions to the pipeline to fetch users’ profile

pictures and email addresses. Fetching email addresses is

needed because some OAuth providers (like Facebook) don’t

provide this information by default. To comply with OAuth

requirements, we also have a privacy policy page stating the

reason and scope of our minimal user data collection.

Phone number validation is implemented using the django-

phonenumber-field library, which provides a phone number

field for our object models. It can parse and validate phone

numbers by checking the area code (first three digits), the

central office code (middle three digits), and the line number

(last four digits). Currently we only support US numbers, but

this can be easily expanded in the future.

After the user is authenticated, the user must register a device

with the web-app in order to use the service. We maintain a list

of all the devices we have “manufactured” to prevent fraudulent

device registration. When the user enters the serial number of

their new device during device registration, we activate this

device and assign the current user as its owner. To prevent

malicious actors brute forcing all possible serial numbers, we

added reCAPTCHA (a CAPTCHA system developed by

Google) to the registration form to block any automated

registrations. Relatedly, attempting to register an already-

registered device either (1) shows a generic error message, or

(2) shows a warning message if the device in question is already

Fig. 9. Screenshot of the device registration page.

assigned to the current user. Showing a generic error message

was a conscious choice to leak as little information to the user

as possible to minimize potential attacks by a malicious actor.

When handling incoming POST requests from the hardware

module, the web-app invokes the CV component for object

classification. If the CV component is able to classify the

object, the web-app updates the inventory in the database

accordingly. Otherwise, the web-app classifies the item as an

unregistered item, and keeps a thumbnail of the object obtained

from SSIM difference calculations in the CV component. When

viewing any storage location, the web-app displays a list of

unregistered items, and a prompt for users to manually classify

them. If the user interacts with the prompt, the website displays

the thumbnail image and prompts the user to select from the

existing categories, or manually enter an item category.

Each identified item is assigned a location field to indicate

the device that currently holds the item. These items are then

filtered through a Queryset by location on the server side to

generate an inventory list on the web-app. If the user owns

multiple devices, the web-app can also display a combined

inventory with a Queryset of all devices owned by a User,

which is useful to see the combined ingredients currently in the

kitchen, perhaps for any recipes that call for ingredients stored

in multiple locations.

We designed two models for the recipes, Recipe and

PublicRecipe. The former is private and only viewable by its

creator while the latter is viewable by anyone. When a user

creates a recipe, we use the Recipe model, and if the user

decides to publish it, we copy its contents and create a new

instance of the PublicRecipe with them. Similarly, we create a

new Recipe instance if the user wants to save a public recipe.

Each recipe contains a list of ingredient Categories, and we

iterate through all items a user owns and check against this list

to generate a shopping list upon request.

C. Communications

The hardware component and the cloud server communicate

through HTTP POST requests. The POST requests are

generated via python’s requests package and its content is a

serialized JSON string.

When the device takes a photo, it converts it to a string of utf

characters using python’s base64 package. (See Fig. 10 for full

schema.)

The web-app only accepts requests coming from activated

devices. It also stores the hashed secret key for each device in

the database to validate requests. Using the secret key ensures

Fig. 10. Schema for the JSON message.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 8

that a malicious actor will not be able to modify someone else’s

inventory by simply modifying the serial number in the request;

hashing the secret keys is an added security measure to ensure

the system’s operation in case of a data leak.

The hardware device also sends POST requests with an

empty “image” JSON field every 15 minutes (we used 1 minute

during the live demo in case we had to showcase the

functionality) as heartbeat messages to the server to indicate its

online status. If the server hasn’t received any messages from

an activated device for 45 minutes (missing three heartbeats),

its owner is notified via an online/offline status icon on the

website.

When the user visits the website, the client-side JavaScript

code uses AJAX to pull information from the server every 10

seconds to get the most recent inventory. This step enables

dynamic updates to the webpage when the inventory in the

database is modified without the need to refresh the page.

D. CV Component

To review from Section V, a globally registered grocery item

is a grocery item that can be recognized by all users’ tracker. A

locally registered grocery item is an item that can only be

identified by a specific user’s tracker.

At startup, the CV component extracts the features and key

points from the iconic images for each of the 10 default globally

registered image classes. The grocery items that are registered

globally are as follows: Applesauce, crushed tomatoes can,

shredded cheese bag, spaghetti, baking powder, yogurt, cereal,

and Ritz crackers. The descriptors for each of these image

classes are held in a global state variable, and are used until the

web server shuts down.

When invoking the computer vision code, the web

application passes the following information: image of previous

state, image of new state, the set of items already present in the

storage location, and a map of locally registered item categories

to their descriptors. The CV component performs four passes in

order to classify the object. A visual demonstration of each of

these passes is provided in Fig. 11.

