
18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

1

Abstract—A smart device that will automatically keep track of

your kitchen's inventory for you. This project consists of one or
more embedded devices that propagate information to a cloud
server. The user can interact with a web application to view their
current kitchen inventory, and/or create a shopping list based on
recipes that the user has added.

Index Terms— Classification, Computer Vision, Localization,
OpenCV, SIFT

I. INTRODUCTION
N the hustle and bustle of the modern world, oftentimes it

can be difficult to keep track of the exact contents of your
kitchen when going grocery shopping once-weekly. This can
lead to purchasing items you already have, or forgetting to
purchase an item that you may need. The former leading to
wasted food (if the item is perishable), while the latter leading
to wasted time from returning to the store to buy any
accidentally omitted items, both relatively common
occurrences for anyone who does any amount of home cooking.
As such, we aim to provide a solution in the form of an
embedded smart device.

At its core, this device is an inventory tracking system. It will
maintain an automatically generated inventory of items in the
user’s kitchen using a Raspberry Pi 3 with an embedded camera
and cloud-side computer vision. This hardware will sit on the
ceiling of a storage area like a fridge or a cabinet and capture
images of the interior to send to a cloud computing server for
processing.

Existing kitchen inventory solutions generally belong to two
categories: focused exclusively on restaurant inventory
management, and app-based tracking systems. Restaurant
systems are not only costly and complicated but also extremely
overly thorough for the average consumer in a home kitchen.
App-based tracking systems on mobile devices, on the other
hand, have the most similar use-case, but most (if not all) rely
on the user manually inputting items, and quantities into the app
with little to automation. As such, we hope to create a system
that reduces the user burden by using computer vision to
identify items and automatically catalog them.

II. USE-CASE REQUIREMENTS
Ease of use: Given our market niche, from a usability

perspective we would like our project to be as unobtrusive as
possible. All in all the system should take a minimal amount of
time to set up, minimal input from the user to operate, and

minimal disruption to the user's normal routine when
storing/retrieving groceries. To quantify these requirements, the
total setup time, including account creation on the web-app and
registering the sensor, should take less than five minutes to
complete. This time amount is relatively arbitrary, but seems
reasonable for what a user would expect of a smart device that
only needs a one-time setup process. The system should update
automatically in the background, and only notify the user in a
limited handful of scenarios, adhering to the principle of
minimal user disruption.

Multiple Users: The database should be able to handle
multiple registered users, and multiple devices per user. Having
this use-case requirement makes future scaling of our system
much easier to implement.

Response time: Research suggests that most web-app users
expect responses within 3 seconds [1]. Therefore, it would be
good if the total response time of the system, from door close
to web-app update, was less than three seconds. Further
breakdown of expected response time values can be found in
section IV.

Item Handling: Our project should be able to handle both
supported and unsupported grocery items. While we will try to
support a number of common grocery items, different users
with diverse culinary preferences will likely have wildly
varying purchasing habits with regards to groceries. We’d like
to ensure that our system is flexible enough to handle such cases
without breaking or returning an error, while also ensuring
manual item entry works as expected. The user will be notified
of any unsupported items, also pursuant to the earlier goal of
minimal user disruption.

Erroneous Identification: Additionally, we would like to
minimize the number of identification errors, which includes
false positives and false negatives (see Table I). It is especially

TABLE I. POSSIBLE CV OUTCOMES

Itemsa
CV Possible Outcomes

ID’d as A ID’d as B Fails to ID

Supported
item A

True positive
→ good ID
85%

False positive
→ bad ID
5%

False negative
→ failed ID
10%

Unsupported
item

False positive
→ bad ID
5%

True negative
→ no ID (good)
95%

a. Let X and Y be arbitrary supported items, A ≠ B

Fig. 1. Table breakdown of identification cases. Notice that each row should
sum to 100%.

