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Abstract—A smart device that will automatically keep track of 

your kitchen's inventory for you. This project consists of one or 
more embedded devices that propagate information to a cloud 
server. The user can interact with a web application to view their 
current kitchen inventory, and/or create a shopping list based on 
recipes that the user has added.  
 

Index Terms— Classification, Computer Vision, Localization, 
OpenCV,  SIFT 

I. INTRODUCTION 
N the hustle and bustle of the modern world, oftentimes it 

can be difficult to keep track of the exact contents of your 
kitchen when going grocery shopping once-weekly. This can 
lead to purchasing items you already have, or forgetting to 
purchase an item that you may need. The former leading to 
wasted food (if the item is perishable), while the latter leading 
to wasted time from returning to the store to buy any 
accidentally omitted items, both relatively common 
occurrences for anyone who does any amount of home cooking. 
As such, we aim to provide a solution in the form of an 
embedded smart device. 

At its core, this device is an inventory tracking system. It will 
maintain an automatically generated inventory of items in the 
user’s kitchen using a Raspberry Pi 3 with an embedded camera 
and cloud-side computer vision. This hardware will sit on the 
ceiling of a storage area like a fridge or a cabinet and capture 
images of the interior to send to a cloud computing server for 
processing. 

Existing kitchen inventory solutions generally belong to two 
categories: focused exclusively on restaurant inventory 
management, and app-based tracking systems. Restaurant 
systems are not only costly and complicated but also extremely 
overly thorough for the average consumer in a home kitchen. 
App-based tracking systems on mobile devices, on the other 
hand, have the most similar use-case, but most (if not all) rely 
on the user manually inputting items, and quantities into the app 
with little to automation. As such, we hope to create a system 
that reduces the user burden by using computer vision to 
identify items and automatically catalog them. 

II. USE-CASE REQUIREMENTS 
Ease of use: Given our market niche, from a usability 

perspective we would like our project to be as unobtrusive as 
possible. All in all the system should take a minimal amount of 
time to set up, minimal input from the user to operate, and 

minimal disruption to the user's normal routine when 
storing/retrieving groceries. To quantify these requirements, the 
total setup time, including account creation on the web-app and 
registering the sensor, should take less than five minutes to 
complete. This time amount is relatively arbitrary, but seems 
reasonable for what a user would expect of a smart device that 
only needs a one-time setup process. The system should update 
automatically in the background, and only notify the user in a 
limited handful of scenarios, adhering to the principle of 
minimal user disruption. 

Multiple Users: The database should be able to handle 
multiple registered users, and multiple devices per user. Having 
this use-case requirement makes future scaling of our system 
much easier to implement.   

Response time: Research suggests that most web-app users 
expect responses within 3 seconds [1]. Therefore, it would be 
good if the total response time of the system, from door close 
to web-app update, was less than three seconds. Further 
breakdown of expected response time values can be found in 
section IV. 

Item Handling: Our project should be able to handle both 
supported and unsupported grocery items. While we will try to 
support a number of common grocery items, different users 
with diverse culinary preferences will likely have wildly 
varying purchasing habits with regards to groceries. We’d like 
to ensure that our system is flexible enough to handle such cases 
without breaking or returning an error, while also ensuring 
manual item entry works as expected. The user will be notified 
of any unsupported items, also pursuant to the earlier goal of 
minimal user disruption. 

Erroneous Identification: Additionally, we would like to 
minimize the number of identification errors, which includes 
false positives and false negatives (see Table I). It is especially  

TABLE I.  POSSIBLE CV OUTCOMES 

Itemsa 
CV Possible Outcomes 

ID’d as A ID’d as B Fails to ID 

Supported 
item A 

True positive  
→ good ID 
85% 

False positive  
→ bad ID 
5% 

False negative  
→ failed ID 
10% 

Unsupported 
item 

False positive  
→ bad ID 
5% 

True negative  
→ no ID (good) 
95% 

a. Let X and Y be arbitrary supported items, A ≠ B 

Fig. 1. Table breakdown of identification cases. Notice that each row should 
sum to 100%. 
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Fig. 2. System block diagram 

important that we minimize false positives (incorrectly 
identifying one object as another), which would cause the 
greatest disruption in kitchen inventory assumptions. False 
positives are more likely to go unnoticed until the user reaches 
into their cabinet and notices the distinct absence of a key 
ingredient, and could lead users to either not purchase an item 
that they mistakenly believe they have, or double-stock an item 
that they do have but was misidentified. That is to say, we 
would much rather have a failed ID than a bad ID. 