First, we undistort both of the images with two distortion

coefficient matrices, K and D, which are obtained by taking

pictures containing a 9x9 checkerboard and feeding them to an

OpenCV algorithm that approximates the K and D values

(cv2.fisheye.calibrate). We took 92 Checkerboard images in

total. This process does not perfectly undistort the image;

however, additional calibrations were providing only negligible

improvements, and for our purposes the undistortion was

working sufficiently well.

The CV component first performs a Structural Similarity Index

Measure (SSIM) differentiation between the image of the

previous state and the image of the new state. This is an

algorithm that performs a pixel by pixel similarity measure, in

such a way that is more in line with how humans perceive

difference than a simple pixel diff [7]. Using SSIM helps us to

mitigate the effects of slight changes in lighting. We then

perform contour detection on the SSIM diff, to produce a list of

regions of difference between the two images. We isolate the

largest region of change, as we expect the added/removed item

Fig. 11. Showcase of the CV processing. Initial raw image taken by RPI, top

left. Undistorted image, top right. Image with annotated regions of change,

lower left. Localized image, lower right.

Fig. 12. Iconic image and target image, showing descriptors and keypoints of

SIFT algorithm.

to be present in that region. This step occurs after the

undistortion, as we have found it to work slightly better on

undistorted images.

Next, we run SIFT to extract the keypoints and descriptors

from the region of interest of the new state image. We then

attempt to match the descriptors to each of the known grocery

items’ descriptors. If we fail to find any items of interest, we

repeat the above process on the region of interest in the old state

image, restricting the comparison to items that we know are

present in that location.

Finally, we perform some heuristics to help mitigate common

confusions. Notably, the largest region of change often captured

large, and variable amounts of background. Therefore, most of

these checks were designed with the assumption that the size of

the region of change was often larger than the object, but very

rarely smaller. This also meant that checking for the ratio of

colors seen in an image was often inaccurate in the case that

large swaths of background was present. The secondary checks

included: Preemptively removing items from consideration if

the region of change is smaller than the given item, deciding in

favor of milk and Yogurt if the object was predominantly white,

deciding in favor of crushed tomatoes if there was red in the

image and SIFT was torn between tomatoes and applesauce.

These were performed according to the most common

confusions seen in our confusion matrix. Please see Tables V,

VI, VII in the appendix for the confusion matrices obtained

throughout testing, and the confusion matrix of the final

product.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 9

If we successfully identify any grocery items in the new state

image, it means that the user has added that grocery item to the

storage location. If we successfully identify any grocery items

in the old state image, it means that the user has removed that

item from the storage location. If we fail to identify any

registered grocery items, it means that the user has added an

unregistered item. The new item is given a temporary

UNKNOWN_ITEM category by the web component, and its

descriptors are then added to the user’s map of registered

grocery classes items. This is done so that if the item is removed

prior to the user manually specifying the item, we can still

identify it.

E. Overall difference with our original design document

Overall, there were few changes with respect to our design

document. The largest changes include the addition of recipes,

and the ability to share them on a public Discover page. There

were also several additions to the CV process: the undistortion

step, the secondary heuristic step, and the change from pure

pixel diff to using SSIM.

There were also several changes in this section, where we

added a bit of specificity that we hadn’t decided on at the time

or writing the design document: Apache, bootstrap CSS, etc.

VII. TEST, VERIFICATION AND VALIDATION

In order to test our device, we repeatedly simulate updating

a “kitchen” inventory. To do this, we subdivided our storage

location into 9 general regions, all the cardinal/intercardinal

regions (45°, 90°… 360°), and center. We then pick a random

grocery item, and a random location in which to store that item.

If the grocery item is already being stored, we first remove it. If

the location where we are placing the item is occupied, we

remove the items until we can fit our randomly chosen grocery

item.

If the item could be rotated, it is placed in such a way as to

best orient the label towards the camera. If the location is not

center, we place the item as close to the wall of the container as

we can. In the event that an error occurs, we manually update

the information on the database so that it was accurate for the

next update. We feel that this is a reasonable simulation of how

a typical user might store an item in a storage location. This

process was used for both Response time testing, and

Classification accuracy testing. The procedures are listed in

more detail below. (See the appendix Tables VIII and IX for the

complete dataset.)

Originally, we wanted to have two distinct storage locations,

and pick the location from between the two locations (IE, a

random choice of 18 possible locations). However, we were

unable to due to unfortunately breaking the CSI port on one of

our RPi’s, and being unable to procure a replacement in time

(see Section VIII.E).

During testing, our website was hosted on t2.xlarge EC2

instance, which has 4 vCPUs and 16 GB memory.