Food Tracker

Jaeyoon Choi, Zhengze Gong, Keaton Drebes

Department of Electrical and Computer Engineering, Carnegie Mellon University

I

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

2

Fig. 2. System block diagram

important that we minimize false positives (incorrectly
identifying one object as another), which would cause the
greatest disruption in kitchen inventory assumptions. False
positives are more likely to go unnoticed until the user reaches
into their cabinet and notices the distinct absence of a key
ingredient, and could lead users to either not purchase an item
that they mistakenly believe they have, or double-stock an item
that they do have but was misidentified. That is to say, we
would much rather have a failed ID than a bad ID.

User Recipes: Users will be able to add their own recipes to
their personal cookbook, and the system will automatically
check whether the user has all of the necessary ingredients for
a given recipe. If there are any ingredients missing, the system
will automatically generate a grocery list, which the user will
be able to access. Relatedly, the system will support sending the
user a grocery list with the said ingredients.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The project consists of one (or optionally more) hardware

unit(s) that captures photos, a cloud server that handles the
computer vision, and a web-app that presents the information to
the user in a legible format (Fig. 2).

On a high level, the hardware component will capture an
image of the storage area when the user closes the door, and
send it to a cloud server running our computer vision algorithm.
The algorithm will try to identify the item added/removed by
the user. If the item can be successfully identified, the server
will update the user’s inventory in the database. Otherwise, it
will notify the user and ask them to label the item manually.
The user will be able to view their inventory or label
unidentified items through a web application.

A. Hardware
The hardware unit will consist of an RPi attached to a wide-

angle camera module. We expect to be using a low-distortion
wide angle M15 lens, though this may vary depending on our
performance results while testing. The camera will be placed at
~45 degrees relative to the items in the storage location, to
ensure optimal field of view of an item. The exact angle of the
camera relative to the items will be determined during testing.

B. Hardware to Cloud
The hardware component will communicate with the cloud

deployment with a POST request containing the device’s ID, a

serialized image, the serial number of the RPi, and a secret
validation string. Each of the hardware units will be given a
secret validation string, so that a malicious actor can’t
impersonate another device and post fake JSON with just the
serial number. For security reasons the POST request will be
encrypted, and the server will verify the correctness of the string
via its internal mapping before processing the rest of the
request.

C. Computer Vision Algorithm
From here, our cloud deployment of our CV algorithm will

identify the item from the image sent. For the computer vision
component, we will be using SIFT, as it was found to be the
most effective of the algorithms which we tested. For a more
comprehensive comparison of the potential advantages and
disadvantages of the available algorithms, see section V
(Design Trade-Offs).

D. Cloud Deployment
Both our CV algorithm and our web application (web-app)

will run on the same EC2 instance. Doing so cuts down on our
cost of running two servers, while reducing our complexity in
implementation. Furthermore, because SIFT is a comparatively
lightweight algorithm that doesn’t require much computing
power, we felt it didn’t warrant running two separate instances.

E. Web Application (Web-app)
As mentioned above, the web-app will run on the same EC2

instance. Users will be able to log in, view their registered
devices and inventories of those devices, add and modify
recipes that the user has stored, and generate shopping lists
based on the ingredients the user is missing. All of the supported
items will be stored in a database with quantity currently in the
fridge and descriptors of the iconic images.

The system will also notify the user if/when an unsupported
item is placed in the cabinet, and prompt them to tag the item in
as few words as possible.

Fig. 3. User actions flow chart.

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

3

IV. DESIGN REQUIREMENTS
For our design requirements, most of the requirements we

discussed in the use-case requirements section can be carried
forward into the final design requirements, provided we place a
greater burden on the user than we would ideally want to. While
this is unfortunate, we see no other way if we want to keep this
project within a reasonable scope.

The first requirement we place on the user is the requirement
to only retrieve/store one item at a time. While this is a hefty
requirement, it is needed to satisfy a different use case
requirement, the ability to handle unsupported items. This will
enable us to perform pixel differentiation to localize any object
that we do not support. This will also help us with localization
in general, which will likely make it easier to perform accurate
classification.

