KBBQ for KBBeginners

Team B5: Joseph Jang, Jasper Lessiohadi, Raymond Ngo

18-500 Capstone Design, Spring 2022 Electrical and Computer Engineering Department Carnegie Mellon University

Product Pitch

Korean food is growing in popularity, and Korean barbeque (KBBQ) is delicious cuisine, but can be slightly daunting to people who have never experienced it before. To aid beginners through this, we implemented a robotics system that can help KBBQ beginners to properly cook meats. The system uses computer vision and a robotic arm to scan various meats and automatically cook them, leading to food that is cooked well every time. Our robotic arm must be able to reach dishes and all areas of our 13.5 cm by 13.5 cm grill. It should also be able to function for at least 20 minutes, and at most 45 minutes. We want our meat cooked "just right" 70% of the time and not be undercooked or burnt meat.

System Architecture

Robotic Arm

Laptop (UI and CV)

The KBBQ robotic system will have four main subsystems: the Robotic Arm, Computer Vision, User Interface, and the Software Controller.

System Description

Overall Subsystem

Robotic Arm

Feed

Overall System Architecture

Grill **UI** Interface KBBQ for KBBeginners Camera

Information from CV New Meat Info: Algorithm (YOLOv5)

Detected Thickness: 0.25 inches Time to Cook 1:00 minutes Section Placement 2

System Evaluation

Feature	Testing Method	Output	Accuracy	Results
Meat type recognition	Placing plates of food in front of camera	Algorithm item guess	Under 5 seconds 80%+ Accuracy	.05 Seconds 76% Accuracy
Thickness Recognition	Holding cuts of meat in front of camera	Thickness estimate	±1/16 in	±1/10 in
Robotic Arm Movement Error	See if Robotic arm can touch a predetermined point	Amount of Movement Error in kinematic software	±1/16 in	±1/4 in
Cooking Time Algorithm	Manually see if the amount of time calculated properly cooks given meat	Cooking time estimate	Meat fully cooked, but not burnt Internal temp of 145F pork, 170F beef min	TBD

Pin 3 to ENA

M542Tulin≡[®]

NEMA 17 Stepper

Conclusions & Additional Information

In the process of implementing our design, we ran into some challenges. Having Inverse Kinematics for the robot arm and blob detection for our CV that are precise enough to fulfill our design requirements was not easy; however, in the future with more testing, we are confident that we will be able to find ways to make them function at a satisfactory level. Despite these challenges, though, we know that with more work, we can produce an effective system that will help

CV Results

		Actual			
	Slab	Blob	Round	None	Pred Total
Slab	13		2		15
Blob	2	6			8
Round	2	1	9		12
Miss	1		1	2	4
Total Actuals	18	7	12	2	
	Slab Blob Round Miss Total Actuals	Slab Slab 13 Slab 2 Blob 2 Round 2 Miss 1 Total Actuals 18	ActualSlabSlabSlab13Blob2Blob2Round2Miss1Total Actuals18	ActualSlabBlobRoundSlab132Blob26Round21Miss19Total Actuals187	ActualActualSlabBlobRoundNoneSlab132Blob26Round219Miss112Total Actuals18712

Along the way, we learned that allocating more time to integrating all

of our subsystems and communication are necessary because it was

more difficult and time consuming than we initially expected.