A. Response Time

In order to test update speed (i.e. time from button press to

website update), we simply measure the amount of time that

Fig. 13. Graph of response times.

passes from when the hardware component sends the item, to

when the hardware component receives an acknowledgement.

While this does not account for the travel time of the

acknowledgement, that time should be fairly minor in the face

of the server processing time (several seconds vs 10’s of

milliseconds) This provides us with a fairly accurate measure

of the response time of a typical update to a user’s storage

location. This testing was done in conjunction with the

classification accuracy test.

 Our results were very good: we had a mean response time

of 7.006 seconds, a median response time of 6.78 seconds, and

a worst case response time of 12.825 seconds. Therefore, we

can confidently state that, in the general case, the response time

is within 10 seconds. (See Fig. 13 for graph.)

B. Classification Accuracy

To check classification accuracy, we repeatedly updated the

kitchen’s inventory using the process described at the beginning

of this section, keeping track of the success, failures, and

misidentifications per item. (See Fig. 1 for how we classify

different failures.) We repeat this until we’ve seen every item

10 times or we have 200 trials, whichever takes longer. Given

that we expect the update process to closely simulate the

behavior of a typical user, this should be a fairly accurate

measure of classification accuracy for a typical user over the

course of their using the device.

Our first round of testing took 272 trials (see Table VIII). We

achieved an accuracy ratio of 93.75%, a false positive ratio of

6.25%, and a false negative ratio of 0%. This false positive ratio

was greater than our allowed 5%, and we deemed it a failure.

We made some changes to the heuristic step, to make the

heuristic functions more liberal in making changes. We also

added a check for the difference between the most likely object

class, and the second/third most likely class according to SIFT.

If this difference wasn’t sufficiently large, we would choose to

fail to ID the item. We also tried putting blank white paper at

the base of the storage location, to hopefully provide a more

distinct background.

The overall result of the second round of testing was very

poor (see Table IX). We called the testing early, at 58 trials. We

achieved an accuracy ratio of 46.55%, false positive ratio of

5.17%, and a false negative ratio of 48.28%. We discontinued

testing at this point, and reverted to the previous setup.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 10

Overall, we failed to achieve our desired results, due to the

overprevalence of false positives.

C. Heartbeat Testing

To test the heartbeat mechanism, we disconnected the RPI

from the internet for 45 minutes, and then reconnected it. This

test was successful. This testing was likely insufficient, as we

did encounter one error at time of live demo, wherein the device

would be set to offline when first registered, depending on the

time that device was added to our database. This is now fixed.

VIII. PROJECT MANAGEMENT

A. Schedule

We’ve divided our Gantt chart into subsections (Appendix,

Fig. 16): CV proof of concept, Web App Component,

Benchmarking, Integration, Website enhancements, and

Documentation. The first three sections are the initial work that

can be done in parallel, that are necessary for the MVP.

Integration is self-explanatory. Website enhancements consist

of a number of user quality of life improvements that, while

important, are not needed for the MVP.

When comparing our original Gantt chart to our final version,

there are several noticeable differences. First, work on CV

optimizations and CSS continued pretty much up until the very

end. This was caused by placing greater priority on other

functionality, and since work on both CV optimization and CSS

could be completed piecemeal, work was often start and stop.

Second, AJAX took much longer than expected due to a relative

lack of familiarity compared to other components of the project,

which had a knock-on effect on delaying other components

further downstream. Finally, some other smaller items that

could be delayed until the final demo (hardware button,

HTML/CSS improvements, etc.).

B. Team Member Responsibilities

Generally speaking, Keaton was primarily responsible for

writing and testing the CV used for object classification. Harry

also contributed some optimizations, specifically with regards

to the SSIM localization. Harry was primarily responsible for

the overall system design, webpage styling using Bootstrap, and

web-app backend development including OAuth and backend

logic. Jay helped with this, especially as it pertained to his

primary work with the front end. Jay was primarily responsible

for the web application front end (AJAX and HTML) and

assisting implement the backend. Many responsibilities for the

web-app switched hands between us three members as we

found out which of us had more free time between course loads

as well as maneuvering personal experience.

C. Bill of Materials and Budget

Overall, we are well within the bounds of our budget, sitting

at $370 spent (see Table III).

Of our initial purchases at the beginning of the semester,

there were several things we ended up not using: two of the

three OV5647 camera modules, which may or may not be

broken, and the lenses for those camera modules. Additionally,

the two RPi’s which we ordered did not actually arrive due to

P-card ordering issues. We do not know for certain the final

status of this order. Upon last talking with Quinn, the order had

been canceled, but independent of our Capstone he had placed

a separate order to have a spare RPi on hand. Even with both

RPi’s still included in our cost breakdown as a worst case

scenario, we remained under budget.