The second requirement is that the user arranges objects
within the storage location such that the label is visible to the
camera. Attempting to classify objects without the labeling
being visible is simply not possible, so we must place this
burden on the user. While this could be remedied by installing
more cameras, our use-case requirement of minimal user effort
during installation and the ease of implementation ultimately
led to this decision.

While researching, we found an example of using YOLO for
object localization/classification with messy backgrounds for
grocery items that managed to achieve ~85% mean average
precision [2]. Given that we really don’t have to handle
localization at all, and we will be doing classification with an
uncluttered background, we feel that an 85% accuracy rating is
achievable for our use case. We also feel that this is a reasonable
requirement, given our initial success with testing the various
algorithms (see section V).

 For the time delay, while doing the tests to compare the
various algorithms, we found that the keypoint/feature
extraction with SIFT on a basic laptop took about .55 seconds
per image on average, with worst case images taking about 4.5
seconds. The manually taken Apple Sauce and Crushed Tomato
Sauce images taking about 4.5 seconds each. The feature
matching took an average of .033 seconds, with a worst case of
about 0.25 seconds. Again, most of the worst cases were
comparisons with the manually taken Apple Sauce and Crushed
Tomato Sauce images. At this time, we are uncertain of exactly
why there is such a variance between the average and worst case
times. Therefore, we have decided to base our update time

Fig. 4. The two items with longest feature matching. Both items took about
4.5 seconds to extract features.

requirement on the worst case scenarios of the CV component;
We allow for no more than 7 seconds from item placement to
website update.

V. DESIGN TRADE STUDIES
There were several major decisions we made while iterating

on our design.

A. SQLite vs. Alternatives
SQLite generally is less effective when handling large

numbers of transactions concurrently. However, our project
will not generate a large number of transactions—we estimate
~10 per user per day. Additionally, we are using Django for the
webapp, which already supports SQLite as the default database
backend. Therefore, we decided to use SQLite given the lack of
performance concern and due to the time cost of switching to
an alternative.

B. SIFT vs. Alternatives
When determining the algorithm which we would use for

object detection and classification, we looked at SIFT, ORB,
BRIEF, YOLO, and other neural network based classifiers.
While we were doing our preliminary investigations, we found
that the non neural network algorithms seemed to perform
sufficiently well for our purposes (provided that the labeling
was visible). While the neural network based classifiers had the
potential to be better, we had no guarantee. Additionally, while
we found several datasets of grocery images, none of them
would work for our purposes, so the amount of effort that would
be required to generate the required training data would likely
be substantial. Finally, if we used a neural network based
algorithm, we would be unable to register arbitrary grocery
items on the fly, since we couldn’t expect the user to provide
enough training data to retrain the model every time they need
to register a new grocery item. Therefore, we decided against
using them, and instead focused on SIFT, ORB, and BRIEF,
which already showed us tangibly successful results.

In order to do a simple benchmark, of the three algorithms,
we tested the effectiveness of the classification by measuring
the quantity of total matches/good matches using Lowe's ratio
test. For the Iconic images, we used images taken from grocery
store online catalogs. For the actual images, we took photos of
the products, and manually cut out the background, to simulate
the pixel differentiation that would take place. This does not
perfectly simulate the photos taken from the sensor for a
number of reasons: The final angle may vary, and the final
images will have some lens distortion, and the focus may not be
as good. However, we feel that this test was effective for the
purpose of comparing the given algorithms.