User Recipes: Users will be able to add their own recipes to 
their personal cookbook, and the system will automatically 
check whether the user has all of the necessary ingredients for 
a given recipe. If there are any ingredients missing, the system 
will automatically generate a grocery list, which the user will 
be able to access. Relatedly, the system will support sending the 
user a grocery list with the said ingredients. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
The project consists of one (or optionally more) hardware 

unit(s) that captures photos, a cloud server that handles the 
computer vision, and a web-app that presents the information to 
the user in a legible format (Fig. 2).  

On a high level, the hardware component will capture an 
image of the storage area when the user closes the door, and  
send it to a cloud server running our computer vision algorithm. 
The algorithm will try to identify the item added/removed by 
the user. If the item can be successfully identified, the server 
will update the user’s inventory in the database. Otherwise, it 
will notify the user and ask them to label the item manually. 
The user will be able to view their inventory or label 
unidentified items through a web application. 

A. Hardware 
The hardware unit will consist of an RPi attached to a wide-

angle camera module. We expect to be using a low-distortion 
wide angle M15 lens, though this may vary depending on our 
performance results while testing. The camera will be placed at 
~45 degrees relative to the items in the storage location, to 
ensure optimal field of view of an item. The exact angle of the 
camera relative to the items will be determined during testing.  

B. Hardware to Cloud 
The hardware component will communicate with the cloud 

deployment with a POST request containing the device’s ID, a 

serialized image, the serial number of the RPi, and a secret 
validation string. Each of the hardware units will be given a 
secret validation string, so that a malicious actor can’t 
impersonate another device and post fake JSON with just the 
serial number. For security reasons the POST request will be 
encrypted, and the server will verify the correctness of the string 
via its internal mapping before processing the rest of the 
request. 

C. Computer Vision Algorithm 
From here, our cloud deployment of our CV algorithm will 

identify the item from the image sent. For the computer vision 
component, we will be using SIFT, as it was found to be the 
most effective of the algorithms which we tested. For a more 
comprehensive comparison of the potential advantages and 
disadvantages of the available algorithms, see section V 
(Design Trade-Offs).  

D. Cloud Deployment 
Both our CV algorithm and our web application (web-app) 

will run on the same EC2 instance. Doing so cuts down on our 
cost of running two servers, while reducing our complexity in 
implementation. Furthermore, because SIFT is a comparatively 
lightweight algorithm that doesn’t require much computing 
power, we felt it didn’t warrant running two separate instances.  

E. Web Application (Web-app) 
As mentioned above, the web-app will run on the same EC2 

instance. Users will be able to log in, view their registered 
devices and inventories of those devices, add and modify 
recipes that the user has stored, and generate shopping lists 
based on the ingredients the user is missing. All of the supported 
items will be stored in a database with quantity currently in the 
fridge and descriptors of the iconic images. 

The system will also notify the user if/when an unsupported 
item is placed in the cabinet, and prompt them to tag the item in 
as few words as possible. 

 
Fig. 3. User actions flow chart. 
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IV. DESIGN REQUIREMENTS 
For our design requirements, most of the requirements we 

discussed in the use-case requirements section can be carried 
forward into the final design requirements, provided we place a 
greater burden on the user than we would ideally want to. While 
this is unfortunate, we see no other way if we want to keep this 
project within a reasonable scope. 

The first requirement we place on the user is the requirement 
to only retrieve/store one item at a time. While this is a hefty 
requirement, it is needed to satisfy a different use case 
requirement, the ability to handle unsupported items. This will 
enable us to perform pixel differentiation to localize any object 
that we do not support. This will also help us with localization 
in general, which will likely make it easier to perform accurate 
classification. 

The second requirement is that the user arranges objects 
within the storage location such that the label is visible to the 
camera. Attempting to classify objects without the labeling 
being visible is simply not possible, so we must place this 
burden on the user. While this could be remedied by installing 
more cameras, our use-case requirement of minimal user effort 
during installation and the ease of implementation ultimately 
led to this decision. 

While researching, we found an example of using YOLO for 
object localization/classification with messy backgrounds for 
grocery items that managed to achieve ~85% mean average 
precision [2]. Given that we really don’t have to handle 
localization at all, and we will be doing classification with an 
uncluttered background, we feel that an 85% accuracy rating is 
achievable for our use case. We also feel that this is a reasonable 
requirement, given our initial success with testing the various 
algorithms (see section V). 