D. AWS Usage

At the time of writing, the usage for our AWS credits is as

follows:

TABLE II. AWS COST BREAKDOWN

Service Hourly rate Time (hrs) Cost

EC2 On Demand Linux

t2.xlarge Instance

$0.1856 5.709 $1.06

EC2 On Demand Linux

t3.2xlarge Instance

$0.3328 30 $9.98

Elastic IP addresses $0.005 114.8 $0.57

Total cost: $11.61

Fig. 14. Breakdown of AWS cost, per item, per hour.

Our AWS credits were used to run one EC2 instance which

did dual duty running our CV code, which identified grocery

items from a RPi camera module, and a web-app which was

used to send that image from the camera to our CV code and

display it on a web application in a user-friendly way. We

launched a t2.xlarge instance for development and upgraded to

a more powerful t3.2xlarge instance for our final capstone

demo, as we had leftover credit. We also used the Elastic IP to

attach to our purchased domain, b6foodtracker.com. In total,

$11.61 of our allotted $50 were consumed at the time of writing.

We’d like to express our gratitude to AWS for providing the

Electrical and Computer Engineering department at Carnegie

Mellon University with these free credits.

E. Risk Management

Most aspects of our project were done independently, and

there was little to no risk of catastrophic failure. In the design

document, we viewed the two most risky portions of the project

to be the possibility of not meeting the accuracy requirements

for the CV device, and not meeting the update speed

requirements.

For the accuracy requirements, we did end up adding several

heuristic checks, and performing many tweaks. Unfortunately,

we were unsuccessful in our ability to meet the accuracy

requirements. The major timesink actually ended up being the

time required to perform the test, it took about three hours to

take all the photos for the first test. A more thorough test should

have been performed earlier into the project, or we should have

come up with a faster way to perform a unit test on the CV

component itself.

The update speed requirements actually ended up being a non

issue, we were well within the bounds without the need for any

optimizations. Additionally, as we mentioned in the design

report, we were able to even further speed up the overall

response time by using a higher capacity EC2 instance.

Besides the two risks we identified going into the project, we

also had an unexpected hardware issue when the CSI port on

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 11

our RPi broke, and we didn’t have a replacement. Additionally,

our order for a second RPI that we had ordered to demonstrate

multiple concurrent users was canceled due to logistical

difficulties with the CMU P-card ordering procedures.

Thankfully, Quinn was very helpful, and loaned us a

replacement that he had on hand that also worked with our

hardware specifications mentioned in Section VI.A, Hardware

System Implementation.

IX. ETHICAL ISSUES

First, given that we can only guarantee accuracy for the set

of items we’ve explicitly supported, there is the potential

unfairness to users who generally use grocery items different

than those that we explicitly support. This may be due to

individual variance, or perhaps users that belong to a culture

that generally uses different grocery items. Additionally

different cultures may use different labeling techniques, which

may have effects on the accuracy of SIFT. For example, labels

containing Japanese hiragana may be more/less recognizable by

SIFT, which would lead to increased/decreased accuracy.

While this certainly could become an issue, it is difficult to

diagnose, given the vast number of different written languages,

and grocery items. We view this as an issue to diagnose once

if/when we decide to expand this product to an international

marketplace.

Second, was the potential for using our device as a spycam.

IE, a user could place the device in a public location, hotwire

the hardware unit to take a photo every few seconds, and scrape

the relevant information from the web application. Due to the

nature of our design, it would need to be placed in a location

with consistent lighting, and whatever object/entity it would be

looking for must be easily recognizable by the SIFT. This

would only be doable by a very knowledgeable malicious user,

and it would likely be easier and much more effective for such

a user to build their own spycam rather than retrofit our project.

Third, systems that require registration can be exploited by

malicious actors brute forcing all the possible inputs, which in

our case is the serial number of the devices. Since we have

incorporated OAuth in our system for secure authentication,

and implemented secret key hashing and reCAPTCHA as safety

measures, our system is tolerant against such attacks.

Fourth, since we store private information about users like

email and phone number, data leaks could have serious

consequences. Therefore, the security of the system needs to be

upgraded and rigorously tested in the future. Additionally, we

have a privacy policy that clearly delineates the scope and

intended use of any personal information, and any opt-out

procedures for deleting a user’s account.

Lastly, since our system supports sharing recipes, which

consists of texts like recipe names given by the user, there is a

possibility for malicious users to spread illicit or hateful words.

However, this is easily solvable in the future by setting up a

monitoring system.

X. RELATED WORK

There were also a number of similar projects from previous

years that we investigated while working on designing our own.