As shown in Table 3 (Appendix), SIFT completely trounced
the other algorithms. BRIEF misidentified 10/11 of the item
classes which were tested, ORB failed slightly better,
misidentifying 4/11 of the items tested. SIFT failed for only
2/11 item classes (Eggs and Milk). Additionally, SIFT tended
to have a much greater difference between the correct/incorrect
items. For BRIEF, the difference in positive feature matches

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

4

between the identification with the most positive matches and
all other identifications was, on average, 7.55%. This was
57.4% for ORB, and 76.4% for SIFT. This shows that SIFT is
much better at distinguishing between items in the success
cases.
C. Cloud Deployment vs. Jetson Nano

A popular device for performing CV computations is the
Jetson Nano, whose powerful specs are more than capable for
our use case. However, we decided not to use this specialized
hardware for the following reasons.

• Low utilization: our use case has very low
utilization because a user is only likely to move
grocery items ~10 times a day. Although we can get
lower latency, the computational resources of the
Jetson Nano will be wasted when the system is idle.

• Lag tolerance of the system: the lag penalty for
doing the CV remotely is a fairly minor issue
because we don’t expect the user to check their
inventory right after they put items into the storage
area.

• Miniscule data transfer: since the data we are
transferring over the network only consists of an
image and some text fields, which is expected to be
around 2~3MB, the user’s network throughput is
unlikely to pose an issue.

• Cost: a typical mini fridge costs around $150~$250
on Amazon, and a Jetson Nano kit is listed at $100+,
which is more than half the price of some fridges.
This will not make financial sense if the product is
to be commercialized.

Therefore, we felt it was difficult to justify the cost of having
dedicated local hardware, and we decided to do the computer
vision processing remotely.

D. RPi vs. Alternatives
There were several possibilities for the hardware we could

use. Ideally, we would want the cheapest possible hardware that
could take a photo, and send a post request to the web-app with
the required information. However, we decided to use the RPi
because it was simpler to prototype: in addition to being widely
available, it has built-in wifi capabilities, a selection of camera
modules that had a python package that allowed for easy control
of the camera module, and ample documentation online for
troubleshooting.

E. OAuth vs. Proprietary Account Management
Our use case requires us to maintain the inventory of several

different users concurrently. Therefore, we need some method
of handling login and password management. Our options were
to utilize OAuth, or to store the information ourselves. OAuth
provides superior security and user experience, as it is much
more convenient than creating a separate username and
password for this specific service. Additionally, we don’t
anticipate implementing OAuth to be any more difficult than
handling it ourselves.

F. Global vs. Local Updates to Supported Items
To define Global and Local updates to supported items: A

global update is when a user stores an item that is not supported,
provides an iconic image when prompted, and the item is added
to the global set of supported items for all users. A local update
is when the user goes through the same process, but the item is
only added to the user’s own set of supported items.

Ultimately, we decided on local updates for two main
reasons. Global updates to the supported items list would leave
the CV algorithm vulnerable to potential griefing by a handful
of malicious users who could intentionally mislabel common
goods, or even label them with obscenities. Furthermore,
Global updates will also result in additional image comparisons
for every item in every user’s inventory, even if they don’t
regularly use the item in question, significantly driving up
response time and hindering user experience. Global updating
does have the advantage that we won’t have multiple users
running into the same coverage gaps—perhaps this could be
leveraged into a new feature in future improvements.

G. Django vs. Alternatives
Members of our team have experience using Django, and

there’s no specific features offered by another framework
which are needed for our use case. Therefore, we’ve decided to
just use Django as the framework of choice.

VI. SYSTEM IMPLEMENTATION

Fig. 5. Computer Vision flowchart.

A. Hardware
The hardware component will consist of a Raspberry Pi (RPi)

model 3B, the OV5647 Arducam camera module, and a button.

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

5

The RPi 3B is the cheapest model available that has built-in wifi
connectivity, and an MIPI Camera Serial Interface Type 2.

Hypothetically, we would expect this sensor unit to be
bundled with a smart storage appliance, but for the scope of this
project this is not feasible. Therefore, the door to the storage
area closing will be simulated by the press of the button
connected to GPIO pin 5, and the RPi will be supplied power
directly from a wall socket.