  For the time delay, while doing the tests to compare the 
various algorithms, we found that the keypoint/feature 
extraction with SIFT on a basic laptop took about .55 seconds 
per image on average, with worst case images taking about 4.5 
seconds. The manually taken Apple Sauce and Crushed Tomato 
Sauce images taking about 4.5 seconds each. The feature 
matching took an average of .033 seconds, with a worst case of 
about 0.25 seconds. Again, most of the worst cases were 
comparisons with the manually taken Apple Sauce and Crushed 
Tomato Sauce images. At this time, we are uncertain of exactly 
why there is such a variance between the average and worst case 
times. Therefore, we have decided to base our update time  

 

 
Fig. 4. The two items with longest feature matching. Both items took about 
4.5 seconds to extract features.  

 
requirement on the worst case scenarios of the CV component; 
We allow for no more than 7 seconds from item placement to 
website update. 

V. DESIGN TRADE STUDIES 
There were several major decisions we made while iterating 

on our design. 

A. SQLite vs. Alternatives 
SQLite generally is less effective when handling large 

numbers of transactions concurrently. However, our project 
will not generate a large number of transactions—we estimate 
~10 per user per day. Additionally, we are using Django for the 
webapp, which already supports SQLite as the default database 
backend. Therefore, we decided to use SQLite given the lack of 
performance concern and due to the time cost of switching to 
an alternative.  

B. SIFT vs. Alternatives 
When determining the algorithm which we would use for 

object detection and classification, we looked at SIFT, ORB, 
BRIEF, YOLO, and other neural network based classifiers. 
While we were doing our preliminary investigations, we found 
that the non neural network algorithms seemed to perform 
sufficiently well for our purposes (provided that the labeling 
was visible). While the neural network based classifiers  had the 
potential to be better, we had no guarantee. Additionally, while 
we found several datasets of grocery images, none of them 
would work for our purposes, so the amount of effort that would 
be required to generate the required training data would likely 
be substantial. Finally, if we used a neural network based 
algorithm, we would be unable to register arbitrary grocery 
items on the fly, since we couldn’t expect the user to provide 
enough training data to retrain the model every time they need 
to register a new grocery item. Therefore, we decided against 
using them, and instead focused on SIFT, ORB, and BRIEF, 
which already showed us tangibly successful results. 

In order to do a simple benchmark, of the three algorithms, 
we tested the effectiveness of the classification by measuring 
the quantity of total matches/good matches using Lowe's ratio 
test. For the Iconic images, we used images taken from grocery 
store online catalogs. For the actual images, we took photos of 
the products, and manually cut out the background, to simulate 
the pixel differentiation that would take place. This does not 
perfectly simulate the photos taken from the sensor for a 
number of reasons: The final angle may vary, and the final 
images will have some lens distortion, and the focus may not be 
as good. However, we feel that this test was effective for the 
purpose of comparing the given algorithms. 

As shown in Table 3 (Appendix), SIFT completely trounced 
the other algorithms. BRIEF misidentified 10/11 of the item 
classes which were tested, ORB failed slightly better, 
misidentifying 4/11 of the items tested. SIFT failed for only 
2/11 item classes (Eggs and Milk). Additionally, SIFT tended 
to have a much greater difference between the correct/incorrect 
items. For BRIEF, the difference in positive feature matches 
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between the identification with the most positive matches and 
all other identifications was, on average, 7.55%. This was 
57.4% for ORB, and 76.4% for SIFT. This shows that SIFT is 
much better at distinguishing between items in the success 
cases. 
C. Cloud Deployment vs. Jetson Nano 

A popular device for performing CV computations is the 
Jetson Nano, whose powerful specs are more than capable for 
our use case. However, we decided not to use this specialized 
hardware for the following reasons.  

• Low utilization: our use case has very low 
utilization because a user is only likely to move 
grocery items ~10 times a day. Although we can get 
lower latency, the computational resources of the 
Jetson Nano will be wasted when the system is idle. 

• Lag tolerance of the system: the lag penalty for 
doing the CV remotely is a fairly minor issue 
because we don’t expect the user to check their 
inventory right after they put items into the storage 
area.  

• Miniscule data transfer: since the data we are 
transferring over the network only consists of an 
image and some text fields, which is expected to be 
around 2~3MB, the user’s network throughput is 
unlikely to pose an issue. 

• Cost: a typical mini fridge costs around $150~$250 
on Amazon, and a Jetson Nano kit is listed at $100+, 
which is more than half the price of some fridges. 
This will not make financial sense if the product is 
to be commercialized. 