“Backpack buddy”, Spring 2021 C0, is a project that tracks the

location of the user's items using RFID tags. It was our principal

source of inspiration before we switched to using computer

vision. “SmolKat”, Spring 2021 D3, is another similar project

that focused on identifying items in a storage location. They

used Google’s Cloud Vision API as their classification system,

as opposed to SIFT. “Sous-Chef” Spring 2020 A4, also focused

on identifying items in a storage location using CV. However,

they focused on looking for barcodes, as a method of

identifying the item. “Fresh Eyes,” from this Spring 2022 B3,

also developed a kitchen inventory app, but their use case

focused more on produce expiration dates. As mentioned in an

earlier section, we came across a similar project online, “Grocer

Eye” which we used as a reference for our potential accuracy.

XI. SUMMARY

Overall, while we were unable to meet all of our design

requirements, we came very close. Therefore, we feel fairly

happy with the state of our project.

A. Future work

Given more time, the first priority would be to optimize the

CV component, such that we could meet our design

requirements. I think this could be done fairly easily, given how

close we were.

Supporting a greater list of items, and possibly using a CNN

could easily be managed with more time, and with more people

available using the product to generate training data for the CV

algorithm.

Several stretch goals for the website, such as integrating

some online recipes functionality, would have been a fantastic

addition to our system had we had more time. User-created

recipes supporting notes for the actual recipes would also have

made our product more holistic.

Given a huge amount of extra time and funding, we could try

and create an actual demo smart appliance, as opposed to just

using a cardboard box. Perhaps the increased stability from

such a hardware build would also improve pixel diff

calculations in our CV component.

B. Lessons Learned

Personally, we feel that there were two major lessons. First,

when working with embedded devices, cost permitting, have

backup hardware in case of emergency. Secondly, in situations

where performance is paramount, do rigorous unit testing as

early as possible, and ensure that your unit testing can be

performed fast enough that you can iterate on the results as

needed.

C. Closing Thoughts

Our inspiration for this project has deep personal relevance

to us all. We feel that this problem of grocery inventory is

overwhelmingly common, and we hope that someday our

project can be improved upon, and made into a commercially

successful tracker that will fulfill the grocery-shopping needs

of every home cook. Thank you for reading.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 12

GLOSSARY OF ACRONYMS

AWS - Amazon Web Services

BRIEF - Binary Robust Independent Elementary Features

CAPTCHA - Completely Automated Public Turing test to

tell Computers and Humans Apart

CSI - Camera Serial Interface

CV - Computer Vision

EC2 - Amazon Elastic Cloud Compute

GPIO - General-Purpose Input/Output

HTTP - Hypertext Transfer Protocol

JSON - JavaScript Object Notation

MVP - Minimum Viable Product

OAuth - Open Authorization

ORB - Oriented FAST and Rotated BRIEF

RPi – Raspberry Pi

SIFT - Scale Invariant Feature Transform

SMTP - Simple Mail Transfer Protocol

SSIM - Structural Similarity Index Measurement

SSL - Secure Sockets Layer

YOLO - You Only Look Once

REFERENCES

[1] "How to Check, Measure, and Improve Server and Application

Response Time With Monitoring Tools," DNSstuff, 12-Dec-2019.

Accessed on Feb 28, 2022 [Online]. Available:

https://www.dnsstuff.com/response-time-monitoring.

[2] R. M. Bhimani, "Grocereye - a YOLO model for grocery object
detection," Rehaan M. Bhimani, 18-Dec-2020. Accessed on Mar 3, 2022

[Online]. Available:

http://students.washington.edu/bhimar/highlights/2020-12-18-

GrocerEye/.

[3] D. Lowe, “Object Recognition from Local Scale-Invariant Features.”
[Online]. Available: https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf

[4] K. Avis-Riordan, “It’s official: we’re a nation of fridge raiders,” House

Beautiful, Jul. 28, 2017.

https://www.housebeautiful.com/uk/lifestyle/storage/news/a2110/fridge-

food-cupboard-habits/ (accessed May 08, 2022).
[5] M. King, “7 Best Restaurant Inventory Management Software for 2022,”

Fit Small Buisness, Nov. 2021. https://fitsmallbusiness.com/restaurant-

inventory-management-software/ (accessed May 07, 2022).

