
Food Tracker
Jaeyoon Choi, Zhengze Gong, Keaton Drebes



Use Case

● You’re grocery shopping, and you forgot to make a list of things to buy.
● You don’t remember whether you have milk, or eggs, or that one ingredient for that one recipe.
● You bought something and completely forgot about it, leaving it in the fridge for ages



Use Case Requirements

● Power requirements should be reasonable for a smart appliance.
○ <10 W peak

● Supported items (subject to change)
○ Apple, Banana, Orange, Milk, Eggs, Bread, Yogurt, Cheese, and Cereal

● Regular updates to web application, at least every 10 min
● Should be able to track combined inventory across multiple cabinets/locations
● CV component must have greater than 85% accuracy when identifying items

○ No individual item should have < 60% accuracy
○ Failure to identify an item is preferred to misidentification

■ Misidentification (identifying one item as something else) should happen <5% of the time
● Musts have the ability to handle unsupported items/orientations of items

○ Send photo of unsupported item to user through web app so user can identify it
● Web component should be accessible

○ Individual accounts for individual users
○ Inventory will update every time the cabinet/fridge door is opened/closed

■ will be simulated with a button press for purposes of testing
○ Users can create/Import expected normal inventory, or select a number of recipes, and generate a shopping 

list based on what they lack



Technical Challenges

● CV component
○ Availability of training data (If using CNN)

■ May need to manually generate a set for testing regardless
○ Computational power of embedded device
○ Getting the required accuracy
○ Communication with Web Application

● Web component
○ Communication with CV component

● Integration of components



Solution Approach

● Jetson Nano for hardware
○ Seems sufficiently powerful for our purposes
○ Meets power requirements
○ Ethernet port for communication with web app.

● Embedded camera for CV
○ Probably should be around 8 megapixels
○ All cameras should have similar resolutions

● Open CV for software
○ Using ORB for feature detection
○ May use CNN with info from imageNet if unable to get desired results with ORB

● Django for web-app
● Communication will just be posting JSON.



Testing, Verification, and Metrics

● Obtain an inventory of whatever grocery items we support, randomly arrange all possible 
combinations in view of the CV component, record successes and failures.

○ Orientations of items will be what you would reasonably expect, IE, you wouldn’t store 
milk upside down, but you may store either right side up, or on it’s side

● Measure the power consumption when running compute-intensive tasks: < 10W
● Measure the average power consumption for regular usage



Tasks/Division of Labor/Gantt Chart P1



Tasks/Division of Labor/Gantt Chart P2