The OV5647 Arducam camera module connects directly to
the RPi’s CSI port. This sensor works in the same manner as
the native RPi camera module, meaning we can use the picam
Python package to easily control it. The OV5647 comes pre-
equipped with a wide angle M12 lens. This lens can be detached
and replaced with a different lens. We intend to test several
lenses before deciding which one works best. (Due to shipping
delays, we did not have an opportunity to test before this design
report).

Each RPi will know its own serial ID, and its secret string,
which will be used when communicating with the web-app. The
sensor will sit idle until it reads a button press on GPIO pin 5.
When this happens it will take a photo, and send it to the web-
app by an HTTP POST, before returning to idle. See Section C
on communication for details between the web-app and the
hardware component.

B. Web-app

Fig. 6. Website flow chart

The web-application will be hosted on an AWS EC2
instance. Its port 80 will be enabled to allow incoming HTTP
traffic.

We will use the Django framework to implement the web-
app, handling any incoming requests from the hardware
components as well as displaying the inventory information to
the user. We will use the default database SQLite to store user

information. Django’s Model-View-Controller pattern provides
us with a great interface to interact with the database on a high
level, and we will use model classes for the creation of different
objects like users and devices. A class diagram can be found in
the Appendix (Fig. 9).

When the user first visits the web-app, a registration page
will be prompted. User authentication will be implemented
using the python-social-auth library, which supports logging in
from a number of different services through the OAuth
protocol, including Google, Facebook, Twitter, etc.

After the user is authenticated, the web-app will ask for a
device serial number to finish the registration process. We will
maintain a list of all the devices we “manufacture” to prevent
fraudulent device registration. When the user enters the serial
number of their new device during registration, we will activate
this device and assign the current user as its owner.

When handling incoming POST requests, the web-app will
invoke the CV component for object classification. If the CV
component is able to classify the object, the web-app will
update the inventory in the database accordingly. Otherwise,
the web-app will send the user an email through the Gmail
SMTP server. The web-app will display a thumbnail image of
the object obtained from pixel difference calculations in the CV
component and ask the user to manually identify the item.

Each identified item will be assigned a location field to
indicate the device that currently holds the item. This is useful
if the user owns multiple devices, and if this is the case, the
web-app will be able to display the inventories separately. This
will be done by filtering item entries by devices owned by the
user. The web-app will also be able to display a combined
inventory, which will be useful if the user requests a shopping
list.

C. Communications
The hardware component and the cloud server will

communicate through HTTP POST requests. The POST request
will be generated via python’s requests package and its content
will be a serialized JSON string.

When the device takes a photo, it will convert it to a string of
utf characters using python’s base64 package. It will then send
the request with the information in Fig. 7:

Fig. 7. An example JSON message.

The web-app will only accept requests coming from

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

6

activated devices. It will also store the secret key for each
device in the database to validate requests. Using the secret key
ensures that a malicious actor will not be able to modify
someone else’s inventory by simply modifying the serial
number in the request.

The hardware device will also send POST requests with an
empty “image” JSON field periodically (every 10 minutes) as
heartbeat messages to the server to indicate its online status. If
the server hasn’t received any messages from an activated
device for 30 minutes (missing three heartbeats), its owner will
be notified through email.

When the user is visiting the website, the client-side
JavaScript code will use AJAX to pull information from the
server to get the most recent inventory. This step enables
dynamic updates to the webpage when the inventory in the
database is modified without the need to refresh the page.

D. CV Component
To review, a globally registered grocery item is a grocery

item that can be recognized by all users’ tracker. A locally
registered grocery item is an item that can only be identified by
a specific user’s tracker.

At startup, the CV component will extract the features and
key points from the iconic images for each of the globally
registered image classes. The grocery items that will be
registered globally are as follows: Applesauce, crushed
tomatoes can, shredded cheese bag, spaghetti, baking powder,
yogurt, cereal, and Ritz crackers. The descriptors for each of
these image classes will then be held in some global state
variable, and will be used until the web server shuts down.