[6] “SuperCook: Recipes By Ingredient - Apps on Google Play,”

play.google.com.
https://play.google.com/store/apps/details?id=com.supercook.app

[7] Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image

quality assessment: from error visibility to structural similarity," in IEEE

Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April

2004, doi: 10.1109/TIP.2003.819861.
[8] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

Jan. 2004. Accessed: May 07, 2022. [Online]. Available:

https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 13

APPENDIX

TABLE III. ASDF

Fig. 15. Class model diagram of database

TABLE III. BILL OF MATERIALS

Description Model # Manufacturer Quantity Cost @ Total

RPi Model B 4328498196 RPi Foundation 2* $100 $200

1/2.7"mm Focal Length

Lens Arducam 2 $18 $36

OV5647 with M12

Lens Preattached Arducam 3 $28 $84

AWS Credit Amazon 1 $50 $50

*Order may or may not

have gone through

Grand Total $370.00

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 14

TABLE IV. COMPARISON OF VARIOUS CV ALGORITHMS.

The x-axis is the iconic image, and the y-axis is the actual item. 1.000 represents the best number of descriptor matches for the given iconic class. .5 would represent

.5 * the best number of descriptor matches for the given iconic class.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 15

Fig. 16. Gantt chart.

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 16

Note, for tables V and VI, orientable items (Applesauce, Yogurt, Beans, Crushed Tomato Can, etc.) were not necessarily placed

angled towards the camera. As such, confusions may be overrepresented for those objects compared to the table VII, where

printable objects were always oriented towards the camera.

TABLE V. CONFUSION MATRIX OF TESTING DATA LOCATED IN THE “TOPDOWN” FOLDER (~100 IMAGES), PRIOR TO IMPLEMENTATION OF HEURISTICS.

TABLE VI. CONFUSION MATRIX OF TESTING DATA LOCATED IN THE “TOPDOWN” FOLDER (~100 IMAGES), POST IMPLEMENTATION OF HEURISTICS.

TABLE VII. CONFUSION MATRIX OF FINAL TRIAL (~270 IMAGES)

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 17

TABLE VIII. FINAL TRIAL (~270 IMAGES)