Therefore, we felt it was difficult to justify the cost of having 
dedicated local hardware, and we decided to do the computer 
vision processing remotely. 

D. RPi vs. Alternatives 
There were several possibilities for the hardware we could 

use. Ideally, we would want the cheapest possible hardware that 
could take a photo, and send a post request to the web-app with 
the required information. However, we decided to use the RPi 
because it was simpler to prototype: in addition to being widely 
available, it has built-in wifi capabilities, a selection of  camera 
modules that had a python package that allowed for easy control 
of the camera module, and ample documentation online for 
troubleshooting. 

E. OAuth vs. Proprietary Account Management 
Our use case requires us to maintain the inventory of several 

different users concurrently. Therefore, we need some method 
of handling login and password management. Our options were 
to utilize OAuth, or to store the information ourselves. OAuth 
provides superior security and user experience, as it is much 
more convenient than creating a separate username and 
password for this specific service. Additionally, we don’t 
anticipate implementing OAuth to be any more difficult than 
handling it ourselves. 

F.  Global vs. Local Updates to Supported Items 
To define Global and Local updates to supported items: A 

global update is when a user stores an item that is not supported, 
provides an iconic image when prompted, and the item is added 
to the global set of supported items for all users. A local update 
is when the user goes through the same process, but the item is 
only added to the user’s own set of supported items.  

Ultimately, we decided on local updates for two main 
reasons. Global updates to the supported items list would leave 
the CV algorithm vulnerable to potential griefing by a handful 
of malicious users who could intentionally mislabel common 
goods, or even label them with obscenities. Furthermore, 
Global updates will also result in additional image comparisons 
for every item in every user’s inventory, even if they don’t 
regularly use the item in question, significantly driving up 
response time and hindering user experience. Global updating 
does have the advantage that we won’t have multiple users 
running into the same coverage gaps—perhaps this could be 
leveraged into a new feature in future improvements. 

G. Django vs. Alternatives 
Members of our team have experience using Django, and 

there’s no specific features offered by another framework 
which are needed for our use case. Therefore, we’ve decided to 
just use Django as the framework of choice. 

VI. SYSTEM IMPLEMENTATION 
 

 
Fig. 5. Computer Vision flowchart. 

A. Hardware 
The hardware component will consist of a Raspberry Pi (RPi) 

model 3B, the OV5647 Arducam camera module, and a button. 
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The RPi 3B is the cheapest model available that has built-in wifi 
connectivity, and an MIPI Camera Serial Interface Type 2. 

Hypothetically, we would expect this sensor unit to be 
bundled with a smart storage appliance, but for the scope of this 
project this is not feasible. Therefore, the door to the storage 
area closing will be simulated by the press of the button 
connected to GPIO pin 5, and the RPi will be supplied power 
directly from a wall socket. 

The OV5647 Arducam camera module connects directly to 
the RPi’s CSI port. This sensor works in the same manner as 
the native RPi camera module, meaning we can use the picam 
Python package to easily control it. The OV5647 comes pre-
equipped with a wide angle M12 lens. This lens can be detached 
and replaced with a different lens. We intend to test several 
lenses before deciding which one works best. (Due to shipping 
delays, we did not have an opportunity to test before this design 
report). 

Each RPi will know its own serial ID, and its secret string, 
which will be used when communicating with the web-app. The 
sensor will sit idle until it reads a button press on GPIO pin 5. 
When this happens it will take a photo, and send it to the web-
app by an HTTP POST, before returning to idle. See Section C 
on communication for details between the web-app and the 
hardware component. 

B. Web-app 

 
Fig. 6. Website flow chart 

The web-application will be hosted on an AWS EC2 
instance.  Its port 80 will be enabled to allow incoming HTTP 
traffic. 

We will use the Django framework to implement the web-
app, handling any incoming requests from the hardware 
components as well as displaying the inventory information to 
the user. We will use the default database SQLite to store user 

information. Django’s Model-View-Controller pattern provides 
us with a great interface to interact with the database on a high 
level, and we will use model classes for the creation of different 
objects like users and devices. A class diagram can be found in 
the Appendix (Fig. 9). 

When the user first visits the web-app, a registration page 
will be prompted. User authentication will be implemented 
using the python-social-auth library, which supports logging in 
from a number of different services through the OAuth 
protocol, including Google, Facebook, Twitter, etc. 

After the user is authenticated, the web-app will ask for a 
device serial number to finish the registration process. We will 
maintain a list of all the devices we “manufacture” to prevent 
fraudulent device registration. When the user enters the serial 
number of their new device during registration, we will activate 
this device and assign the current user as its owner. 