When invoking the computer vision code, the web
application will pass the following information: image of
previous state, image of new state, and a map of locally
registered item categories to their descriptors. The CV
component will first perform a pixel differentiation between the
image of the previous state and the image of the new state to
localize any regions of change.

First, we will run SIFT to extract the keypoints and
descriptors from the region of interest in the new state image.
We then attempt to match the descriptors to each of the known
grocery items’ descriptors. If we successfully identify any
grocery items during this step, it means that the user has added
that grocery item to the storage location. If we fail to find any
items of interest, we repeat the above process on the region of
interest in the old state image. If we successfully identify any
grocery items during this step, it means that the user has
removed that item from the storage location.

If we fail to identify any registered grocery items, it means
that the user has added an unregistered item, and the user is
prompted to name the new grocery item category. The newly
created category and its descriptors are then added to the user’s
map registered grocery items.

VII. TEST, VERIFICATION AND VALIDATION
To simulate updating a kitchen inventory, we’ll subdivide

two storage locations and number the available slots. We will
then pick a random location and perform one of two actions. If

it’s occupied, remove the item. If it’s unoccupied, fill it with an
item randomly chosen from our accepted grocery list. This
process will be used for the testing procedures below.

A. Response Time
 In order to test update speed (i.e. time from button press to
website update), we will create a mock page that is identical to
the regular inventory page that also displays the linux time
since when the last update occurred. We will also have the RPi
print the linux time when the button is clicked. By taking the
difference, we will have the total response time of the system.
This testing can be done in conjunction with the classification
accuracy test.

B. Classification Accuracy
To check classification accuracy, we will repeatedly update

the kitchen’s inventory, keeping track of the success, failures,
and misidentifications per item. We will repeat until we’ve seen
every item 10 times or we have 100 trials, whichever takes
longer. In conjunction with the response time requirements, this
testing setup will allow us to check both requirements
simultaneously.

C. Heartbeat Testing
To test the heartbeat mechanism, we will unplug a router for

45 minutes to ensure that one notification is sent after 30
minutes of inactivity, and no more than one is sent erroneously.

VIII. PROJECT MANAGEMENT

A. Schedule
We’ve divided our Gantt chart into subsections (Fig. 8): CV

proof of concept, Web App Component, Benchmarking,
Integration, Website enhancements, and Documentation. The
first three sections are the initial work that can be done in
parallel, that are necessary for the MVP. Integration is self
explanatory. Website enhancements consist of a number of user
quality of life improvements that, while important, are not
needed for the MVP.

B. Team Member Responsibilities
Generally speaking, Keaton is primarily responsible for

writing and testing the CV used for object classification. Harry
is secondarily responsible for this, he will assist with this when
he is able. Harry is primarily responsible for the web-app
backend and communication between the hardware sensor and
the web application. Jay will likely help with this, especially as
it pertains to his primary work with the front end. Jay is
primarily responsible for the web application front end and
assisting the backend.

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

7

Fig. 8. Gantt Chart with milestones and team responsibilities

C. Bill of Materials and Budget
(Table II) Overall, we have used a very small amount of our

budget, and I do not expect us to need to use any more in the
foreseeable future. The only likely additional expenses are
different lenses.

D. Risk Mitigation Plans
Most aspects of our project can be done independently, with

little to no risk of catastrophic failure. We view the two most
risky portions of the project to be the possibility of not meeting
the accuracy requirements for the CV device, and not meeting
the update speed requirements.

For the accuracy requirements, there are several values which
can be tweaked that can affect the overall accuracy of the
system. Namely, the confidence threshold on the SIFT
algorithm, and the threshold on the pixel difference algorithm.

Given our results from Part V, it seems unlikely that we can
switch algorithms to either ORB or BRIEF (both of which are
faster). However, there are several algorithms which were not
tested which may provide comparable results at higher speed,
namely SURF. Additionally, it may be possible to speed up the
overall response time by using a higher capacity EC2 instance.