Item Action Location Failed Time

cereal add

0 7.74

cereal remove

0 8.64

beans add

0 8.593

Tomato Can add

0 7.196

beans remove

0 6.651

beans add

0 6.932

beans remove

0 7.392

beans add

0 6.91

baking powder add

0 6.98

cracker add

0 7.296

baking powder remove

0 7.67

baking powder add

0 8.02

tomato Can remove

0 8.63

cracker remove

0 8.635

cracker add

0 7.51

baking powder remove

0 6.99

cracker remove

0 7.555

baking powder add

0 6.84

baking powder remove

0 6.42

cereal add

0 7.607

spaghetti add

0 7.583

spaghetti remove

0 6.913

cereal remove

0 7.036

milk add

0 8.647

cheese add

0 7.06

beans remove

0 6.84

cheese remove

0 8.44

applesauce add

0 7.48

tomato Can add

0 6.71

tomato Can remove

0 7.27

milk remove

0 9.19

cereal add

0 7.8658

cereal remove

0 7.64

cracker add

0 7.917

cracker remove

0 7.194

baking powder add

0 7.4

baking powder remove

0 6.615

cheese add

1 6.74

cheese remove

1 7.151

applesauce remove

0 8.42

applesauce add

0 7.39

beans add

0 7.79

baking powder add

0 6.65

yogurt add

0 6.51

baking powder remove

0 6.59

spaghetti add

0 6.63

baking powder add

0 6.59

spaghetti remove

0 6.8

cereal add

1 8.21

kidney beans remove

0 6.62

applesauce remove

0 6.92

spaghetti add

0 6.66

spaghetti remove

0 7.48

spaghetti add

0 6.86

spaghetti remove

0 9.12

cereal remove

0 7.77

spaghetti add

0 6.67

beans add top 0 6.65

yogurt remove left 0 8.03

baking powder remove bl 0 8.9

baking powder add left 0 8.04

tomato Can add br 0 7.59

beans remove top 0 6.75

cracker add top 0 8.4

spaghetti remove right 0 7.78

cracker remove top 0 8.02

spaghetti add center 0 7.78

baking powder remove left 0 8.13

cereal add tl 0 7.86

cereal remove tl 0 8.08

cracker add tl 0 7.65

cracker remove tl 0 8.25

spaghetti remove center 1 8.35

cracker add b 0 8.72

tomato Can remove br 0 7.71

cheese add br 1 7.32

cheese remove br 1 6.81

milk add right 0 7.43

cracker remove b 0 7.12

cereal add b 0 7.86

beans add tl 0 6.55

milk remove right 0 8.48

yogurt add br 0 6.86

cracker add left 0 7.17

cracker remove left 0 6.91

tomato Can add left 0 7.1

spaghetti add tr 0 7.24

beans remove tl 0 6.48

beans add top 0 6.84

beans remove top 0 6.78

cereal remove b 0 7.12

beans add center 0 6.97

beans remove center 0 6.74

spaghetti remove tr 0 7.46

spaghetti add center 0 6.73

tomato Can remove left 0 7.12

cracker add left 0 7.58

spaghetti remove center 0 6.59

cracker remove left 0 7.52

spaghetti add left 0 7.49

applesauce add b 0 7.03

applesauce remove b 0 6.93

applesauce add tr 0 6.86

yogurt remove br 0 6.65

applesauce remove tr 1 6.84

cracker add right 1 7.51

yogurt add center 0 6.87

cracker remove right 1 6.9

beans add right 0 6.93

applesauce add b 0 6.94

yogurt remove center 0 7.83

milk add center 0 7.83

applesauce remove b 0 7.55

beans remove right 0 6.5

cracker add tr 0 6.599

cracker remove tr 0 6.448

cereal add br 0 7.09

yogurt add left 0 6.57

cereal remove br 0 6.54

beans add b 0 6.61

yogurt remove left 0 6.47

milk add tl 0 6.635

yogurt add bl 0 6.78

milk remove tl 0 6.9

beans remove b 0 6.882

cereal add top 0 7.18

cereal remove top 0 6.86

applesauce add bl 0 8.85

applesauce remove bl 0 6.83

spaghetti add tl 0 6.39

yogurt remove br 0 6.38

cereal add right 0 6.83

spaghetti remove tr 0 6.58

yogurt add Left 0 7.09

cereal remove right 0 9.993

applesauce add center 1 7.28

applesauce remove center 1 6.626

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 18

milk add right 0 6.52

milk remove right 0 7.59

yogurt remove Left 0 6.57

cereal add br 0 6.87

baking powder add tl 0 6.297

cereal remove br 0 7.79

cheese add tr 0 6.87

cheese remove tr 0 6.56

cheese add tr 0 6.5

applesauce add Left 0 6.66

cheese remove tr 0 6.37

cheese add right 0 6.9

cheese remove right 0 6.29

beans add tr 0 6.66

yogurt add b 0 6.76

yogurt remove b 0 7.89

cheese add br 0 6.75

applesauce remove Left 0 8.18

cracker add bl 0 6.725

cracker remove bl 0 6.52

tomato Can add center 0 6.69

tomato Can remove center 0 6.56

milk add bl 1 7.22

cheese remove br 0 6.47

tomato Can add br 0 6.63

yogurt add center 0 6.54

beans remove tr 0 6.5

beans add tr 0 6.5

baking powder remove tl 0 6.57

milk remove bl 1 7.67

baking powder add bl 0 6.39

yogurt remove center 0 6.45

cracker add tl 0 6.67

cracker remove tl 0 6.69

spaghetti add t 0 6.75

tomato Can remove br 0 6.657

beans remove tr 0 6.45

tomato Can add tr 1 6.3

spaghetti remove t 0 6.89

cheese add b 0 6.78

baking powder remove bl 0 8.75

baking powder add t 0 6.78

cheese remove br 0 6.39

tomato Can remove tr 0 6.3

milk add right 0 6.919

baking powder remove t 0 6.82

baking powder add center 0 12.825

milk remove right 0 7.65

cheese add br 0 6.63