When handling incoming POST requests, the web-app will 
invoke the CV component for object classification. If the CV 
component is able to classify the object, the web-app will 
update the inventory in the database accordingly. Otherwise, 
the web-app will send the user an email through the Gmail 
SMTP server. The web-app will display a thumbnail image of 
the object obtained from pixel difference calculations in the CV 
component and ask the user to manually identify the item. 

Each identified item will be assigned a location field to 
indicate the device that currently holds the item. This is useful 
if the user owns multiple devices, and if this is the case, the 
web-app will be able to display the inventories separately. This 
will be done by filtering item entries by devices owned by the 
user. The web-app will also be able to display a combined 
inventory, which will be useful if the user requests a shopping 
list. 

C. Communications 
The hardware component and the cloud server will 

communicate through HTTP POST requests. The POST request 
will be generated via python’s requests package and its content 
will be a serialized JSON string. 

When the device takes a photo, it will convert it to a string of 
utf characters using python’s base64 package. It will then send 
the request with the information in Fig. 7: 

 
Fig. 7. An example JSON message. 

The web-app will only accept requests coming from 
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activated devices. It will also store the secret key for each 
device in the database to validate requests. Using the secret key 
ensures that a malicious actor will not be able to modify 
someone else’s inventory by simply modifying the serial 
number in the request. 

The hardware device will also send POST requests with an 
empty “image” JSON field periodically (every 10 minutes) as 
heartbeat messages to the server to indicate its online status. If 
the server hasn’t received any messages from an activated 
device for 30 minutes (missing three heartbeats), its owner will 
be notified through email.  

When the user is visiting the website, the client-side 
JavaScript code will use AJAX to pull information from the 
server to get the most recent inventory. This step enables 
dynamic updates to the webpage when the inventory in the 
database is modified without the need to refresh the page. 

D. CV Component 
To review, a globally registered grocery item is a grocery 

item that can be recognized by all users’ tracker. A locally 
registered grocery item is an item that can only be identified by 
a specific user’s tracker. 

At startup, the CV component will extract the features and 
key points from the iconic images for each of the globally 
registered image classes. The grocery items that will be 
registered globally are as follows: Applesauce, crushed 
tomatoes can, shredded cheese bag, spaghetti, baking powder, 
yogurt, cereal, and Ritz crackers. The descriptors for each of 
these image classes will then be held in some global state 
variable, and will be used until the web server shuts down. 

When invoking the computer vision code, the web 
application will pass the following information: image of 
previous state, image of new state, and a map of locally 
registered item categories to their descriptors. The CV 
component will first perform a pixel differentiation between the 
image of the previous state and the image of the new state to 
localize any regions of change. 

First, we will run SIFT to extract the keypoints and 
descriptors from the region of interest in the new state image. 
We then attempt to match the descriptors to each of the known 
grocery items’ descriptors. If we successfully identify any 
grocery items during this step, it means that the user has added 
that grocery item to the storage location. If we fail to find any 
items of interest, we repeat the above process on the region of 
interest in the old state image. If we successfully identify any 
grocery items during this step, it means that the user has 
removed that item from the storage location. 

If we fail to identify any registered grocery items, it means 
that the user has added an unregistered item, and the user is 
prompted to name the new grocery item category. The newly 
created category and its descriptors are then added to the user’s 
map registered grocery items. 

VII. TEST, VERIFICATION AND VALIDATION 
To simulate updating a kitchen inventory, we’ll subdivide 

two storage locations and number the available slots. We will 
then pick a random location and perform one of two actions. If 

it’s occupied, remove the item. If it’s unoccupied, fill it with an 
item randomly chosen from our accepted grocery list. This 
process will be used for the testing procedures below. 

A. Response Time 
    In order to test update speed (i.e. time from button press to 
website update), we will create a mock page that is identical to 
the regular inventory page that also displays the linux time 
since when the last update occurred. We will also have the RPi 
print the linux time when the button is clicked. By taking the 
difference, we will have the total response time of the system. 
This testing can be done in conjunction with the classification 
accuracy test. 

B. Classification Accuracy 
To check classification accuracy, we will repeatedly update 

the kitchen’s inventory, keeping track of the success, failures, 
and misidentifications per item. We will repeat until we’ve seen 
every item 10 times or we have 100 trials, whichever takes 
longer. In conjunction with the response time requirements, this 
testing setup will allow us to check both requirements 
simultaneously. 