IX. RELATED WORK
There were also a number of similar projects from previous

years that we investigated while working on designing our own.
“Backpack buddy”, Spring 2021 C0, is a project that tracks the

location of the user's items using RFID tags. It was our principal
source before we switched to using computer vision.
“SmolKat”, Spring 2021 D3, is another similar project, that
focused on identifying items in a storage location. They used
the Google’s Cloud Vision API as their classification system,
as opposed to SIFT. “Sous-Chef” Spring 2020 A4, also focused
on identifying items in a storage location using CV. However,
they focused on looking for barcodes, as a method of
identifying the item. As mentioned in an earlier section, we
came across a similar project online, “Grocer Eye” which we
used as a reference for our potential accuracy.

X. SUMMARY
Our inspiration for this project has deep personal relevance

to us all. We feel that this problem of grocery inventory is
overwhelmingly common, and we hope to provide a successful
tracker that will fulfill the grocery-shopping needs of every
home cook.

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

8

GLOSSARY OF ACRONYMS
AWS - Amazon Web Services
BRIEF - Binary Robust Independent Elementary Features
CV - Computer Vision
EC2 - Amazon Elastic Cloud Compute
HTTP - Hypertext Transfer Protocol
JSON - JavaScript Object Notation
OAuth - Open Authorization
ORB - Oriented FAST and Rotated BRIEF
RPi – Raspberry Pi
SIFT - Scale Invariant Feature Transform
SMTP - Simple Mail Transfer Protocol
YOLO - You Only Look Once

REFERENCES
[1] "How to Check, Measure, and Improve Server and Application

Response Time With Monitoring Tools," DNSstuff, 12-Dec-2019.
Accessed on Feb 28, 2022 [Online]. Available:
https://www.dnsstuff.com/response-time-monitoring.

[2] R. M. Bhimani, "Grocereye - a YOLO model for grocery object
detection," Rehaan M. Bhimani, 18-Dec-2020. Accessed on Mar 3, 2022
[Online]. Available:
http://students.washington.edu/bhimar/highlights/2020-12-18-
GrocerEye/.

TABLE II. BILL OF MATERIALS

Description Model # Manufacturer Quantity Cost @ Total

RPi 3 Model B 4328498196 RPi Foundation 2 $100 $200
1/2.7” 2.8mm Focal
Length Lens ARDUCAM 2 $18 $36

OV5647 with M12
Lens preattached ARDUCAM 2 $28 $56

AWS Credit Amazon 1 $50 $50

Grand Total $342.00

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

9

Fig. 9. Class Modal Diagram of the Database

18-500 Design Project Report: Food Tracker (B6) - 03/04/2022

10

TABLE III. COMPARISON OF VARIOUS CV ALGORITHMS

The x-axis is the iconic image, and the y-axis is the actual item.

1.000 represents a 100% match between the actual item and the iconic image.

	I. Introduction
	II. Use-Case Requirements
	III. Architecture and/or Principle of Operation
	A. Hardware
	B. Hardware to Cloud
	C. Computer Vision Algorithm
	D. Cloud Deployment
	E. Web Application (Web-app)

	IV. Design Requirements
	V. Design Trade Studies
	A. SQLite vs. Alternatives
	B. SIFT vs. Alternatives
	C. Cloud Deployment vs. Jetson Nano
	D. RPi vs. Alternatives
	E. OAuth vs. Proprietary Account Management
	F. Global vs. Local Updates to Supported Items
	G. Django vs. Alternatives

	VI. System Implementation
	A. Hardware
	B. Web-app
	C. Communications
	D. CV Component

	VII. Test, Verification and Validation
	A. Response Time
	B. Classification Accuracy
	C. Heartbeat Testing

	VIII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Bill of Materials and Budget
	D. Risk Mitigation Plans

	IX. Related Work
	X. Summary
	Glossary of Acronyms
	References