baking powder remove center 0 6.32

cheese remove br 0 6.47

cereal add t 0 9.35

cereal remove t 0 6.75

cheese add b 0 6.75

cheese remove b 0 6.62

milk add t 0 7.04

milk remove t 0 6.56

cereal add t 0 7.2

cereal remove t 0 6.99

cereal add right 0 6.91

spaghetti add tl 0 6.75

cereal remove right 0 6.6

spaghetti remove tl 0 6.4

cracker add bl 0 6.44

cracker remove bl 0 6.47

cracker add b 0 6.67

cracker remove b 0 6.82

cracker add bl 0 6.48

cracker remove bl 0 6.416

cereal add b 0 7.06

cereal remove b 0 7.27327

applesauce add br 0 7.39

applesauce remove br 0 6.9

tomato Can add right 0 6.65

tomato Can remove right 0 6.57

cracker add br 0 7.1

cracker remove br 0 6.55

applesauce add b 0 6.48

tomato Can add center 0 6.44

applesauce remove b 0 6.35

applesauce add br 0 6.449

tomato Can remove center 0 6.52

milk add Left 0 6.87

cheese add tr 1 8.528

milk remove Left 0 6.75

cereal add tl 0 6.72

cereal remove tl 0 6.79

applesauce remove right 0 7.39

applesauce add Left 0 6.396

cheese remove right 1 6.35

cereal add right 0 6.89

cereal remove right 0 6.55

cracker add tr 0 6.69

cracker remove tr 0 6.29

applesauce remove Left 0 6.2

cracker add center 0 6.75

cracker remove center 0 6.34

cracker add tr 0 7.87

cracker remove tr 0 7.84

cereal add right 0 6.96

cereal remove right 0 6.94

cracker add right 0 6.75

cracker remove right 0 6.45

spaghetti add t 0 7.27

spaghetti remove t 0 6.5

yogurt add b 0 6.74

yogurt remove b 0 6.7

cereal add Left 0 8.08

cracker add tr 0 7.16

cracker remove tr 0 6.66

cheese add br 0 6.61

cereal remove Left 0 7.77

beans add b 0 6.82

baking powder add Left 0 6.9

beans remove b 0 6.69

cheese remove br 0 6.69

milk add center 0 7.24

milk remove center 0 7.75

cracker add tr 0 6.73

baking powder remove Left 0 6.54

spaghetti add bl 0 6.38

tomato Can add b 0 6.63

cracker remove tl 0 6.44

yogurt add t 0 6.48

spaghetti remove Left 0 6.62

spaghetti add right 0 6.62

tomato Can remove b 0 6.72

beans add center 0 6.98

yogurt remove t 0 6.94

beans remove center 0 6.45

milk add t 0 7.28

yogurt add bl 1 6.91

milk remove t 0 6.91

yogurt remove bl 0 6.33

spaghetti remove right 0 6.66

18-500 Final Project Report: Food Tracker (B6) - 05/07/2022 19

TABLE IX. FAILED TRIAL (~50 IMAGES)

Item Action Location Failed Time

cheese add l 0 7.4

cheese remove l 0 6.4

cheese add tr 1 6.6

cereal add tl 0 6.69

cereal remove tl 0 7.4

cheese remove tr 1 6.56

crackers add c 0 6.5

crackers remove c 0 6.7

cereal add tl 0 7

cereal remove tl 0 6.6

yogurt add c 0 6.5

yogurt remove c 0 6.2

crackers add r 0 6.4

crackers remove r 0 6.6

baking powder add r 1 6.75

spagetti add l 0 6.97

spagetti remove l 0 6.85

spagetti add t 1 6.62

baking powder remove r 1 6.23

applesauce add tr 1 7.27

applesauce remove tr 1 6.1

applesauce add r 1 6.2

applesauce remove r 0 6.4

spagetti remove t 0 6.47

cereal add r 0 6.86

cereal remove r 0 7.478

beans add tr 1 6.3

beans remove tr 0 6.55

baking powder add tr 1 6.7

spagetti add l 0 6.7

baking powder remove tr 0 6.67

baking powder add t 1 6.4

spagetti remove l 0 6.53

tomatoes add tl 1 6.6

tomatoes add tl 1 6.6

yogurt add tl 1 6.7

baking powder remove t 1 6.9

beans add t 1 7.3

applesauce add br 1 6.88

yogurt remove tl 1 6.6

beans remove t 1 6.7

applesauce remove br 1 6.8

tomatoes add l 1 6.33

milk add t 0 8.34

tomatoes remove l 0 6.78

tomatoes add l 1 6.87

milk remove t 0 6.5

yogurt add b 1 6.5

yogurt remove b 1 6.7

tomatoes remove l 1 6.3

yogurt add bl 1 6.2

tomatoes add b 1 6.5

beans add b 0 6.49

applesauce add br 0 6.45

beans remove c 0 6.45

applesauce add br 0 6.45

cheese add bl 0 6.57

spagetti add t 0 6.8

	I. Introduction
	II. Use-Case Requirements
	III. Architecture and/or Principle of Operation
	A. Hardware
	B. Hardware to Cloud
	C. Computer Vision Algorithm
	D. Cloud Deployment
	E. Models used in the Database
	F. Web Application (Web-app)

	IV. Design Requirements
	V. Design Trade Studies
	A. SQLite vs. Alternatives
	B. SIFT vs. Alternatives
	C. Cloud Deployment vs. Jetson Nano
	D. RPi vs. Alternatives
	E. OAuth vs. Proprietary Account Management
	F. Global vs. Local Updates to Supported Items
	G. Django vs. Flask
	H. Wide Angle Lens vs. Standard Lens

	VI. System Implementation
	A. Hardware
	B. Web-app
	C. Communications
	D. CV Component
	E. Overall difference with our original design document

	VII. Test, Verification and Validation
	A. Response Time
	B. Classification Accuracy
	C. Heartbeat Testing

	VIII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Bill of Materials and Budget
	D. AWS Usage
	E. Risk Management

	IX. Ethical Issues
	X. Related Work
	XI. Summary
	A. Future work
	B. Lessons Learned
	C. Closing Thoughts

	Glossary of Acronyms
	References
	Appendix