C. Heartbeat Testing 
To test the heartbeat mechanism, we will unplug a router for 

45 minutes to ensure that one notification is sent after 30 
minutes of inactivity, and no more than one is sent erroneously. 

VIII. PROJECT MANAGEMENT 

A. Schedule 
We’ve divided our Gantt chart into  subsections (Fig. 8): CV 

proof of concept, Web App Component, Benchmarking, 
Integration, Website enhancements, and Documentation. The 
first three sections are the initial work that can be done in 
parallel, that are necessary for the MVP. Integration is self 
explanatory. Website enhancements consist of a number of user 
quality of life improvements that, while important, are not 
needed for the MVP. 

B. Team Member Responsibilities 
Generally speaking, Keaton is primarily responsible for 

writing and testing the CV used for object classification. Harry 
is secondarily responsible for this, he will assist with this when 
he is able. Harry is primarily responsible for the web-app 
backend and communication between the hardware sensor and 
the web application. Jay will likely help with this, especially as 
it pertains to his primary work with the front end. Jay is 
primarily responsible for the web application front end and 
assisting the backend. 
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Fig. 8. Gantt Chart with milestones and team responsibilities 

C. Bill of Materials and Budget 
(Table II) Overall, we have used a very small amount of our 

budget, and I do not expect us to need to use any more in the 
foreseeable future. The only likely additional expenses are 
different lenses. 

D. Risk Mitigation Plans 
Most aspects of our project can be done independently, with 

little to no risk of catastrophic failure. We view the two most 
risky portions of the project to be the possibility of not meeting 
the accuracy requirements for the CV device, and not meeting 
the update speed requirements. 

For the accuracy requirements, there are several values which 
can be tweaked that can affect the overall accuracy of the 
system. Namely, the confidence threshold on the SIFT 
algorithm, and the threshold on the pixel difference algorithm. 

Given our results from Part V, it seems unlikely that we can 
switch algorithms to either ORB or BRIEF (both of which are 
faster). However, there are several algorithms which were not 
tested which may provide comparable results at higher speed, 
namely SURF. Additionally, it may be possible to speed up the 
overall response time by using a higher capacity EC2 instance. 

IX. RELATED WORK 
There were also a number of similar projects from previous 

years that we investigated while working on designing our own. 
“Backpack buddy”, Spring 2021 C0, is a project that tracks the 

location of the user's items using RFID tags. It was our principal 
source before we switched to using computer vision. 
“SmolKat”, Spring 2021 D3, is another similar project, that 
focused on identifying items in a storage location. They used 
the Google’s Cloud Vision API as their classification system, 
as opposed to SIFT. “Sous-Chef” Spring 2020 A4, also focused 
on identifying items in a storage location using CV. However, 
they focused on looking for barcodes, as a method of 
identifying the item. As mentioned in an earlier section, we 
came across a similar project online, “Grocer Eye” which we 
used as a reference for our potential accuracy.  

X. SUMMARY 
Our inspiration for this project has deep personal relevance 

to us all. We feel that this problem of grocery inventory is 
overwhelmingly common, and we hope to provide a successful 
tracker that will fulfill the grocery-shopping needs of every 
home cook. 
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GLOSSARY OF ACRONYMS 
AWS - Amazon Web Services 
BRIEF - Binary Robust Independent Elementary Features 
CV - Computer Vision 
EC2 - Amazon Elastic Cloud Compute 
HTTP - Hypertext Transfer Protocol 
JSON - JavaScript Object Notation 
OAuth - Open Authorization 
ORB - Oriented FAST and Rotated BRIEF 
RPi – Raspberry Pi 
SIFT - Scale Invariant Feature Transform 
SMTP - Simple Mail Transfer Protocol 
YOLO - You Only Look Once 
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TABLE II.  BILL OF MATERIALS 

Description Model # Manufacturer Quantity Cost @ Total 

RPi 3 Model B 4328498196 RPi Foundation 2 $100 $200 
1/2.7” 2.8mm Focal 
Length Lens  ARDUCAM 2 $18 $36 

OV5647 with M12 
Lens preattached  ARDUCAM 2 $28 $56 

AWS Credit  Amazon 1 $50 $50 

Grand Total $342.00 
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Fig. 9. Class Modal Diagram of the Database 
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TABLE III.  COMPARISON OF VARIOUS CV ALGORITHMS 

The x-axis is the iconic image, and the y-axis is the actual item.  

1.000 represents a 100% match between the actual item and the iconic image.  
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